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The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant

nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of

a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of

converting, during the reflection process, most of the fundamental incoming wave energy into the

second harmonic wave is shown, both theoretically and numerically, by means of a proper design of

the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochro-

matic source are compared with time domain simulations for a wave packet source. This protocol

allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as

exploring the limits of the operating frequency bandwidth. The reported methodology can be applied

to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear

reflection processes. VC 2018 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5015952

I. INTRODUCTION

The ability of locally resonant architected materials to

achieve wave control at wavelengths much longer than the

dimensions of the resonant elements has been demonstrated and

utilized extensively over the past several years.1–6 Slow

sound,7–9 negative refraction,10–15 sub-wavelength wave guid-

ing, and multiplexing,16,17 are all among the recently reported

effects of significant interest. This sub-wavelength range of

operations is especially pertinent for layers made of locally reso-

nant elements,18,19 denoted as metasurfaces. As such, the aver-

age thickness can be drastically reduced, which is advantageous,

e.g., for sound absorption,20–27 carpet cloaking,28–30 or other

purposes. The key challenges ahead in improving and applying

the proposed wave control designs, based on metamaterials, are

mainly as follows: (i) the operating bandwidth, which is often

limited to the resonance frequency range, (ii) the tunability of

the metamaterial response, and (iii) the nonlinear (amplitude-

dependent) response, as found to be particularly relevant for

intense sound waves. Recent research has primarily sought to

overcome the first two of these listed challenges,31–33 whereas

this paper focuses on the third challenge, i.e., the nonlinear

amplitude-dependent response of metamaterials.

Compared to the linear dispersive properties of acoustic

metamaterials, the nonlinear wave interaction processes in

metamaterials have been studied less extensively.

Nevertheless, granular crystals and granular metamaterials are

structures whose contact interaction nonlinearity may be effi-

ciently mobilized to produce nonlinear wave processes, such

as asymmetric transmission,16,34–37 nonlinear pulse and

soliton propagation,38–40 harmonic generation,41,42 breath-

ers,43,44 etc. While these granular structures are among the

most widely studied nonlinear elastic engineered materials for

waves and despite their rich behavior, the nonlinear parameter

space of granular systems is highly constrained by the intrinsic

Hertz-Mindlin contact nonlinearity. Moreover, the metasurfa-

ces configuration, in the form of a sub-wavelength layer, does

not a priori favor the accumulation of nonlinear effects along

distances, as classically observed in homogeneous media.45,46

Recent results on architected soft solids40,47–51 however have

demonstrated some ways of managing the dynamic elastic

nonlinearity and offered other ways of designing nonlinear

resonating elements for elastic and acoustic wave control in

propagation or in metasurface configurations.

This article sets out to show that unusual reflection

effects by a nonlinear metasurface can indeed be modeled

and predicted. More specifically, it demonstrates the ability

to avoid reflection at the fundamental incident frequency and

to convert most of the energy in the reflection process into

the second harmonic wave. The metasurface configurations

explored are found to be realistic for subsequent implemen-

tation in experimental testing. The theoretical analysis meth-

odology developed can be applied to other nonlinear

metasurface designs and other nonlinear effects. The first

part of this paper studies the case of a reflected monochro-

matic incident stress wave, while the second part numeri-

cally analyzes the nonlinear reflection of a wave packet, in

addition to studying the frequency bandwidth character (or

time-domain effects) of the nonlinear reflection process.

II. THE PROBLEM UNDER CONSIDERATION AND THE
CORRESPONDING METASURFACE DESIGN

We consider herein the problem of wave reflection by a

sub-wavelength thickness metasurface, in a one-dimensional
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configuration, i.e., with normal incidence on the flat surface.

The incoming wave is a longitudinal scalar wave, such as an

acoustic wave in a fluid or a pure longitudinal stress wave in

a homogeneous solid. The propagation medium is assumed

to be semi-infinite. The unit cell of the metasurface is com-

posed of two elementary masses (m1 and m2) connected to

two nonlinear springs (KNL
1 and KNL

2 ) and viscous dampers

(C), as shown in Fig. 1. The metasurface thickness is

assumed to be much less than the wavelength in the propaga-

tion medium (1). Springs and dampers are regularly posi-

tioned over the metasurface, with each occupying a lateral

surface S.

A quadratic nonlinearity is considered for both springs:

this nonlinearity follows a force-displacement law expressed

as Fi ¼ KiðD‘iÞ þ biKiðD‘iÞ2 (i¼ 1, 2) with D‘i being the

elongation of spring i and bi the quadratic nonlinear

parameter.

The metasurface is inserted between a semi-infinite

propagation medium (1) and a rigid wall (2). Let us consider

a plane stress-wave rinc of amplitude r0 incoming from �1
and propagating along the positive x direction. The problem

is therefore one-dimensional, and the incident and reflected

waves can be written as a function of x – ct and of xþ ct,
respectively (using the time convention ixt), with c the wave

velocity in the propagation medium. The total stress r can be

decomposed into an incoming stress-wave and a reflected

stress-wave r ¼ rinc þ rref ; the following can now be writ-

ten: @r
@x ¼ � 1

c
@rinc

@t þ 1
c
@rref

@t . The one-dimensional wave equa-

tion, q @2ux

@t2 ¼ � @r
@x, with q the mass density of the

propagation medium, must be satisfied on the metasurface at

x¼ 0, which leads to the following useful relation:

rref ¼ rinc þ qc @u1

@t .

