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Abstract

Soft robots powered by pressurized fluid have recently enabled a variety of innovative applications in areas as
diverse as space exploration, search and rescue systems, biomimetics, medical surgery, and rehabilitation.
Although soft robots have been demonstrated to be capable of performing a number of different tasks, they
typically require independent inflation of their constituent actuators, resulting in multiple input lines connected
to separate pressure supplies and a complex actuation process. To circumvent this limitation, we embed the
actuation sequencing in the system by connecting fluidic actuators with narrow tubes to exploit the effects of
viscous flow. We developed modeling and optimization tools to identify optimal tube characteristics and we
demonstrate the inverse design of fluidic soft robots capable of achieving a variety of complex target responses
when inflated with a single pressure input. Our study opens avenues toward the design of a new generation of
fluidic soft robots with embedded actuation control, in which a single input line is sufficient to achieve a wide
range of functionalities.

Keywords: inverse design, viscous flow, fluidic soft actuators, simple actuation

Introduction

Soft robots comprising several inflatable actuators made
of compliant materials have drawn significant attention

over the past few years because of their ability to produce
complex and adaptive motions through nonlinear deforma-
tion.1–11 The simplicity of their design, ease of fabrication,
and low cost sparked the emergence of soft robots capable of
walking,12 crawling,13 camouflaging,14 assisting humans in
grasping,15,16 and whose response can be further enhanced by
exploiting elastic instabilities.17,18 However, to achieve a par-
ticular function, existing fluidic soft robots typically require
multiple input lines, since each actuator must be inflated and
deflated independently according to a specific preprogrammed
sequence (Fig. 1a).

In an effort to reduce the number of input lines required for
actuation, band-pass valves have been designed, which can
address multiple actuators individually using a single modu-
lated source of pressure.19 Another interesting avenue to reduce
the number of required input signals is the direct exploitation of

the highly nonlinear behavior of the system without the intro-
duction of additional stiff elements. To this end, it has been
shown that a segmented soft actuator reinforced locally with
optimally oriented fibers can achieve complex configurations
upon inflation with a single input source.20 Furthermore, the
nonlinear properties of flexible two-dimensional metamaterials
have been proven effective in reducing the complexity of the
required input signal.13,21

In this study, motivated by these opportunities for simplified
actuation through nonlinearities, we focus on a system com-
prising an array of fluidic actuators interconnected through
tubes and demonstrate that viscous flow in the tubes can be
harnessed to achieve a wide variety of target responses through
a single input (Fig. 1b). Although recent experiments with
poroelastic soft actuators indicate that viscous flow is a prom-
ising candidate to simplify the actuation of soft robots,22 the
highly nonlinear response of the system prohibits the identifi-
cation of simple rules to guide its design. It is, therefore, crucial
to implement robust algorithms to efficiently identify the sys-
tem parameters resulting in the desired response.
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To this end, we first derive a model that accurately captures
the viscous flow in the tubes and then combine the model with
optimization to determine through inverse design the char-
acteristics of the tubes leading to desired responses using a
single input. The excellent agreement between experiments
and simulations for a wide range of prescribed target re-
sponses demonstrates the robustness of our strategy. Finally,
we show that our approach enables the realization of fluidic
soft robots that can perform complex tasks when powered by
a single pressure input, as demonstrated through the design of
a simply actuated four-legged walker.

Fluidic Bending Actuators

Although the principles proposed in this study are appli-
cable to systems comprising any fluidic soft actuator, to
demonstrate the concept, we focus on fluidic bending actua-
tors with an embedded network of channels and chambers.2

All actuators have length l¼ 75mm and a rectangular cross
section (wcþ 4t) · (hþ 3t) mm2, where wc¼ 16:5mm is the
chamber width, h¼ 7:5mm is the chamber height, and
t 2 [1:5, 4] mm corresponds to the thickness of the top layer
but also affects all other dimensions (Supplementary Table S1
and Supplementary Figures S1–S6). Moreover, the actuators
contain eight identical chambers connected through narrow
channels and are realized using two silicone rubbers with
different stiffness (Fig. 2a; Supplementary Data).

The geometry of the embedded chambers as well as the
contrasting properties of the two elastomers causes these
actuators to progressively bend upon inflation in quasi-static
conditions (Fig. 2b, c). Although the relationship between the
bending curvature j and the supplied volume Dt is almost
linear (Fig. 2d; Supplementary Movie S1), their pressure–
volume response is highly nonlinear and features a pressure

plateau (Fig. 2e; Supplementary Movie S1) caused by the
reduction in stiffness associated with the ballooning of the
top layer. Our results indicate that higher values of t lead to
actuators that are simultaneously stiffer and harder to bend.

Harnessing Viscous Flow in the Tubes

Having characterized the quasi-static response of the flu-
idic bending actuators, we next investigate the response of the
elementary system comprising two actuators connected by a
tube (Fig. 3a).

To begin with, we consider two identical actuators with
t¼ 4 mm, connect one of them (Actuator 1, shown in blue in
Fig. 3a) to the pressure source using a tube with length
L1¼ 10 cm and internal radius R1¼ 0:38 mm, and then
connect Actuator 2 to Actuator 1 through a tube with length
L2¼ 10 cm and internal radius R2¼ 0:79 mm (Fig. 3c, Sup-
plementary Figures S7–S8). Upon supplying the system with
air pressurized at pinput ¼ 60 kPa for tinput ¼ 2:5 s (Fig. 3c), the
two actuators bend simultaneously, reach the same maxi-
mum bending curvature j1, max¼ j2, max^40 m-1 at t¼ 2:5 s

FIG. 2. Fluidic bending actuators. (a) Schematic of the
cross section of a fluidic bending actuator. The two different
elastomers used to fabricate the sample, Ecoflex-30 (Smooth-
On, Inc.) and Elite Double 32 (Zhermack), are shown in gray
and green, respectively. (b, c) Snapshots of fluidic bending
actuators characterized by (b) t¼ 1:5 mm and (c) t¼ 4:0 mm
at different actuation pressures. (d) Experimental curvature–
volume curves for four actuators characterized by t¼ 1:5, 2.1,
2.9, and 4.0 mm. (e) Experimental pressure–volume curves for
four actuators characterized by t¼ 1:5, 2.1, 2.9, and 4.0 mm.
Color images are available online.

FIG. 1. Simplifying the actuation of fluidic soft robots. (a)
Each actuator is typically inflated and deflated independently
and individually, requiring a complex actuation process. (b) In
this study, we exploit viscous flow in the tubes interconnecting
the constituent actuators to design soft robots capable of
achieving a variety of responses when inflated with a single
pressure input. Color images are available online.
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(Fig. 3f; Supplementary Movie S2), and then deflate through
the inlet (since pinput¼ 0 kPa for t � tinput, converting the inlet
to an outlet for the system to reset). Note that by changing
pinput and tinput, we are able to control the maximum curvature
of the actuators. However, since in this system the tube used
to connect the two actuators does not impose significant re-
strictions to the fluid flow, the two actuators will always bend
simultaneously.

In an effort to investigate how viscous effects in the tubes can
be harnessed to tune the rate of inflation of each actuator, we
replace the interconnecting tube with a narrower tube, charac-
terized by R2¼ 0:38 mm (keeping L2¼ 10 cm; Fig. 3d). The
experimental results shown in Figure 3d indicate that the actua-
tors now bend at different rates and achieve the maximum cur-
vature at different times (Supplementary Movie S3). However,
we also find that j2, max is significantly reduced due to energy
losses associated with the viscous flow in the newly introduced
interconnecting narrow tube and that j1, max is increased because
of the restriction on fluid flow imposed by such a tube.

To compensate for the energy loss, we replace the second
actuator in our system with a more compliant actuator char-
acterized by t¼ 2:97 mm (Fig. 3e). In this case, the two actu-

ators still bend at different rates, but reach the same maximum
bending curvature j1, max¼ j2, max^45 m-1 (Fig. 3e; Supple-
mentary Movie S4). Therefore, our simple experiments indi-
cate that by carefully selecting both the fluidic actuators and the
tubes, we can tune the bending rate as well as the maximum
bending curvature of the actuators. However, the highly non-
linear response of the system prohibits the direct identification
of simple rules that relate its parameters to specific desired
responses. To design systems capable of achieving a target
response, we first derive a model that describes their behavior
and then solves the inverse problem to determine the system
parameters that give rise to the target response.

Forward Modeling

Since our system comprises several fluidic bending actuators
connected through narrow tubes, to predict its response we
need to be able to capture the behavior of the actuators and
determine the amount of fluid transferred through the tubes
(Supplementary Figures S9–S11 and Supplementary Table S2).
To this end, we focus on the [i]-th tube in the system, which has
length Li (Fig. 4a), circular cross section with radius Ri (with

FIG. 3. Harnessing viscous flow in the tubes. (a) Schematic of the system considered in all three experiments. Tube 1
connects the input pressure to the first actuator, whereas Tube 2 connects the two actuators. Tube 1 has length L1¼ 10 cm
and radius R1¼ 0:38 mm in all three experiments. (b) The rectangular pressure pulse used in all three experiments supplies
pinput ¼ 60 kPa for tinput ¼ 2:5 s. For t > tinput, pinput ¼ 0 kPa and Tube 1 acts as an outlet for the system to reset/deflate. (c–e)
Schematics of the configuration tested in the three different experiments (top) and corresponding curvature responses for the
two actuators (bottom). Color images are available online.
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Li@Ri), and assume that (a) the tube is rigid and not deformed
by the flow; (b) the head losses due to friction at the con-
nections between the tube and the actuators can be captured
by adjusting its length to Li, eq

23; (c) the flow is incompressible
and laminar; and (d) the fluid velocity has the form

u¼ � 2

pR2
i

d~vi

dt

r

Ri

� �2

� 1

" #
ez, (1)

where ~vi¼
R t

0

R Ri

0
u � ez2prdrdt denotes the amount of fluid

exchanged through the [i]-th tube up to time t, and ez iden-
tifies the tangent vector to the tube (Supplementary Data).

Under these assumptions, integration of the Navier–Stokes
equations over the volume of the tube yields

Li, eq

d2~vi(t)

dt2
¼ � pR2

i

q
(pi� pi� 1)� 8lLi, eq

R2
i

d~vi(t)

dt
, (2)

where pi is the pressure inside the [i]-th actuator and l is the
dynamic viscosity of the fluid. Since for narrow tubes with
Li@Ri, as those considered in this study, the inertia term is
negligible (Supplementary Data), Equation (2) can be re-
written in dimensionless form as

d~Vi(t)

dT
þ ni Pi�Pi� 1ð Þ¼ 0, (3)

with

ni¼
pGR4

i tmax

8lv0Li, eq

, (4)

where ~Vi¼~vi=v0, Pi¼ pi=G, and T ¼ t=tmax are the normal-
ized fluid volume exchanged, pressure, and time, respectively
(v0, G, and tmax denoting the volume of the smallest actuator
in the system, the shear modulus of the material used to
fabricate the actuators, and the response time of the system,
respectively). Finally, since the normalized change in volume
for the [i]-th actuator, DVi¼Dvi=v0, can be expressed in
terms of the volumetric flows exchanged through the two
tubes connected to it as

DVi¼ ~Vi� ~Viþ 1, (5)

Equation (3) can be rewritten as

dDVi(t)

dt
þ ni(Pi�Pi� 1)� niþ 1(Piþ 1�Pi)¼ 0, (6)

where the pressure inside the [i]-th actuator, Pi, is a function of
DVi. For a system comprising N fluidic actuators interconnected
through narrow tubes, Equation (6) defines a system of N cou-
pled differential equations, which, given a pressure–volume
relationship for the actuators, can be solved numerically to
determine the normalized change in volume for the [i]-th
actuator as a function of time (Supplementary Data). Once
the volume history for all actuators is known, their bending
curvature is determined using the corresponding curvature–
volume relationship.

To verify the validity of our model, we numerically integrate
Equation (6) using the pressure–volume and curvature–volume
relations of Figure 2d and e to simulate the experiments re-
ported in Figure 3. We find that our numerical model (solid
lines) can successfully reproduce the responses observed in
experiments (dashed lines) for all three systems considered in
Figure 3. The capability of the numerical model to accurately
capture the response of the system in configurations involving
different tubes and actuators ensures that the model can be
used to identify optimal configurations.

Inverse Design

Although Equation (6) can be used to predict the temporal
response of arbitrary arrays of fluidic actuators connected
through narrow tubes, in this study, we are mostly interested
in the inverse problem of designing a system capable of
achieving particular target responses (Supplementary Figures
S12–S16).

Specifically, we focus on systems consisting of four fluidic
bending actuators characterized by t¼ 4:0, 2:9, 2:1, and 1:5
mm connected through narrow tubes (Fig. 4b) and want the
[i]-th actuator in the array to attain a maximum bending

FIG. 4. Forward and inverse modeling. (a) Schematic of
the system. The [i]-th tube is connected to the [i� 1]-th and
[i]-th actuators. (b) Schematic of the configuration consid-
ered in the inverse problem, consisting of four fluidic
bending actuators with thickness t¼ 4:0, 2:9, 2:1, and 1:5
mm connected through narrow tubes and inflated by a
rectangular pressure pulse. (c) The target response requires
the [i]-th actuator in the array to attain a maximum bending
curvature of Ki, max at a predefined time Ti, max and then to
completely deflate. (d) Parameters introduced to construct
the objective function. Color images are available online.
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curvature Ki, max¼ ji, max=jref (jref ¼ p=l¼ 41:88 m-1 being
the curvature of a semicircle with arc length equal to the
initial length l of the actuators) at a predefined time
Ti, max¼ ti, max=tmax and then to completely deflate (Fig. 4c).

Specifying a rectangular pulse for the input pressure
(Fig. 4b), the parameters to be determined to achieve the target
response are (a) the dimensionless tube parameters ni (with
i¼ 1, 2, 3, 4) that uniquely define the tube geometry, (b) the
magnitude of the input pressure Pinput¼ pinput=G, and (c) the
pressurization time Tinput¼ tinput=tmax. To identify a set of such
parameters resulting in the desired response, we minimize

Z¼+4

i¼ 1
(diþ 0:25si), (7)

where si denotes the amount of time that the [i]-th actuator
spends above a threshold curvature Ki, thres¼ 0:05Ki, max and
is introduced to ensure that the actuators quickly deflate after
approaching the target point of maximum curvature. More-
over, di is the ‘‘distance’’ in the K� T space between the
target and actual points of maximum curvature for the [i]-th
bending actuator (Fig. 4d),

di¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DK2

i þDT2
i

q
, (8)

with

DKi¼Ki, max� max
T

Ki(T), (9)

DTi¼ Ti, max� argmax
T

Ki(T): (10)

Ki¼ ji=jref being the normalized curvature of the [i]-th
actuator.

Finally, we input our model Equation (6), the actuators’
behavior (Fig. 2d, e), and the objective function Equation (7)
into a Python implementation of the covariance matrix ad-
aptation evolution strategy algorithm24 and solve the inverse
problem (i.e., determine the parameters ni, Pinput, and Tinput

resulting in the target response) using a population size of 50,
an initial standard deviation of 0.4, and a starting point that is
randomly drawn from a standard normal distribution (Sup-
plementary Data).

In Figure 5, we report results for two different target re-
sponses. First, we optimize the system so that all bending ac-
tuators achieve the same bending curvature Ki, max¼ 1:0 at
Ti, max¼ 0:1þ (i� 1) 0:2 (with i¼ 1, 2, 3, 4; Fig. 5a), target-
ing a bending sequence. The optimization algorithm converges
to the optimal solution after 80 iterations (Fig. 5b) and indicates
that, if we choose the response time to be tmax¼ 25 s, the system
most closely approaches the prescribed target when the tubes
have length (L1, L2, L3, L4)¼ (78:6, 10:0, 43:7, 122:4) cm
and the input supplies pinput¼ 102:7 kPa for tinput¼ 3:4 s. As
shown in Figure 5c, for this set of parameters, both the nu-
merical model (solid lines) and the experimental observations
(dashed lines) closely follow the target response, that is, the
four actuators reach the specified maximum bending curvatures
at the desired times (markers) and then deflate (Fig. 5d; Sup-
plementary Movie S5).

Second, we look for a system in which Ki, max¼ 0:6þ
0:2(i� 1) and Ti, max¼ 0:15þ 0:1(i� 1) (with i¼ 1, 2, 3, 4),

so that the actuators sequentially bend with progressively in-
creasing curvature (Fig. 5e). Our optimization algorithm con-
verges to the optimal solution after 60 iterations (Fig. 5f) and
finds that this response can be achieved for (L1, L2, L3, L4)¼
(3:5, 3:0, 14:8, 43:0) cm with pinput¼ 23:3 kPa and tinput¼
5:8 s. Remarkably, for this case we again find that both our
experiments and simulations closely match the target response
(Fig. 5f, g; Supplementary Movie S6).