The system of metasurface motion equations can thus be

written in the following form:

m1

@2u1

@t2
¼ � 2rinc þ qc

@u1

@t

� �
S� K1ðu1 � u2Þ � C

@ðu1 � u2Þ
@t

� b1K1ðu1 � u2Þ2;

m2

@2u2

@t2
¼ K1ðu1 � u2Þ þ C

@ðu1 � u2Þ
@t

þ b1K1ðu1 � u2Þ2 � K2u2 � C
@u2

@t
� b2K2u2

2;

8>>><
>>>:

(1)

with S being the characteristic lateral surface area of each meta-

surface element and ui (i¼ 1, 2) the displacement of mass mi.

The analysis is carried out here for metasurface parame-

ters defined using ratios between the two masses, i.e.,

m2=m1 ¼ 2, and the two linear spring constants, i.e.,

K2=K1 ¼ 2, while the dashpots are characterized by a damp-

ing coefficient C identical for both. Consequently, the pro-

posed interface design, in the linear case, leads to a dual-

resonance system characterized by the following relation

between the two angular resonance frequencies x2 ¼ 2x1

FIG. 1. Design of the nonlinear elastic

metasurface by (a) a vertically periodic

structure at the sub-wavelength scale;

in order to simplify the analysis, (b) a

dual-resonance model with two mass-

spring elements is implemented. A

semi-infinite medium (1) and a rigid

wall (2) are separated by the designed

metasurface. It is assumed herein that

all model elements of the model are

capable of only moving along the x-

direction, while the nonlinearities are

only presented in the two springs; (c)

presents the frequency response in the

linear case of the first mass, with the

proposed model featuring two reso-

nance frequencies, i.e., x1 and x2.

124901-2 Guo et al. J. Appl. Phys. 123, 124901 (2018)



¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=2m1

p
. An example of such a metasurface response

function in the case without coupling in the presence of a

propagation medium (vacuum) is shown in Fig. 1(c). In

using the first resonance frequency x1, let us define the

dimensionless impedance parameter c representing the ratio

of the impedance of the propagation medium to the mechani-

cal impedance of the metasurface as follows:

c ¼ qcS

2m1x1

: (2)

The metasurface absorption parameter is defined as

g ¼ C
2m1x1

: (3)

Using this expression, let us now define the quality fac-

tor Q ¼ 1=
ffiffiffi
2
p

g which quantifies the effect of viscous damp-

ing in the metasurface based on the expression for a single

damped mass-spring system. Moreover, let us define the

dimensionless nonlinear parameters (or amplitude parame-

ters of our problem): Bi ¼ biu0, with u0 ¼ r0S=K1. The

motion equation system (1) can then be rewritten with

dimensionless parameters as follows:

1

2
X2 @

2U1

@s2
¼ �2f ðsÞ � cX

@U1

@s
� ðU1 � U2Þ � gX

@ðU1 � U2Þ
@s

� B1ðU1 � U2Þ2;

X2 @
2U2

@s2
¼ ðU1 � U2Þ þ gX

@ðU1 � U2Þ
@s

þ B1ðU1 � U2Þ2 � 2U2 � gX
@U2

@s
� 2B2U2

2;

8>>><
>>>:

(4)

where s ¼ xt is the dimensionless time, X ¼ x=x1 is the

normalized excitation frequency, f ðsÞ ¼ rincðsÞ=r0 is the

normalized incident stress wave at the interface x¼ 0, and

Ui ¼ ui=u0 (i¼ 1, 2) is the normalized displacement of each

mass mi.

In the weakly nonlinear regime of the metasurface oper-

ation, let us assume that the reflected wave spectrum from a

monochromatic incident wave will contain, at the first order,

combination frequencies of x, i.e., harmonics of the incident

wave. Consequently, at the boundary x¼ 0, the complex

amplitude of the reflected stress wave is written as

~rR ¼ ~r0

PN
n¼1

~RnðnXÞeinXs, with ~r0 being the complex

amplitude of the incident wave. Here, ~RnðnXÞ ð1 � n � NÞ
actually corresponds to the complex amplitudes of each

reflected harmonic relative to the incident wave amplitude.

In the following, for the sake of simplicity, ~RnðnXÞ will

denote the complex reflection coefficient of the n-th

harmonic.

III. THEORETICAL RESULTS AND PARAMETRIC
ANALYSIS: CASE OF A MONOCHROMATIC SOURCE

In the case of a monochromatic source, i.e., f ðsÞ
¼ cos ðsÞ, the considered motion equation system in Eq. (4)

can be solved by using the Harmonic Balance Method

(HBM)52 (see the Appendix). According to this method, the

solution Ui is developed in the form of a sum of all harmon-

ics generated

UiðsÞ ¼ Ui0 þ
XN

n¼1

Cin cos ðnsÞ þ Sin sin ðnsÞ½ �; (5)

where Ui0 indicates the constant terms, Cin and Sin the magni-

tudes of the sinusoidal terms cos and sin , respectively, and N
the finite number of harmonics being considered. In the pre-

sent study, which deals with weak quadratic nonlinearity, we

verified that N¼ 10 is always sufficient since it yields results

with relative error of less than 10�15 as compared to N¼ 9.

By means of this explicit expression of the solution, the sys-

tem in Eq. (4) is simplified and capable of being solved

numerically by applying the classical Newton-Raphson

method. The complex reflection coefficients of each harmonic

component n are then deduced as follows:

~Rn ¼ dn1 þ icnXðC1n � iS1nÞ; (6)

where dn1 is the Delta function, which is always zero except

when n¼ 1. The results obtained are considered to be the

theoretical. Section IV will compare these results to the case

of a wave packet source in order to study the effects of finite

bandwidth.