We emphasize that both target responses shown in Fig-
ure 5 would require an independently controlled input line
associated with each actuator in the array, if they were to be
achieved without harnessing viscous effects in the fluidic
network. Therefore, by carefully selecting the narrow tubes
connecting the fluidic actuators as well as the input pressure
and pressurization time, the target response for the system
can be naturally embedded in its design, allowing for a
substantial simplification in system actuation. Note that
even though in Figure 5 we focus on two responses, our
strategy is robust and can be used to achieve a wide variety
of responses (Supplementary Data).

Finally, it is important to note that in cases where the
careful selection of the narrow tubes, input pressure, and
pressurization time through optimization lead to system re-
sponses that do not closely approach the objective, the so-
lution space can be further enriched by further optimizing the
geometry of the fluidic actuators (Supplementary Data).
However, from a practical point of view, optimizing the ge-
ometry of the fluidic actuators is not always desirable, since it
requires the fabrication of new actuators.

Multiobjective Optimization

The results of Figure 5 demonstrate the robustness of our
approach in identifying systems capable of achieving a
desired target response. However, in many cases, soft ro-
bots need to be able to achieve multiple different responses
and easily switch from one to another. To this end, we
investigate whether varying the magnitude of input pres-
sure Pinput and pressurization time Tinput is sufficient to
enable a single system to achieve more than one target re-
sponses. Performing a brute force search for the range of
responses that a system optimized for a specific sequence
can achieve just by varying Pinput and Tinput, we find that the
inflation parameters have very little effect in changing the
initial response for which the system was optimized (Sup-
plementary Data and Supplementary Figure S17).

Therefore, to effectively identify a system capable of
switching from one desired response (Target 1) to another
(Target 2) just by varying the inflation parameters, we formu-
late a multiobjective optimization problem. The dimensionless
tube parameters ni (with i¼ 1, 2, 3, 4) and the inflation pa-
rameters associated with the two target responses [i.e., (P(1)

input,
T (1)

input) and (P(2)
input, T (2)

input)] are obtained by minimizing

Z¼ aZ(1)þ (1� a)Z(2), (11)

whereZ(1) andZ(2) are the objective functions corresponding to
Targets 1 and 2 and a 2 [0, 1] is a scalar weighing the relative
importance of each objective.

Focusing on a system capable of switching between the
two responses defined by the anchor points shown in
Figure 6a and b, our optimization algorithm finds that both
objectives are best approached for a¼ 0:5 (Fig. 6c) when
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FIG. 5. Solution of the inverse problem. (a) The first target response requires all actuators in the system to achieve the
same maximum bending curvature Ki, max¼ 1:0 but at different times Ti, max¼ 0:1þ 0:2(i� 1) (with i¼ 1, 2, 3, and 4). (b)
Evolution of the objective function during CMA-ES iterations. (c) Curvature response for the optimal system, as determined
from the numerical model (solid lines) and experiments (dashed lines). (d) Snapshots of the four actuators at
T ¼ 0:13, 0:27, 0:5, 0:74, corresponding to the times at which each actuator achieves its maximum curvature during the
experiment. (e) The second target response requires all actuators in the system to achieve the maximum bending curvature
Ki, max¼ 0:6þ 0:2(i� 1) at Ti, max¼ 0:15þ 0:1(i� 1) (with i = 1, 2, 3, and 4). (f) Evolution of the objective function during
CMA-ES iterations. (g) Curvature response for the optimal system, as determined from the numerical model (solid lines)
and experiments (dashed lines). (h) Snapshots of the four actuators at T ¼ 0:23, 0:27, 0:33, 0:43, corresponding to the times
at which each actuator achieves its maximum curvature during the experiment. CMA-ES, covariance matrix adaptation
evolution strategy. Color images are available online.
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(L1,L2,L3,L4)¼(16:5,10:0,48:0,124:0) cm, p(1)
input¼39:6 kPa,

t(1)
input ¼ 6:32 s, p(2)

input ¼ 58:5 kPa, and t(2)
input ¼ 3:33 s. The cor-

responding numerical (solid lines) and experimental (dashed
lines) responses are again in excellent agreement for both
system responses and come sufficiently close to both objec-
tives (Fig. 6d, e; Supplementary Movie S7). Consequently,
our multiobjective optimization approach can be used to
successfully design systems that can achieve different target
responses just by varying the input pressure magnitude Pinput

and duration Tinput (Supplementary Figure S18).

Conclusions

In summary, using a combination of optimization tools and
experiments, we have shown that viscous flow in the tubes
interconnecting fluidic actuators can be exploited to design
soft robots that, although inflated through a single input, are
capable of achieving a wide range of target responses.

Throughout our study, we have found an excellent agree-
ment between the numerical predictions and experimental
findings—a clear indication of the predictive power and ro-
bustness of our framework. Even though in this work we
focused on systems in which the actuators inflate according
to a target sequence, we believe that our strategy can be
directly applied to design a wide range of fluid-actuated soft
robots capable of performing multiple different tasks using
a single input.

To demonstrate how actuation sequencing through viscous
flow can simplify the actuation of fluidic soft robots, we
design a soft robot that comprises the four bending actuators
considered throughout this study (with top layer thicknesses
t¼ 4:0, 2:9, 2:1 and 1.5 mm), connect Actuator 1 (t¼ 4:0 mm)
to the pressure input through a tube with L1¼ 78:6 cm and
R1¼ 0:38 mm, and supply pinput¼ 102:7 kPa for tinput ¼ 3:4 s.
If the four actuators are interconnected using tubes that do not
impose significant restrictions to fluid flow (i.e., Ri¼ 0:79 mm
for i¼ 2, 3, 4), only the most compliant actuator inflates and no

FIG. 6. Multiobjective optimi-
zation. (a, b) The curvature anchor
points defining Target 1 (a) and
Target 2 (b), respectively. (c) Par-
eto front. The black line connects
members of the Pareto set. The
color of the markers corresponds to
value of a used in the optimization.
The overall optimal solution that
most closely approaches both ob-
jectives is found for a¼ 0:5. (d, e)
Numerical (solid lines) and exper-
imental (dashed lines) curvature
responses for the optimal solution
of the multiobjective inverse
problem for Target 1 (d) and Tar-
get 2 (e), respectively. (f, g) Input
pressures required to achieve Target
1 (f) and Target 2 (g), as determined
from the solution of the multi-
objective inverse problem (solid
lines) and as provided in experi-
ments (dashed lines). Color im-
ages are available online.

SIMPLIFIED FLUIDIC ACTUATION 7

D
ow

nl
oa

de
d 

by
 H

ar
va

rd
 U

ni
ve

rs
ity

 F
R

A
N

C
IS

 A
 C

O
U

N
T

W
A

Y
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
14

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



functionality is achieved (Supplementary Movie S8). In con-
trast, if the actuators are connected using the tube lengths that
correspond to the optimal solution of Figure 5a and b (Fig. 7a),
the soft robot walks in a consistent and predictable manner
covering a distance of ^15 cm for 10 inflation cycles (Fig. 7b;
Supplementary Movie S8).

Finally, although in this study we only considered ob-
jectives for which a single curvature–time point was suffi-
cient to describe the desired response of each actuator, one
could differently focus on the smooth control of fluidic
actuators and define an objective function in terms of mul-
tiple target points in the curvature–time space for each ac-
tuator. We expect that very few modifications would be
necessary to achieve a smoother response for every actuator,
since viscous flow is inherently a ‘‘smoothing’’ process.
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S1 Fluidic Bending Actuators

In this section we provide details on the design, fabrication, testing and modeling of the

individual fluidic bending actuators considered in this study.

Design

Although the principles proposed in this study can be applied to any type of fluidic soft

actuator, to demonstrate the idea we focus on fluidic bending actuators that consist of a

network of channels and chambers embedded in an elastomer (PneuNets).2 Specifically,

we consider an actuator with initial length l = 75 mm and a rectangular cross section

with width w and height htotal (see Fig. S1). Note that, since in this study the response

1



of the actuators is tuned by varying the thickness of the upper layer t (with t ∈ [1.5, 4]

mm), to make sure that all of them bend upon inflation both w and htotal depend on t

with w = 33 + 4t and htotal = 7.5 + 3t (if the width and height of the actuator remain

unchanged when t changes, the actuators corresponding to larger values of t will just

expand and not bend, upon inflation).