In the present study, the excitation frequency x is

always set equal to the first resonance frequency x1 of the

linearized metasurface, i.e., the normalized excitation fre-

quency is X¼ 1. According to the theoretical results pro-

duced by the HBM method (Fig. 2), in order to obtain an

optimal generation of the second or third harmonic compo-

nent, the nonlinear parameters Bi need to be carefully cho-

sen. When the two springs of the model have the same

nonlinearity (B1¼B2), higher harmonics are not necessarily

generated during the reflection process, see, for example, the

value of j ~R2j along the diagonal B1¼B2 in Fig. 2(b). To

enhance the nonlinear process of second harmonic genera-

tion, the difference between nonlinear parameters B1 and B2

must be as large as possible. In the following study therefore,

we have set B2 ¼ 0; moreover, the maximum value of B1 is

defined such that the ratio of the nonlinear part of the elastic

force to its linear part is approximately 0.1, which means

that the nonlinearity remains weak. For the illustrated case in

Fig. 2 with an impedance parameter c ¼ 0:0162 and an

absorption parameter g ¼ 0:0088, the defined maximum

value of B1 equals roughly 0.002.

Furthermore, for the proposed linear properties of the

metasurface, the second resonance lies at a frequency corre-

sponding to twice that of the first resonance, i.e., x2 ¼ 2x1.

Consequently, when the system is excited at the first

124901-3 Guo et al. J. Appl. Phys. 123, 124901 (2018)



resonance frequency x ¼ x1, the second harmonic, which is

generated at 2x (and thus effectively “reflected”) due to the

quadratic nonlinearity, coincides with the second resonance

frequency of the metasurface. Thanks to this selected reso-

nance frequency matching and with appropriate nonlinear

parameters [e.g., B2 � B1 < 0:02 see Fig. 2(c)], the reflected

second harmonic can thus be well amplified.

Simultaneously, we have found that the other higher harmon-

ics are nearly all missing, and even more interestingly, the

fundamental wave has almost been entirely eliminated dur-

ing the reflection, i.e., j ~R1j � 1.

Let us now examine the role of the impedance parameter

c and the absorption parameter g on this nonlinear process of

reflection, which converts a large amount of the energy from

the incoming fundamental wave into the second harmonic

reflected wave. By studying the linear case (Bi¼ 0 with

i¼ 1, 2) for the designed interface, it is possible to determine

the characteristic times of each resonance: at the first reso-

nance frequency x1, the dimensionless characteristic times

of absorption (losses due to the dashpots) and impedance

(losses due to radiation in the propagation medium) are

sabs
1 ¼ 3

g and simp
1 ¼ 3

2c, respectively, At the second resonance

frequency x2, they become sabs
2 ¼ 3

5g and simp
2 ¼ 3

c. These

characteristic times lead to the definition of the dimension-

less lifetime si (i¼ 1, 2) for each resonance

1

si
¼ 1

sabs
i

þ 1

simp
i

: (7)

In the linear case, the reflection coefficient of the funda-

mental wave can be obtained analytically in the following

form:

~R1 ¼
ð1=2ÞðX2 � 1ÞðX2 � 4Þ þ igXð�2X2 þ 3Þ � icXð�X2 þ 3Þ � gðg� 2cÞX2

ð1=2ÞðX2 � 1ÞðX2 � 4Þ þ igXð�2X2 þ 3Þ þ icXð�X2 þ 3Þ � gðgþ 2cÞX2
: (8)

Hence, without nonlinearity, when the excitation occurs at

the first resonance frequency (X¼ 1), the reflection can be

eliminated if the characteristic impedance time is equal to

the characteristic absorption time simp
1 ¼ sabs

1 , i.e., equivalent

to g ¼ 2c. This condition is highlighted in Fig. 3(a) with a

dashed line, and the corresponding computed values of j ~R1j
are observed to be very low. For the studied quadratic non-

linear case (with B1 6¼ 0 and B2 ¼ 0, the dimensionless char-

acteristic time of nonlinearity has also been defined as

sNL ¼ 1=
ffiffiffiffiffi
B1

p
, which conveys an analogous physical

meaning to the shock formation characteristic distance for a

nonlinear propagating wave:46 the nonlinear effects can effi-

ciently develop for characteristic times of metasurface vibra-

tion longer than sNL. One consequence of this approach is

that sNL < si (i¼ 1, 2) is required for a nonlinear effect to

efficiently develop, i.e., before the resonance vanishes. This

condition for the significant nonlinear effect development

can be verified with the results from Figs. 3(a) and 3(b). In

the cross-hatched region of Fig. 3(a), where sNL < s1; j ~R1j is
no longer zero along the dashed line simp

1 ¼ sabs
1 , thus

FIG. 2. Theoretical magnitudes of the

reflection coefficients for (a) the reflected

fundamental wave, (b) the reflected sec-

ond harmonic, and (d) the reflected third

harmonic, derived by HBM, as a func-

tion of the nonlinear parameter values B1

and B2. (c) shows an example of a spe-

cial case with B1 ¼ 0:0018 and

B2 ¼ 0:0002. The graphs have been pro-

duced with an impedance parameter c
¼ 0:0162 and an absorption parameter

g ¼ 0:0088.
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deviating from the linear case. In Fig. 3(b), the greatest mag-

nitudes for j ~R2j occur in the lower left part of the graph, in

the cross-hatched region where the inequality sNL < s2 is

satisfied.

More precisely, when B1 is set at B1 ¼ 0:002; sNL ¼ sabs
1

(respectively, sNL ¼ simp
1 ) when g � 0:134 (respectively,

c � 0:067), and sNL ¼ sabs
2 (respectively, sNL ¼ simp

2 ) for g
� 0:027 (respectively, c � 0:134). Hence, in order to satisfy

the condition sNL < si (i¼ 1, 2), c ¼ qcS
2m1x1

and g ¼ C
2m1x1

should be much less than 1. Physically, this condition means

that the propagation medium should actually be much softer

than the metasurface. It also means that the metasurface

should be weakly dissipative, i.e., the quality factor Q should

not be too low, and typically much greater than unity.

In the results presented in Fig. 2, the value c ¼ 0:0162

has been chosen. Considering air as the propagation medium,

this value of c leads to a resonance frequency fr ¼ 2 kHz for

a metasurface with a mass per unit area equal to one, which

can be achieved with a solid like balsa wood (density of

130 kg=m3), and a thickness of 7:7 mm. Similarly, the choice

g ¼ 0:0088 used for Fig. 2 corresponds to a quality factor

Q¼ 80. This configuration example, based on such realistic

parameter values, shows the potential for applying the pre-

sented concept to the nonlinear manipulation of airborne

sound. Note that in the linear case (i.e., B1 ¼ B2 ¼ 0), the

assigned values of parameters c and g lead to a fundamental

reflection coefficient j ~R1j � 0:57. However, when the non-

linear parameter B1 is nonzero and limited such that the ratio

of the nonlinear part of the elastic force to its linear part is at

most 0.1, e.g., B1 ¼ 0:002, the fundamental reflection can

nearly vanish (with j ~R1j � 0:07), while the second harmonic

can be efficiently generated and reflected with a reflection

coefficient greater than 0.45. As such, the ratio between j ~R2j
and j ~R1j exceeds 6. Therefore, even with very limited nonlin-

earity (e.g., a nonlinear elastic force ten times smaller than

the linear elastic force), a nearly full conversion from the

fundamental incoming energy to the second harmonic reflec-

tion can be achieved by the proposed metasurface design.

The conversion result presented herein can be further

improved if the impedance parameter is changed to

c ¼ 0:0176, thus providing a fundamental reflection coeffi-

cient of j ~R1j � 0:005 and a second harmonic reflection coef-

ficient of j ~R2j � 0:46.

This theoretical study based on the HBM demonstrates a

valuable energy transfer, from a fundamental wave to its sec-

ond harmonic in the reflection process by means of a nonlin-

ear metasurface. The preconditions for efficient conversion

are now in place and provide the design rules for metasurface

element characterization. These results remain valid for a

monochromatic incident wave. Section IV will focus on ana-

lyzing the case of a finite-length wave packet in order to

extend the operating conditions of such a nonlinear metasur-

face and verifying the robustness of the highlighted effects.

IV. NUMERICAL RESULTS AND PARAMETRIC
ANALYSIS WITH A WAVE PACKET SOURCE

The following discussion will consider a Gaussian mod-

ulated wave packet of the form:

rincðsÞ=r0 ¼ f ðsÞ ¼ sin ðsÞe�
ðs�s0Þ2

ðxTÞ2 ;

as the incident wave, with s ¼ xt, T the characteristic tem-

poral width of the wave packet, and s0 the dimensionless

time center of the packet. A classical fourth-order Runge-

Kutta integration method (RK4)53 is used to solve the system

of temporal equations, in Eq. (1), for all cases presented in

this section. Other numerical integration methods have been

implemented to verify these RK4 results, i.e., 6th order

Runge-Kutta, Matlab functions ODE45 and ODE133, and

Adams methods. By introducing the relation

rref ¼ rinc þ qc @u1

@t , the reflected wave signal is obtained

once the temporal displacements ui have been determined.

The time-frequency analysis of the reflected signals can then

be performed using the spectrogram method, yielding, in

particular, a reflected time- and frequency-dependent magni-

tude j ~Rj.

FIG. 3. Magnitude of the theoretical

reflection coefficient (a) at the incom-

ing fundamental frequency and (b) for

the reflected second harmonic wave.

j ~R1j and j ~R2j are obtained via the

HBM with a monochromatic source

and are evaluated as a function of both

the impedance parameter c and the

absorption parameter g. The nonlinear

parameters are fixed at B1 ¼ 0:002 and

B2 ¼ 0. The dashed lines show the

characteristic parameter equalities.

The cross-hatched regions in both (a)

and (b) highlight the parameter space

characterized by sNL < s1;2 where non-

linear effects develop efficiently.
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When the metasurface is excited by a wave packet with

a carrier frequency equal to the first resonance frequency of

the metasurface (x ¼ x1), the two masses of the metasurface

start vibrating with the same phase and at an amplitude ratio

of 2 (corresponding to the eigenmode fu1; u2gT
1 ¼ f2; 1g

T
of

the first resonance). During the increase in metasurface

vibration amplitude, i.e., as the displacement magnitudes of

both masses are rising, higher harmonics are gradually being

generated, to an increasing extent, and the mass displace-

ment waveforms are being distorted (see Fig. 4). More spe-

cifically, as observed in Sec. III, among all the higher

harmonics generated, energy is mainly converted to the sec-

ond harmonic component due to frequency matching with

the second metasurface resonance, i.e., 2x ¼ x2. At 2x, the

displacement relationship between the two masses follows

the eigenmode fu1; u2gT
2 ¼ f�1; 1gT

of the second metasur-

face resonance, i.e., the same displacement magnitude for

both masses yet with out-of-phase motion. In Fig. 4, the

spectrograms and zooms of the waveforms of both the inci-

dent and reflected stress waves are plotted, along with the

displacements of the two masses.