To achieve bending upon inflation,

(i) we embed eight chambers within the actuator, each with length lc = 4 mm and

width wc = 3 mm connected via narrow channels with length dc = 3 mm , width

wt = 3 mm and height ht = 1.875 mm (see Fig. S1);

(ii) we use two different elastomers to fabricate the actuator: a more compliant one for

the top part (shown in gray in Fig. S1) and a stiffer one for the bottom part (shown

in green in Fig. S1).

The values for all geometric parameters of the actuators modeled and fabricated in

this study are summarized in Table S1. Finally, we point out that our design is fully-

parameterized, so that the response of the actuators is unaffected (i.e. the normalized

pressure-volume and normalized curvature-volume curves remain the same) if all the di-

mensions are scaled by the same factor.

Fabrication

The actuators tested in this study are made of silicone rubbers. Specifically, we used

Ecoflex 00-30 (Smooth-On, Inc.) for the top (shown in gray in Fig. S1) and Elite Double

32 (Zhermack) for the bottom (shown in green in Fig. S1). The two layers were casted

and joined together using the 3-part mold shown in Fig. S2. The mold was designed in

Solidworks and 3d printed in Vero-blue using an Objet Connex 500 printer (Stratasys).
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Figure S1: 3D model of the bending actuator considered in this study. (a) Isometric view.
Note that the gray and green regions correspond to EcoFlex-30 (Smooth-On, Inc.) and
Elite Double 32 (Zhermack) respectively. (b) Side view highlighting the top and bottom
layer thickness. (c) Side cross–section highlighting the details of the inner chambers
and channels. (d) Top cross–section highlighting the details of the inner chambers and
channels.

Table S1: Geometric parameters of the actuators considered in this study

Geometric parameter Value
Actuator Length, l 75 mm
Chamber Height, h 7.5 mm
Chamber Width, wc 16.5 mm
Number of Chambers, n 8 mm
Chamber Distance, dc 3.0 mm
Channel Height, ht = h/4 1.875 mm
Channel Width, wt = wc/5.5 3.0 mm
Top Layer Thickness, t 1.5− 4.0 mm
Bottom Layer Thickness, tb = 2t 3.0 − 8.0 mm
Wall Thickness, tw = 2t 3 − 8.0 mm
Actuator Width, w = 2wc + 2tw 36.0 − 41.0 mm
Chamber Length, lc = [l − 2tw − (n+ 1)dc]/n 5.25 − 4.0 mm

3



Parts I and II slide into one another and were used to cast the top portion of the actuator

made of EcoFlex-30. Part III was used to cast the bottom layer of the actuator made of

Elite Double 32.

Part I

Part II

Part III

Figure S2: A 3D render of Parts I, II and III of the mold used to cast our fluidic bending
actuators.

Our actuators can be fabricated using the following 12 steps (see Fig. S3):

Step 1: expose all inner surfaces of the mold to Ease Release 200 spray (Mann Release

Technologies) to facilitate the process of removing the cured elastomer later on;

Step 2: prepare EcoFlex-30 by (a) dispensing equal amount of part A and B in a clean

container, (b) mixing thoroughly and (c) vacuum degassing for about 10 minutes.

Step 3: pour the Ecoflex mixture inside part II of the mold.

Step 4: slowly place part I of the mold on top of part II, while allowing for any excess

silicone to flow out of the mold.

Step 5: cure the EcoFlex for about 4 to 5 hours at room temperature, while securing a

tight seal between mold parts I and II.

Step 6: (a) remove the cured EcoFlex from the mold and (b) trim any protruding edges

(if necessary).

4



Step 1 Step 2a Step 2b Step 2c Step 3 Step 4

Step 5 Step 6a Step 6b Step 7a Step 7b Step 7c

Step 8 Step 9 Step 10a Step 10b Step 11 Step 12

Figure S3: Snapshots of the 12 steps required for the fabrication of our fluidic bending
actuators

Step 7: prepare Elite Double 32 by (a) dispensing an equal amount of base and catalyst

in a clean container, (b) mixing thoroughly and (c) vacuum degassing for about 3 minutes.

Step 8: pour the Elite Double 32 mixture inside part III of the mold.

Step 9: carefully place the EcoFlex-30 part of the actuator on top of the liquid Elite

Double 32 and allow the latter to cure for about 25 minutes and bond to the EcoFlex.

Step 10: remove the cured actuator from part III of the mold and trim any protruding

edges if necessary.

Step 11: insert a tube in one end of the actuator

Step 12: test the fabricated actuator for any leaks by inflating with a syringe pump. If

leaks are present, patch them using the appropriate silicone rubber.

Testing

In order to fully characterize the quasi-static response of the fabricated bending actua-

tors we conducted experiments to determine their pressure-volume and curvature-volume

relationships. Note that as a part of this study we fabricated and tested actuators with

5



four different values of the top layer thickness, namely t = 1.5, 2.1, 2.9 and 4.0 mm. All

the actuators were tested using a syringe pump (Standard Infuse/Withdraw PHD Ultra;

Harvard Apparatus) equipped with two 50-mL syringes (1000 series, Hamilton Company)

with an accuracy of ±0.1%.

Pressure-Volume

For the pressure-volume measurements the actuators were inflated using water (to avoid

effects of air compressibility) at a rate of 50ml/min, ensuring quasi-static conditions. The

pressure inside the actuators was measured during inflation using a MPX5050DP (NXP

USA Inc.) pressure sensor, connected to an Arduino Nano. The Arduino was able to log

the pressure in a text file with the use of a Python script and the serial module.

In Fig. S4 we report the evolution of the pressure p as a function of the volume

change ∆v inside the actuator for all actuators tested in this study1. The results of

Fig. S4 show that the pressure-volume curves for all actuators are nonlinear and feature

a pressure plateau. The plateau indicates the maximum pressure that the given actuator

can withstand and can be tuned by varying t (i.e. it monotonically increases with t).

Curvature-Volume

For the curvature measurements all actuators were inflated with air (the use of water for

inflation was avoided to eliminate the influence of gravitational effects on the curvature

of the actuators). Upon inflation, we recorded videos of the deformation of each actuator,

which we processed to extract the curvature. Specifically, for each recorded frame we

identified the bottom edge of the actuator (highlighted in red in Fig. S5b) using a Python

image processing script. We then determined the radius R of the circle that best fits

1Note that the curves reported in Fig. S4 were determined by averaging the pressure volume curves
from 4 inflation cycles per actuator
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Figure S4: Experimental pressure-volume curves for four actuators characterized by t =
1.5, 2.1, 2.9 and 4.0 mm.

(minimizing the squared distance – least squares solution) the bent shape of the edge

(Fig. S5c) and calculated the average curvature as κ = 1/R.

As for the volume inside the actuator’s cavity corresponding to each curvature mea-

surement, it is important to note that we had to account for air compressibility. Since the

syringe pump, the tubes and the actuator form a closed system, application of Boyle’s

law yields,

p0v
sys
0 = pvsys (S1)

where p0 is the initial pressure, p is the current pressure, vsys0 is the total volume of the

system at pressure p0 and vsys is the total volume of the system at pressure p. Note that

the total initial volume of the system vsys0 can be written as,

vsys0 = v0 + vsyringe0 + vtube0 (S2)

where v0 is the initial volume inside the actuator, vsyringe0 is the initial volume inside the

syringe pump and vtube0 is the initial volume inside the tubes used to connect the actuator

7
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Figure S5: Determining the curvature of fluidic bending actuators upon inflation. (a) A
snapshot of a bending actuator during inflation. (b) An image processing code identifies
the bottom edge of the actuator, highlighted here in red. (c) The curvature of the actuator
is calculated as the inverse radius of the circle that best fits the shape of the bottom edge.
(d) To normalize the curvature measurements we use κref = π/l, which is the curvature
of a semi-circle with arc length equal to the initial length of the actuator’s bottom edge
(l). (e) Experimental curvature-volume curves for four actuators characterized by t = 1.5,
2.1, 2.9 and 4.0 mm.

to the syringe pump. Moreover, the total volume of the system vsys at pressure p can be

similarly expressed as,

vsys = vsys0 + ∆v −∆vsyringe (S3)

where ∆v is the change in volume inside the actuator and ∆vsyringe is the volume dispensed

by the syringe pump. By combining equations Eq. S1, Eq. S2 and Eq. S3 and solving

with respect to ∆v we obtain,

∆v = ∆vsyringe −
(
p− p0
p

)
vsys0 (S4)

which we use to determine the volume change in the actuator given the volume dispensed
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by the syringe ∆vsyringe and the pressure p measured by the pressure sensor.