If the incident wave packet lasts long enough, the theoret-

ical results derived via the HBM in Sec. III should be repli-

cated. This outcome can be verified by monitoring the

maximum of j ~RðXÞj and of j ~Rð2XÞj from the spectrogram

contained in Fig. 4 for various temporal widths T of the inci-

dent wave packet. A good level of agreement has been

obtained between the theoretical HBM results and the tempo-

ral simulation for a wave packet when the dimensionless char-

acteristic width xT of the wave packet is much larger than the

characteristic lifetime of the metasurface resonances, i.e.,

xT � si with i¼ 1, 2. With the chosen values of impedance

parameter c ¼ 0:0162 and absorption parameter g ¼ 0:0088,

the lifetimes of the first and second resonances are s1 � 72:82

and s2 � 49:83. With B1 ¼ 0:002, the characteristic time of

nonlinearity sNL ¼ 1=
ffiffiffiffiffi
B1

p
� 22:36, which satisfies the condi-

tion sNL < si for high nonlinear effect efficiency. In turn the

inequality xT � sNL with i¼ 1, 2 needs to be satisfied in

order to retrieve the HBM results for continuous excitation

with a wave packet of temporal width T.

In Fig. 4(b), it is observed that the steady state regime is

reached at s¼ 6000, where the amplitude of the fundamental

reflected wave is at a minimum and the amplitude of the

reflected second harmonic wave is at a maximum. The local

values of j ~R2j � 0:5 and j ~R1j � 0 closely correspond to the

HBM results values [see Fig. 2(c)]. To study the robustness

of this effect for various signal characteristic widths xT, we

performed a number of numerical simulations for

15 � xT � 566, i.e., equivalent to 4 � NT � 150, where NT

is the number of fundamental carrier wave periods within the

packet width at half its maximum amplitude. For an NT typi-

cally less than 10, however, the frequency width of each con-

tribution (whether fundamental or second harmonic) cannot

be easily separated in the time frequency analysis.

Consequently, we opted to monitor the values at X¼ 1 and

at X¼ 2 of the Fourier spectrum for the entire reflected wave

signals. These results are displayed in Fig. 5 for the reflection

at the fundamental frequency j ~RðX ¼ 1Þj ¼ j ~R1j and in Fig.

6 for the reflection at the second harmonic frequency

j ~RðX ¼ 2Þj ¼ j ~R2j, for various metasurface parameters.

In Fig. 5(a), the reflection coefficient magnitude at the

fundamental frequency j ~R1j is plotted for various values of

FIG. 4. Spectrogram and waveform of

(a) normalized incident wave rinc=r0,

of (b) reflected wave normalized by

incident amplitude rref =r0, and of (c)

and (d) displacements of the two

masses, respectively, u1 and u2, nor-

malized by the maximum displacement

of the first mass maxðU1Þ. These

results have been obtained numerically

by means of the fourth-order Runge-

Kutta method (RK4) with a wave

packet source of dimensionless width

xT ¼ 2000. The illustrated waveforms

have been extracted around the time

center t0 of the source

(s ¼ xt0 ¼ 6000). System parameters

are fixed at c ¼ 0:0162; g ¼ 0:0088

(corresponding to Q¼ 80), B1 ¼ 0:002

and B2 ¼ 0.
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the nonlinear parameter B1 from 0 to B1 ¼ B0
1 ¼ 0:002. For

this metasurface configuration, the linear case (B1 ¼ B2 ¼ 0)

shows that j ~R1j is close to 0.6 for any wave packet source

width. With nonlinearity (i.e., B1 6¼ 0), j ~R1j decreases as

wave packet width NT increases, thus revealing the existence

of a nonlinear effect that depends on NT (and obviously on

B1). For B1 ¼ B0
1 ¼ 0:002; j ~R1j decreases as NT rises to �25

and then stabilizes, reaching the asymptotical value of �0:1.

This value is greater than what had been obtained for the

same metasurface parameters with the HBM because the

Fourier spectrum over the entire reflected signal necessarily

comprises transient effects, e.g., the increasing front of the

wave packet amplitude, where nonlinear effects cannot fully

develop due to insufficient amplitude. On all the curves in

Fig. 5, the reflection coefficients are nearly constant for a

wave packet width NT > Nc
T ’ 25.

In Fig. 5(b), for adequately long source signals

(NT > 50), the asymptotic values of j ~R1j depend on c. For

c ¼ c0 and NT > Nc
T ; j ~R1j ’ 0:1, while for c ¼ 2c0 and

NT > Nc
T ; j ~R1j ’ 0:6. Also, as c increases, the influence of

NT on j ~R1j tends to vanish. We found this behavior to be

caused by the fact that increasing c moves further from the

efficient nonlinear effect region of the metasurface parame-

ters, as denoted by the cross-hatched zone in Fig. 3 and

defined by sNL < si. Increasing c corresponds to leaving this

cross-hatched region vertically upward. As a consequence,

the nonlinear effects on j ~R1j vanish and we find once again a

near constant j ~R1j as a function of NT, i.e., similar to the lin-

ear case B1 ¼ 0 exhibited in Fig. 5(a).