In Fig. S5e we report the evolution of the bending curvature κ as a function of the

volume change inside the actuator, ∆v, for all actuators tested in this study. The re-

sults show that the curvature increases almost linearly with the volume change and that

actuators with larger top layer thickness need a larger ∆v to achieve the same bending

curvature, indicating that an increase in t leads to stiffer actuator.

Finite Element modeling

In an effort to better understand the effect of the actuator’s thickness t on its response, we

performed a series of Finite Element simulations. All numerical analyses were carried out

using the commercial non-linear Finite Element software Abaqus (SIMULIA, Providence,

RI). EcoFlex-30 was modeled as an incompressible Gent solid23 (via a UHYPER user

defined subroutine) with a shear modulus of G = 19.43kPa and an extension limit of

Jm = 37.54. Elite Double 32 was modeled as a nearly incompressible neo-Hookean solid24

with shear modulus G = 0.375MPa and Poisson’s ratio ν = 0.4998. All components

of the actuator were meshed using 8-node fully integrated hybrid linear bricks (C3D8H)

and perfect bonding was assumed between the two silicone rubbers. To determine the

pressure-volume and curvature-volume relationships of each actuator, quasi-static non-

linear simulations were performed using Abaqus/Standard. One end of the actuator

was held completely fixed in space while the actuator was inflated using volume control

through the fluid filled cavity interaction. While the pressure and volume inside the fluid

cavity are both provided as post-processing variables, the curvature was determined by

following the exact same procedure we used to post-process the experimental results.

To verify the validity of our numerical simulations, we first compared the numerical

and experimental results for the pressure-volume and curvature-volume response of the

9



four tested actuators. The results shown in Fig. S6a and Fig. S6b compare the normalized

pressure-volume and curvature-volume curves between FEA and experiments where pres-

sure is normalized with the initial shear modulus of EcoFlex-30 (G = 19.43kPa), volume

is normalized with the initial volume inside the actuator with top layer thickness t = 4mm

(vref0 = 4078.125mm3) and curvature is normalized using κref = π/l = 41.88× 10−3mm−1,

which is the curvature of a semi-circle with arc length equal to the initial length of the

actuator’s bottom edge l (see Fig. S5d). The results indicate that the FEA simulations

accurately capture the pressure-volume and curvature-volume responses of the fluidic

bending actuators for all four considered values of t.

Having verified the accuracy of our numerical analyses, we next used our simulations to

investigate the effect of t on both the pressure-volume and the curvature-volume responses.

Specifically, we simulated the response of 22 actuators with different values of top layers

thickness t (t ∈ [1.5, 4.0] mm). The results shown in Figs. S6c and S6d indicate that

for any given change in volume ∆v, both the pressure and the curvature of the actuators

vary almost linearly with t. As such, by linearly interpolating between these 22 curves,

we built a response library from which we can determine the behavior of actuators with

arbitrary top layer thickness within the range t ∈ [1.5, 4.0] mm (Figs. S6e and S6f).

S2 Arrays of Interconnected Fluidic Actuators

In this section we first describe the setup we built to inflate an array of fluidic actuators

connected via narrow tubes and then derive the governing equations that describe the

response of such a system.
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Figure S6: Finite Element simulations (a) Comparison between the experimental (mark-
ers) and numerical (continuous lines) pressure-volume curves for four actuators character-
ized by t = 1.5, 2.1, 2.9 and 4.0 mm. (b) Comparison between the experimental (markers)
and numerical (continuous lines) curvature-volume curves for four actuators characterized
by t = 1.5, 2.1, 2.9 and 4.0 mm. (c) Numerical pressure-volume curves for 22 actuators
with t ∈ [1.5, 4.0] mm. (d) Numerical curvature-volume curves for 22 actuators with
t ∈ [1.5, 4.0] mm. (e) Evolution of the pressure-volume response of the actuators as a
function of t. (f) Evolution of the curvature-volume response of the actuators as a function
of t.

Experimental Setup

The setup used to test our array of connected actuators is shown in Fig. S7a and consists

of the actuators, narrow tubes to connect them, two pressure regulators, two solenoid

valves, an LCD screen, a camera and an Arduino.

As shown in Fig. S7a, our system comprises four fluidic bending actuators connected to

each other via narrow tubes (Extreme-Pressure PEEK Tubes -McMaster Carr 51085K41-

51085K48). Specifically, we used tubes with an inner diameter of 0.005”, 0.007”, 0.01”,

0.02” and 0.03” (depending on the experiment) and an outer diameter of 1/16”. Note
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Figure S7: Experimental setup for testing arrays of interconnected fluidic actuators. (a)
A photo of the setup highlighting the solenoid valves, the pressure regulators, the fluidic
actuators, the LCD screen and the camera. (b) A schematic of the wiring for the Arduino
with the solenoid valves, the pressure sensors and the LCD screen

that, since the tubes are rated for pressures up to 1000psi (6.98MPa), we expect the tube

walls to not deform during our experiments and thus we consider them as rigid in our

model (see Section Modeling).

To ensure a leak-free connection between the narrow tubes and the actuators, during

fabrication we equipped all fluidic actuators with two PVC tubes with an inner diameter of

1/16” and outer diameter of 1/8” (McMaster Carr 9446K11) (see Fig. S8b). By choosing

the inner diameter of the PVC tubes (1/16”) to be the same as the outer diameter of

the narrow tubes (1/16”) we minimize the leaks occurring in the connections. Finally,

we note that the last actuator in the sequence is only connected by a single tube (see

Fig. S8a).

All narrow tubes except for the first connect two neighbouring actuators. As for

the first tube, it connects the first actuator in the sequence to the pressure source (see

Fig. S8a). In order to inflate the connected actuators at pressures in the order of a few

kPa, we decreased the pressure from the wall air-outlet (∼ 200 psi) using two pressure

regulators (1/4 NPT 15CFM by Wilkerson and 1/4 NPT 9CFM by Coilhose Pneumatics)

connected in series. The first pressure regulator reduces the inlet pressure from ∼ 200
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Figure S8: Array of interconnected fluidic actuators. (a) A 3D render of a system com-
prising 4 fluidic bending actuators interconnected via narrow tubes. The inlet of the first
actuator serves as the inlet/outlet of the whole system. The last actuator in the array is
only connected to a single narrow tube. (b) A 3D render of an individual fluidic bending
actuator highlighting the inlet and outlet tubes. The narrow tubes are inserted into the
outlet tubes which in turn are connected to the actuator

psi to about ∼ 40 psi, while the second one accurately controls the pressure in the range

[0, 40] psi. Further, to turn on and off the input pressure we used two standard two-way

solenoid valves (SC8256A002V - ASCO). One of the valves was used to switch on/off the

input pressure, while the second one was used to switch on/off the outlet of the system to

the atmosphere, so that the actuators could deflate and return to their initial state (i.e.

when the input solenoid was open, the outlet solenoid was closed and vice-versa). Both

solenoid valves were powered through an external power supply using ∼ 9V and ∼ 0.1A

and controlled via an NPN transistor (IRF520 - Vishay Siliconix).

To monitor and record both the input pressure and the pressure inside each actuator

we equipped the setup with 5 pressure sensors all connected to the Arduino. To measure

the input pressure we used a sensor rated for use up to ∼ 400 kPa (MPX5100DP-ND -

NXP USA Inc.), while to measure the pressure inside the actuators we used sensors rated

for use up to ∼ 200 kPa (MPX5050DP-ND - NXP USA Inc.).
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Finally, to capture the deformation experienced by the actuators upon pressurization

we used a digital camera (Sony RX100 IV). Note that we used the LCD screen, which

displayed whether the input pressure was on or off, to sync the recorded videos with the

pressure readings.

Modeling

The system considered in this study comprises several fluidic bending actuators connected

via narrow tubes. To capture its response we not only need to be able to capture the

behavior of the actuators, but also to determine the amount of fluid exchanged through

the tubes. To this end, we focus on the [i]-th tube in the system, which has length Li,

circular cross section with radius Ri (with Li � Ri) and is connected to actuators [i− 1]

and [i], as shown in Fig. S9a. We further introduce an orthonormal local direction basis,

where ez is identified as the unit vector along the tube’s length and er and eθ lie in the

plane of the cross-section (see Fig. S9a). To determine the amount of fluid exchanged

through the tube up to time t, ṽi(t), we assume that

(i) the tube walls are rigid and not deformed by the flow. Note that this assumption

is motivated by the fact that the tubes used in our experiments are rated for much

higher pressures (∼ 103psi) than the ones developed in our actuators (∼3psi).