The influence of the resonance quality factor on j ~R1j is

shown in Fig. 5(c). For large NT values, the influence of Q is

noticeable yet weak. In this case, the nonlinear effects fully

FIG. 5. Magnitude of the reflection coefficient at the fundamental frequency (three left-hand figures) and the second harmonic frequency (three right-hand figures)

obtained from the Fourier spectrum for the entire reflected wave taken at X¼ 2, with various wave packet source widths (NT denotes the number of carrier wave

periods within the width at half height of the wave packet source). In all graphs, the default parameters are impedance parameter c0 ¼ 0:0162, quality factor

Q¼ 80 (() g0 ¼ 0:0088), and nonlinear parameters B1 ¼ B0
1 ¼ 0:002; B2 ¼ 0. Otherwise, all parameter values are indicated in the graph legend.

FIG. 6. The Fast Fourier Transform (FFT) of normalized reflected wave

rref =r0 present around the fundamental harmonic x for various source

widths, with NT denoting the number of periods at half height of the incident

stress wave and using parameters of the system are fixed as above: c
¼ 0:0162; g ¼ 0:0088 (corresponding to a Q factor equal to 80), B1 ¼ 0:002

and B2 ¼ 0.
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develop, and the parameter g (or Q) no longer plays an impor-

tant role anymore [cross-hatched region sNL < s1 in Fig. 3(a)

where the blue zone of small j ~R1j extends almost horizon-

tally]. For small NT values, however, the metasurface configu-

rations basically reveal different behaviors: as NT decreases,

j ~R1j drops for Q¼ 20 while rises for Q¼ 40, 60, and 80. In

the linear case, the configuration with Q¼ 20 actually corre-

sponds almost perfectly to the total absorption case (or zero

reflection case) g ¼ 2c, and j ~R1j � 0 is expected. As dis-

cussed above, as NT decreases, the nonlinear effects cannot

fully develop and the results converge on the linear effects

[see Fig. 5(a)]. For Q¼ 20, the linear case corresponds to a

nearly perfect absorption by the metasurface, and this perfect

absorption becomes degraded by the nonlinear effects occur-

ring at higher value of NT. Such is not the case for the other

configurations with different Q values, where the nonlinear

effects tend to decrease j ~R1j and improve the absorption at

X¼ 1 through the energy transfer to X¼ 2 as NT increases.

The reflection coefficient magnitude at the second har-

monic frequency is analyzed for the same metasurface con-

figurations as that of the fundamental frequency. In all cases,

the reflection coefficient magnitude j ~R2j starts at a value

close to zero for small NT values and increases to reach a pla-

teau after NT � 25. The values attained for large NT depend

on the configuration and among the presented set of metasur-

face parameters, the largest j ~R2j is obtained for the default

parameters c0 ¼ 0:0162, Q¼ 80, and B0
1 ¼ 0:002.

In the aim of illustrating the spectral and temporal char-

acteristics of the wave packet reflection process, the total sig-

nal spectra have been plotted in Fig. 6 for frequencies �X
and in Fig. 7 for frequencies �2X. Four characteristic wave

packet widths are considered, namely, NT¼ 4, 20, 100, and

150. In Fig. 6, the energy absorption and nonlinear energy

transfer by the nonlinear metasurface toward the harmonics

in the reflection process are displayed by a dip at X¼ 1 in

the initial Gaussian spectrum. The nonlinear energy transfer

toward the second harmonic is observed in Fig. 7 with the

spectra displayed for X � 2, i.e., over a frequency range in

which no energy is present in the incident wave packet. The

temporal signals associated with these spectra are shown in

Figs. 8 and 9, respectively. It can be observed that for the

default set of metasurface parameters delays occur when

establishing the resonances in displacements U1 and U2 rela-

tive to the incident wave packet, as would be expected for

the transient excitation of a resonant system. Consequently,

the local minimum in the reflected wave amplitude is also

delayed with the respect to the central time of the incident

stress wave packet. Lastly, the maximum of the temporal

wave packet filtered at the second harmonic frequency is

even more heavily delayed, thus demonstrating the addi-

tional time required for the nonlinear energy transfer (or non-

linear accumulation time sNL) in the metasurface.

FIG. 8. Temporal signals of the wave packet source rinc with the number of

periods at half height equal to NT¼ 4, of the corresponding normalized

reflected wave rref =r0, and of the normalized displacements of two masses

U1 and U2 [with normalization Ui ¼ ui=u0; ði ¼ 1; 2Þ]. The second harmonic

component (in red lines) for the reflected wave and for the displacements

r2x
ref and U2x

i is obtained by applying around 2x (from 1:5x to 2:5x) a band-

pass filter to each original temporal signals, respectively. Using the parame-

ters of the system, the following are fixed as above: c ¼ 0:0162; g ¼ 0:0088

(corresponding to Q factor equal to 80), B1 ¼ 0:002 and B2 ¼ 0.

FIG. 9. Temporal signals of the wave packet source rinc along with the num-

ber of periods at the half height equal to NT¼ 20, of the corresponding nor-

malized reflected wave rref =r0, and of the normalized displacements of two

masses U1 and U2 [with normalization Ui ¼ ui=u0; ði ¼ 1; 2Þ]. The second

harmonic component (shown in red lines) for both the reflected wave and

for the displacements r2x
ref and U2x

i is obtained by applying around 2x (from

1:5x to 2:5x) a bandpass filter to each original temporal signal, respectively,

in using the system parameters fixed as above: c ¼ 0:0162; g ¼ 0:0088 (cor-

responding to a Q factor equal to 80), B1 ¼ 0:002 and B2 ¼ 0.

FIG. 7. The FFT of normalized reflected wave rref =r0 present around the

second harmonic 2x for various source widths, with NT denoting the number

of periods at half height of the incident stress wave and using parameters of

the system are fixed as above: c ¼ 0:0162; g ¼ 0:0088 (corresponding to a

Q factor equal to 80), B1 ¼ 0:002 and B2 ¼ 0.
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V. CONCLUSION

In conclusion, through designing a nonlinear metasurface

with a dual-resonance mass-spring system, we have proven

both theoretically and numerically the possibility of achieving

a near perfect absorption of the incoming fundamental wave

together with its efficient conversion into the second harmonic

frequency. If the metasurface lies between a relatively soft

propagation medium (air for instance) and a rigid wall and

moreover if the metasurface exhibits weak intrinsic dissipa-

tion (Q¼ 80), our results indicate that even with a small qua-

dratic nonlinearity (B1 ¼ 0:002), a reflection amplitude at the

fundamental incoming wave frequency of j ~RðXÞj � 0:05 is

obtained and a reflected second harmonic of amplitude

j ~Rð2XÞj � 0:46 can be reached. In order to study the charac-

teristic frequency bandwidth character of this effect, the non-

linear reflection of a wave packet has also been examined via

the numerical integration of the metasurface system of nonlin-

ear motion equations. When the characteristic temporal width

of the wave packet signal is large in comparison to the life-

times of the metasurface two resonances (xT � si with i¼ 1,

2), a good level of agreement between the theoretical results

obtained by HBM and the implemented numerical results is

found, in accordance with expectations. For smaller width

however, deviations from the HBM results are observed, indi-

cating that they tend toward the linear reflection results. This

funding is explained by the fact that the excitation time is

shorter than the time necessary to accumulate nonlinear

effects, i.e., the characteristic time sNL.

The potentially very wide metasurface design space is

limited here to the configuration of a dual-resonance system,

chosen such that its first resonance frequency equals to the

excitation frequency and half the second resonance fre-

quency. Consequently, a number of interesting configura-

tions still need to be studied with detuning, for example,

between the interface resonances or between the excitation

frequency and the first resonance frequency. Also, as

recently demonstrated in Ref. 40, it is possible to design

architected materials in order to achieve the desired type

(quadratic, cubic) and amount of elastic wave nonlinearity,

in addition to designing the linear dispersive properties. This

approach opens up avenues for enhancing the possible wave

phenomena induced during the reflection process by a non-

linear metasurface, including but not limited to the wave

manipulation of intense sounds, energy mitigation, and the

linearization of intense sound resonators.
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APPENDIX: HARMONIC BALANCE METHOD

According to the harmonic balance method (HBM), the

solution Ui (i¼ 1, 2) of the considered problem Eq. (4) can

be written in the form of a vector product UiðsÞ ¼ fCgTfqgi

with fCgT
the transpose of column vector fCg containing

all the sinusoidal terms

fCg ¼

1

cos ðsÞ
sin ðsÞ

cos ð2sÞ
sin ð2sÞ

..

.

cos ðNsÞ
sin ðNsÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð2Nþ1Þ	1

; (A1)

and fqig (i¼ 1, 2) another vector containing all the magni-

tude terms

fqig ¼ Ui0;Ci1; Si1;Ci1; Si1;…;CiN; SiNf gT
ð2Nþ1Þ	1:

The derivatives of displacement UiðsÞ with respect to s

are @Ui

@s ¼ @C
@s

n oT

fqgi and @2Ui

@s2 ¼ @2C
@s2

n oT

fqgi.

We define the sinusoidal matrix as

S½ � ¼ fCgT
0

0 fCgT

" #
2	ð4Nþ2Þ

; (A2)

and the magnitude vector as

fqg ¼
q1f g

q2f g

8<
:

9=
;
ð4Nþ2Þ	1

: (A3)

Thus, the considered system of motion equation (4) can be

re-written in the following matrix form:

X2 M½ � @
2S

@s2

� �
qf g þ X C½ � @S

@s

� �
qf g þ K½ � S½ � qf g

þ S½ �fUincg ¼ fFNLg; (A4)

with the source vector fUincg written as fUincg
¼ 0; 2; 0; 0;…; 0f gT

ð4Nþ2Þ	1. The mass matrix ½M�, spring

matrix ½K�, and the damping matrix ½C� are, respectively,

M½ � ¼ 0:5 0

0 1

� �
; K½ � ¼ 1 �1

�1 3

� �
; (A5)

and

C½ � ¼ ðcþ g1Þ �g1

�g1 ðg1 þ g2Þ

� �
: (A6)

The nonlinear force fFNLg takes the form

fFNLg ¼
�f
ð1Þ
NL

f
ð1Þ
NL � f

ð2Þ
NL

8><
>:

9>=
>;
ð2	1Þ

; (A7)

with f
ð1Þ
NL ¼ B1fqgT½S�T 1 �1

�1 1

� �
½S�fqg and f

ð2Þ
NL

¼ 2B2fqgT½S�T 0 0

0 1

� �
½S�fqg.