(ii) the head losses due to friction at the connections between the tubes and the actuators

can be captured by the equivalent length method, adjusting the tube’s length to

Li,eq.

(iii) the radial (ur) and angular (uθ) components of the fluid velocity field u are zero

(since Li � Ri), so that

u(r, θ, z, t) = uz(r, z, t)ez, (S5)
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where we also dropped the dependency on θ because of cylindrical symmetry.

(iv) the flow is incompressible, so that

∇ · u = 0⇒ ∂ur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= 0⇒ ∂uz
∂z

= 0, (S6)

indicating that uz does not depend on z (i.e. uz(r, t))

(v) the fluid flow is laminar and governed by the Navier–Stokes equations, which in

light of Eqs. S5 and S6 reduces to 2

∂uz
∂t

= −1

ρ

∂p

∂z
+
µ

r

∂

∂r

(
r
∂uz
∂r

)
, (S8)

where ρ is the fluid density, µ is the dynamic viscosity of the fluid and p is the

pressure in the tube.

(vi) the fluid velocity profile has the form,

uz(r, t) = Fi(t)

[(
r

Ri

)2

− 1

]
, (S9)

where Fi(t) is an unknown function that, since the volumetric flow rate through the

[i]-th tube (dṽi(t)/dt) is given by

dṽi(t)

dt
=

∫ Ri

0

uz(r, t)2πrdr = −1

2
πR2

iFi(t), (S10)

2Note that a closed-form analytical solution to Eq. S8 exists for steady state conditions and is given
by ,

uz(r) =
∆pR2

i

4µLi

[(
r

Ri

)2

− 1

]
, (S7)

where ∆p is the (constant) difference in pressure between the two ends of the tube. However, this solution
is unable to capture the response of our system, since ∆p is determined by the pressure inside the two
actuators connected to the tube and continuously changes with time as the fluid flows. The velocity field
proposed in Eq. S9 does not satisfy the Navier–Stokes equations in a point-wise manner, but meets the
no-slip boundary conditions at the tube walls and provides a very good approximation for the volumetric
flow, which is the main interest of this study. Analytical solutions to Eq. S8 under transient conditions
only exist for the starting flow in a tube with a constant pressure gradient and are very complicated.
The highly non-linear and time-varying pressure gradient experienced by the fluid in our system prohibits
analytical solutions to Eq. S8
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can be expressed as

Fi(t) = − 2

πR2
i

dṽi(t)

dt
. (S11)
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Figure S9: Array of interconnected fluidic actuators. (a) A schematic of the system. Note
that the [i]-th tube is connected to the [i− 1]-th and [i]-th actuators. (b) A schematic of
the first tube in the array, which has the left end connected to the pressure source and
the right one connected to the [1]-st actuator in the array. (c) A schematic of the last
tube in the array, which is connected to the [N − 1]-th and [N ]-th actuators

Next, we substitute Eqs. S9 and S11 into Eq. S8 and integrate along the volume of

the tube to obtain,

Li,eq
d2ṽi(t)

dt2
= −πR

2
i

ρ
(pi − pi−1)−

8µLi,eq
R2
i

dṽi(t)

dt
, (S12)

where pi is the pressure inside the [i]-th actuator. Upon the introduction of the normalized

volumetric flow Ṽi = ṽi/v0 (v0 denoting the volume of the smallest actuator in the system),

time T = t/tmax (tmax denoting the response time of the system) and pressure Pi = pi/G

(with G being the shear modulus of the material used to fabricate the actuators), Eq.

(S12) can be rewritten in dimensionless form as

εi
d2Ṽi(T )

dT 2
+
dṼi(T )

dT
+ ξi (Pi − Pi−1) = 0, (S13)

with

εi =
R2
i ρ

8µtmax
, and ξi =

πGR4
i tmax

8µLi,eqv0
. (S14)
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It is important to point out that for narrow tubes with Li,eq � Ri, as those considered

in this study, the product εiξi is typically very small (εiξi � 1). Using the representative

values presented in Table S2 we find that for air εair = 5.1 × 10−6 and ξair = 268.27

and for water εwater = 7.25 × 10−5 and ξwater = 4.92, resulting in εairξair = 0.001368

and εwaterξwater = 0.00035. Consequently, for the tubes in our systems, in which viscous

forces dominate inertia, Eq. S13 can be simplified to (see Section “On the Simplification

of Equation S13”).

dṼi(T )

dT
+ ξi (Pi − Pi−1) = 0. (S15)

Eq. S15, which describes the volumetric flow in a narrow tube connected to fluidic ac-

tuators, is frequently considered the Ohm’s law analog for electrical circuits. In this

context, 1/ξi expresses the equivalent resistance that the tube imposes to fluid flow; when

ξi is large, high flow rates dVi/dT are achieved for relatively low pressure differences,

whereas when ξi is small, the opposite is true. Finally, since the normalized change in

volume for the [i]-th actuator, ∆Vi = ∆vi/v0, can be expressed in terms of the volumetric

flows exchanged through the two tubes connected to it as

∆Vi = Ṽi − Ṽi+1, (S16)

Eq. (S15) can be rewritten as

d∆Vi(T )

dT
+ ξi (Pi − Pi−1)− ξi+1 (Pi+1 − Pi) = 0. (S17)

For a system comprising N fluidic actuators interconnected via narrow tubes Eq. S17

result in a system of N coupled differential equations, which given a pressure-volume

relationship for the actuators that can be numerically solved to determine the normalized

change in volume for the [i]-th actuator as a function of time. Once the volume history for

all actuators is known, their bending curvature is then determined using the corresponding
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curvature-volume relationship. Finally, we note that for the first and last tube in the array

Eq. S17 needs to be modified to

d∆V1(T )

dT
+ ξ1 (P1 − Pinput(T ))− ξ2 (P2 − P1) = 0, (S18)

d∆VN(T )

dT
+ ξN (PN − PN−1) = 0, (S19)

to account for the pressure input (see Fig. S9b) and the end of the array (see Fig. S9c).
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Figure S10: Minor Losses in the tubes. (a) Schematic of the tube connections between
two actuators, highlighting the sudden radii transitions from one tube to another. (b)
Schematic of the inward projecting re-entrant transition associated with K1 (b) Schematic
of the square reduction transition associated with K2. (c) Schematic of the square-
expansion transition associated with K3. (d) Schematic of the tube exit transition, asso-
ciated with K4. (e) Schematic of the tube curvature associated with K5

As for the adjusted length Li, eq, according to the equivalent length method it can be

written as

Li, eq = Li +
Ri

fi,D

Ni, t∑
α

Ki, α, (S20)

where Ni, t are the number of minor losses associated with the [i]-th tube and fi,D is the

Darcy friction factor, which for laminar flow is defined as

fi,D =
64

Rei
, (S21)
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Rei = (2 ρ v0)/(µπ Ri tmax)dVi/dT being the Reynolds number for the [i]-th tube. More-

over, Ki, α is referred to as the K-value for the α-th minor loss in the tube and is either

read from tables or has particular formulas depending on the type of geometric transitions

in the tube. Specifically, for all tubes in our system we have Ni, t = 5 (see Fig. S10) and

• (α=1) minor loss associated with the transition from the actuator chamber to the

PVC outlet tube inserted into the actuator (see Fig. S10b), for which

Ki, 1 = 0.78, ∀ i = 1, . . . , N (S22)

• (α=2) minor loss associated with the transition from the outlet PVC tube with

radius R̃ inserted into the actuator to the narrow tube with radius Ri (see Fig. S10c),

for which

Ki, 2 =

[
1.2 +

160

Re

]( R̃

Ri

)4

− 1

 , ∀ i = 1, . . . , N (S23)

• (α=3) minor loss associated with the transition from the narrow tube with radius

Ri to the outlet tube with radius R̃ inserted into the actuator (see Fig. S10c), for

which

Ki, 3 = 2

[
1−

(
Ri

R̃

)4
]
, ∀ i = 1, . . . , N (S24)

• (α=4) minor loss associated with the transition from the outlet tube inserted into

the actuator to the actuator chamber (see Fig. S10e), for which

Ki, 4 = 1.0, ∀ i = 1, . . . , N (S25)

• (α =5) minor loss due to the curvature of each tube for which

Ki, 5 = 1.5, ∀ i = 1, . . . , N (S26)
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Table S2: Representative parameter values for this study

Parameter Value
Tube Radius, R 0.381 mm
Tube Length, L 20 cm
Stiffness, G 19.43 kPa
Initial Actuator Volume, v0 4078.125 mm3