Thereafter, the studied matrix-form motion equation

system Eq. (A4) can be projected onto the base ½S� as
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X2

p

ð2p

0

S½ �T M½ � @
2S

@s2

� �
qf gdsþX

p

ð2p

0

S½ �T C½ � @S

@s

� �
qf gds

þ1

p

ð2p

0

S½ �T K½ � S½ � qf gdsþ1

p

ð2p

0

S½ �T S½ � Uincf gds

¼1

p

ð2p

0

S½ �T FNLf gds; (A8)

that is,

X2 S½ �T M½ � @
2S

@s2

� �� �
qf g þ X S½ �T C½ � @S

@s

� �� �
qf g

þh S½ �T K½ � S½ �ifqg þ h S½ �T S½ � Uincf gi ¼ h S½ �TFNLi; (A9)

where h
 
 
i denotes the integral operator 1
p

Ð 2p
0
ð
 
 
Þds.

Thanks to this projection, the calculation is simplified

because for all positive integers n et m, we have
1
p

Ð 2p
0

cos ðmsÞ sin ðnsÞds ¼ 0 and

1

p

ð2p

0

cos ðmsÞ cos ðnsÞds

¼ 1

p

ð2p

0

sin ðmsÞ sin ðnsÞds ¼
0; if m 6¼ n 6¼ 0

1; if m ¼ n 6¼ 0

2; if m ¼ n ¼ 0

:

8><
>:

(A10)

In the matrix form motion equation system Eq. (A9),

with these integral results, all the linear terms can be simpli-

fied and determined analytically. The nonlinear term

h½S�TFNLi has the following explicit form:

h S½ �TFNLi ¼ B1

1

p

ð2p

0

� A½ � A½ �
A½ � � A½ �

" #
qf gds

þ2B2

1

p

ð2p

0

0 0

0 � B½ �

" #
qf gds; (A11)

with ½A� ¼ Cf g Dqf gT
Cf g Cf gT

, ½B� ¼ Cf g q2f gT Cf g Cf gT
,

and with Dqf gT ¼ q1f gT � q2f gT.

The integrals 1
p

Ð 2p
0
½A�ds and 1

p

Ð 2p
0
½B�ds can respectively

be written as

1

p

ð2p

0

A½ �ds

" #
ij

¼
X

m

Dqm
1

p

ð2p

0

Ci CmCjds; (A12)

and

1

p

ð2p

0

B½ �ds

" #
ij

¼
X

m

q2m
1

p

ð2p

0

Ci CmCjds; (A13)

containing integrals that can be numerically evaluated.

With all the explicit forms of the terms of Eq. (A9), the

considered problem can be solved numerically by the

Newton-Raphson method.

The main steps of the numerical calculation are recalled

here:

1. Write the considering Eq. (A9) in the matrix form of

FðqÞ ¼ 0 (with N harmonics), calculate the linear solution

qLf g (with Bi ¼ 0) of the system, and input it as the ini-

tial value of q1f g ¼ qLf g.
2. For the next iteration n þ 1, according to the Newton-

Raphson method, we have

qnþ1 ¼ qn � JðqnÞ
	 
�1

FðqnÞ; (A14)

with ½JðqnÞ�
�1

the inverse of Jacobian matrix ½JðqnÞ� which

can be obtained by

JðqnÞ½ �ij ¼
@FðqnÞi
@ðqnÞj

: (A15)

For the considered problem

FðqÞ ¼X2 S½ �T M½ � @
2S

@s2

� �� �
qf gþ h S½ �TFLi� h S½ �TFNLi ¼ 0;

(A16)

with

h S½ �TFLi ¼ h S½ �T K½ � S½ �i qf gþX S½ �T C½ � @S

@s

� �� �
qf g

þh S½ �T S½ � Uincf gi: (A17)

The Jacobian matrix takes the form

JðqnÞ½ �ij ¼ X2 S½ �T M½ � @
2S

@s2

� �� �
ij

þ h S½ �T K½ � S½ �iij

þX S½ �T C½ � @S

@s

� �� �
ij

� @h S½ �TFNLii
@ðqnÞj

: (A18)

Notice that all the linear terms can be directly determined,

and only the nonlinear part
@h½S�TFNLii
@ðqnÞj

should be numerically

calculated. By using the Einstein notation, we find finally

that

@h S½ �TFNLii
@ðqnÞj

¼ � P½ � þ P½ �
þ P½ � � P½ � � Q½ �

� �
; (A19)

with

P½ �ij ¼ 2B1

X
m

1

p

ð2p

0

ðCi DqT
mCmCT

j Þds; (A20)

and

Q½ �ij ¼ 4B2

X
m

1

p

ð2p

0

ðCi qT
2mCmCT

j Þds; (A21)

where DqT
m ¼ qT

1m � qT
2m ðm ¼ 1; 2;…; 2N þ 1Þ.

3. For each iteration nþ 1 > 1, we define the relative error as

�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4Nþ2

i¼1 j qnþ1f gi
� qnf gi

j2

R4Nþ2
i¼1 j qnþ1f gi

j2

vuut : (A22)

An acceptable value of this relative error is put at �c ¼
10�6 in the present study. The loop goes on until the rela-

tive error is smaller than this given value.
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4. When �n � �c, the loop is stopped and the solution Ui of

the considered problem is obtained. Therefore, the reflec-

tion coefficients ~Rn (1 � n � N) for all the signal harmon-

ics are determined: ~Rn ¼ d1
n þ incXðCin � iSinÞ.
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