System Response Time, tmax 25 sec

In this study we consider systems comprising either 2 or 4 interconnected bending

fluidic actuators (i.e. N = 2 or 4), so that Eq. S17 becomes a system of either 2 or 4

coupled ODEs. To determine the pressure Pi inside the [i]-th actuator (characterized by

the geometric parameter ti) for a given change in volume ∆Vi, we use the numerically

determined pressure volume response library shown in Fig. S6e. For the pressure input

supplied to the system, we consider a rectangular pulse (see Fig. S9b)

Pinput(T ) =

{
Pinput, forT ≤ Tinput

0, forT > Tinput
(S27)

Furthermore, we consider µ = 1.568× 10−5Pa · s (corresponding to the dynamic viscosity

of air at room temperature), tmax = 25 sec, v0 = 4078.125 mm3 (corresponding to the

volume of a bending actuator with t = 4 mm) and G = 19.43 kPa (corresponding to the

shear modulus of EcoFlex-30), yielding

ξi = 2.98309× 1015 × R4
i

Li, eq
(S28)

Finally, to integrate Eq. S17 we use a Python implementation of the Real-valued Variable-

coefficient Ordinary Differential Equation solver, (LSODA) with initial conditions

∆Vi(0) = 0 ∀ i = 1, . . . , N. (S29)
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Equivalence between Eqs. S13 and S15 in systems for which εξ << 1

In this Section we demonstrate that in systems for which the product εξ is very small

Eq. S15 (i.e. the simplified form of the governing equation) is identical to Eq. S13 (i.e.

the governing equation). To this end, we first quantify the product r = εξ in our system

comprised of narrow and slender tubes in which viscous forces dominate

r = εξ =
R2 ρ

8µ tmax

πGR4tmax
8µLv0

=

=

(
1

64π

)(
G(πR2)

(µ2/ρ)

)
︸ ︷︷ ︸

rF

(
πR2L

v0

)
︸ ︷︷ ︸

rV

(
R

L

)2

︸ ︷︷ ︸
r2a

=

=

(
1

64π

)
rF rV r

2
a � 1 (S30)

where,

• rF is the ratio between the force associated with the pressure gradient (GπR2) and

the viscous forces in the tube (µ2/ρ)

• rV is the ratio between the volume inside the tubes (LπR2) and the volume inside

the actuators (v0)

• ra is the aspect ratio of the tube defined as the radius (R) divided by the length (L)

Since in our system rF , rV and ra are always individually very small numbers, Eq. S30

indicates that εξ << 1.

Next, to explain the validity of Eq. S13 when εξ � 1, we study the analytical solution

of a very simple system consisting of a single narrow tube connected to a single pneumatic

actuator and a pressure source (see Fig. S11), for which Eq. S13 reduces to

ε
d2Ṽ

dT 2
+
dṼ

dT
+ ξ(P − Pinput) = 0. (S31)
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Assuming that (i) the input provides a constant pressure, Pinput = 1; (ii) the actuator

has a linear pressure-volume response, P (∆V ) = ∆V ; and (iii) the initial conditions are

Ṽ (0) = 0, Ṽ ′(0) = −ξ, Eq. S31 admits the analytical solution in the form
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Figure S11: A simple system consisting of a single narrow tube, a single fluidic actuator
and a pressure source supplying a constant pressure

Ṽ (T ) = 1 + A(ε, ξ) exp

[
− T

2ε

(
1 +

√
1− 4εξ

)]
−B(ε, ξ) exp

[
− T

2ε

(
1−

√
1− 4εξ

)]
, (S32)

where

A(ε, ξ) =
1− 2εξ −√1− 4εξ

2
√

1− 4εξ
, (S33)

B(ε, ξ) =
1− 2εξ +

√
1− 4εξ

2
√

1− 4εξ
. (S34)

By substituting ε = r/ξ, Eqs. S32-S34 can be rewritten as

Ṽ (T ) = 1 + A(r) exp

[
−ξT

2r

(
1 +
√

1− 4r
)]

−B(r) exp

[
−ξT

2r

(
1−
√

1− 4r
)]
, (S35)
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with

A(r) =
1− 2r −

√
1− 4r

2
√

1− 4r
, (S36)

B(r) =
1− 2r +

√
1− 4r

2
√

1− 4r
, (S37)

which for r � 1 can then be expressed using Taylor expansion as

Ṽ (T ) = 1− exp(−Tξ) +O
(
r2
)
. (S38)

Having determined the analytical solution of Eq. S31, we now focus on the simplified

governing equation,

dṼ

dT
+ ξ(P − Pinput) = 0. (S39)

Importantly, we find that for the same system and boundary conditions Eq. S39 admits

the analytical solution

Ṽ (T ) = 1− exp(−Tξ), (S40)

which is identical to Eq. S38 up to second order terms with respect to r. Therefore, the

analysis of the simple system justifies the simplification of the governing equation used in

this study.

Non-Dimensional Extents within which the Model Assumptions are Valid

Our numerical model, just like all models, is fundamentally based on the assumptions

stated in the Forward Modeling Section of the Main text (also in the Modeling Section

of the SI). If any of the assumptions is violated the model is not expected to maintain its
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predictive capabilities. In the following we will address each of the assumptions on which

the model is based on and quantify the relevant non-dimensional extents within which

each assumption is valid.

i) The tube walls are rigid and not deformed by the flow.

To assess the validity of this approximation one should analytically estimate

the expected change in the radius of the tube due to the internal pressure. To

this end, we assume that the maximum pressure developed due to the flow

is equal to pmax and that the tube has thickness t, radius R and is made of

a material with Young’s modulus E and Poisson’s ratio ν. Furthermore, we

approximate the tube as a thick-walled linearly elastic pressure vessel, so that

the stresses at the inner surface of the tube are given by,

σrr = −pmax, (S41)

σθθ = pmax
(R + t)2 +R2

(R + t)2 −R2
, (S42)

σzz = pmax
R2

(R + t)2 −R2
. (S43)

It follows from Eqs. S41–S43 that the circumferential strain can be expressed

as

εθθ =
1

E
[σθθ − ν (σrr + σzz)] =

(pmax
E

) (2− ν)R2 + 2(ν + 1)Rt+ (ν + 1)t2

t(2R + t)
,

(S44)

At this point is it important to point out that the rigid tube-walls assumption

is valid if εθθ � 10−3 = 0.1%. Since in this study we used tubes characterized
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by E ' 3.8GPa, ν ' 0.38 R = 0.381mm, and t = 0.4064mm and the maximum

pressure in the tubes (due to the input pressure) was pmax = 100kPa, we find

through Eq. (S44) that εθθ = 4.9 ·10−5, justifying the validity of the rigid wall

assumption made in our study.

ii) The head losses due to friction at the connections between the tubes and the

actuators can be captured by the equivalent length method, adjusting the tube’s length

to Leq.

As long as such connections exist in the system, this approximation will always

be valid provided that the flow is laminar, incompressible and inviscid effects

are negligible.

iii) The radial (ur) and angular (uθ) components of the fluid velocity field u are zero

(since L� R), so that

u(r, θ, z, t) = uz(r, z, t)ez.

This assumption relies on the fact that the length of the tube is much larger

than its radius L� R and is valid if

L

R
� 10.

iv) The flow is incompressible.
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To assess the validity of this assumption we start from the continuity condition

which states,

Dρ

Dt
= 0⇒ ∂ρ

∂t
+ ∇ · (ρu) = 0⇒ ∂ρ

∂t
= −ρ∇ · u− u ·∇ρ (S45)

The density gradient ∇ρ can be expressed in terms of the pressure gradient

∇p by making use of the chain rule to find

∇p =
dp

dρ︸︷︷︸
c2

∇ρ⇒∇p = c2∇ρ⇒∇ρ =
1

c2
∇p (S46)

where c =
√
dp/dρ is the local speed of sound. Therefore, by combining

Eq. S45 and Eq. S46 we find

∂ρ

∂t
= −ρ∇ · u− u

c2
∇p (S47)

For the flow to be incompressible, the term ∂ρ/∂t needs to vanish implying

that the density of the fluid does not vary as a result from the flow. To this

end, the incompressibility assumption is valid if,

∇ · u = 0 and
u

c2
∇p = 0 (S48)

Given that the radial and angular velocity components vanish ur = uθ = 0

(following from a prior assumption) the first requirement for incompressibility

suggests that,
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∇ · u =
∂ur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= 0⇒ ∂uz
∂z

= 0 (S49)

which is valid for long and narrow tubes for which,

L

R
� 10 (S50)

The second requirement for incompressible flow is immediately satisfied in the

case where the velocity magnitude of the flow is much smaller than the speed

of sound since,

∣∣∣u
c

∣∣∣� 1⇒ u

c2
∇p = 0 (S51)

v) The flow is laminar and governed by the Navier Stokes equations which reduce to

∂uz
∂t

= −1

ρ

∂p

∂z
+
µ

r

∂

∂r

(
r
∂uz
∂r

)
To assess the validity of this assumption we have to estimate the Reynolds

number for the system

Re =
uρR

µ
=

dv
dt
ρR

πR2µ
=
dv

dt

ρ

πRµ
,

If Re is found to be less than 2500 then the assumption holds; otherwise the

flow is not expected to be fully laminar. To this end, we express the non-

dimensional flow rate dṼ /dT in terms of the Reynolds number as,

dṼ

dT
=
dv

dt

tmax
v0

= Re
πtmaxRµ

ρv0
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According to Eq. S15, the governing equation for a system comprising a single

actuator connected to the input source via a single narrow tube,

dṼ

dT
+ ξ∆P = 0

For such a system, the maximum Reynolds number is expected ar T = 0 where

the pressure gradient is maximum. At T = 0 we have ∆P = −Pinput and thus,

max

∣∣∣∣∣dṼdT
∣∣∣∣∣ = ξPinput (S52)

Therefore, the maximum expected Reynolds number in this case is given by,

Remax =
ξρPinputv0
πtmaxRµ

Substituting representative values for our study (see Table S2) we find that

Remax ≈ 2400. As a result, since the maximum expected Reynolds number is

less than 2500 the flow is expected to be laminar justifying this assumption.

(vi) The fluid velocity profile has the form

uz(r, t) = Fi(t)

[(
r

Ri

)2

− 1

]
, (S53)

where Fi(t) is an unknown function.

This assumption is motivated by the Poiselle flow since the spatial component

of the velocity profile is chosen so that is satisfies the no-slip boundary con-

ditions at the tube walls. The temporal component of the velocity field is an

unknown function of time to be determined. This assumption is expected to
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be valid in all scenarios where the flow satisfies the no-slip boundary condition.

However, as noted in the Section ”Modeling” of the Supporting Information

it doesn’t satisfy the Navier-Stokes equations in a point-wise manner, but still

provides a very good approximation for the volumetric flow which is the main

interest of this study.

Inverse Design & Optimization

Numerical solutions of Eq. S17 can be used to predict the temporal response of arbitrary

arrays of fluidic actuators connected via narrow tubes. Here we are interested in the

inverse problem of designing a system capable of achieving a target response. Specifically,

we want the [i]-th actuator in the array to attain a specified maximum bending curvature

Ki,max = κi,max/κref at a predefined time Ti,max = ti,max/tmax and then to completely

deflate. Since in this study we only consider systems consisting of 4 narrow tubes and 4

fluidic bending actuators with different top layer thickness t and use a rectangular pulse

as input pressure, the parameters that need to be determined to achieve such a target

response are

• the parameter ti defining the geometry of each actuator in the array (with i =

1, 2, 3, 4);

• the radius to length ratio of the tubes defined by the dimensionless parameter ξi

(with i = 1, 2, 3, 4);

• the magnitude of the input pressure Pinput and the pressurization time Tinput.

To find the set of parameters resulting in the desired response, we then minimize

Z =
4∑
i=1

(di + w τi) (S54)
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where di is the “distance” in the K − T space between the target and actual points of

maximum curvature for the [i]-th bending actuator,

di =
√

∆K2
i + ∆T 2

i , (S55)

with

∆Ki = Ki,max −max
T

Ki(T ), (S56)

∆Ti = Ti,max − argmax
T

Ki(T ). (S57)

Moreover, τi denotes the amount of time that the [i]-th actuator spends above a threshold

curvature κ
(i)
thres = 0.05κ

(i)
max and is introduced to ensure that all actuators quickly deflate

(i.e. reach κ = 0) after reaching the target point of maximum curvature. Finally, the

factor w is a weight that sets the relative importance of the two objectives; w → 0

expresses a bias towards solutions that just minimize d(i), while very large w results in

solutions that minimize only τ (i). By trial and error, we found that for our system w = 1/4

leads to the best results.

Finally, we input all of this information together with the models we developed in the

previous section (Eq. S17) and the actuators’ response (see Figs. S6e and f) into a Python

implementation of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

CMA-ES is an evolutionary algorithm that is used to solve optimization/inverse prob-

lems by iteratively solving several forward problems to adjust a covariance matrix of the

solution. CMA-ES is a derivative free algorithm, well suited for optimization problems of

high dimensionality. Even though CMA-ES is not as fast as gradient-based algorithms, in

our study it outperformed the latter since the objective function defined by Eqs. S54–S56

is non-differentiable. To ensure that all the parameters involved in the optimization have
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similar orders of magnitude, we renormalize them to lie in the interval [0, 1]. To this end,

we define the renormalized tube resistances ξ̂i, actuators top layer thicknesses t̂i, input

pressure P̂input and pressurization time T̂input as

ξ̂i =
ξi − ξmin
ξmax − ξmin

(S58)

t̂i =
ti − tmin
tmax − tmin

(S59)

P̂input =
Pinput − Pinputmin

Pinputmax − Pinputmin

(S60)

T̂input =
Tinput − Tinputmin

Tinputmax − Tinputmin

(S61)

where ξmax = 62863, ξmin = 31.4, tmax = 4.0 mm, tmin = 1.5 mm, Pinputmax = 25,

Pinputmin
= 0, Tinputmax = 0.25 and Tinputmin

= 0. The initial values for all variables

used at the beginning of the optimization are drawn from a standard normal distribution.

Apart from the initial values of all the variables, CMA-ES also requires the initial standard

deviation to generate new candidate solutions in the first generation of solutions. After

trial and error, we found that an initial standard deviation of σ = 0.4 was a reasonable

choice to ensure a “rich in variety” first generation of solutions given that all variables

lie in the interval [0, 1]. Note that the parameter bounds are enforced using rejection and

resampling. Whenever CMA-ES generates new parameter values that lie outside the [0,1]

interval, the values are rejected and new ones are generated until all candidate parameter

values are within the [0,1] interval.

Results

In this study we consider systems comprising four bending actuators connected via four

narrow tubes, choose the system response time to be tmax = 25 secs and use tubes with
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Figure S12: Optimal solutions to the inverse problem for a system comprising four bending
actuators connected via four narrow tubes. The top layer thickness of the actuators are
fixed to be t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm. The system
response time is chosen as tmax = 25 sec and the tube radii are fixed to R = 0.38 mm.
The optimization algorithm determines the magnitude of the input pressure Pinput, the
pressurization time Tinput and the length of the four tubes in the array, Li. For each target
response we report the evolutions of curvature and pressure of the optimal system as a
function of time, as obtained both numerically (solid line) and experimentally (dashed
line).

radius R = 0.38 mm. To begin with, we also fix the top layer thicknesses of each actuator

to be t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm for actuators 1, 2, 3

and 4, respectively. Consequently, the parameters to be determined by the optimization

algorithm are the input pressure Pinput, the pressurization time Tinput and the length of
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Figure S12: (Contd.) Optimal solutions to the inverse problem for a system comprising
four bending actuators connected via four narrow tubes. The top layer thickness of the
actuators are fixed to be t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm. The
system response time is chosen as tmax = 25 sec and the tube radii are fixed to R = 0.38
mm. The optimization algorithm determines the magnitude of the input pressure Pinput,
the pressurization time Tinput and the length of the four tubes in the array, Li. For each
target response we report the evolutions of curvature and pressure of the optimal system
as a function of time, as obtained both numerically (solid line) and experimentally (dashed
line).

each tube in the array, Li (which can be determined from ξi). While in Fig. 5 of the main

text we focus on two target responses, in Figs. S12 and S13 we show the results obtained

solving the inverse problem for 11 different target responses, in which we vary both Ki,max

and Ti,max. For each case, we report the tube lengths Li and pressure input parameters
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Figure S13: Optimal solutions to the inverse problem for a system comprising four bending
actuators connected via four narrow tubes. The top layer thickness of the actuators are
fixed to be t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm. The system
response time is chosen as tmax = 25 sec and the tube radii are fixed to R = 0.38 mm.
The optimization algorithm determines the magnitude of the input pressure Pinput, the
pressurization time Tinput and the length of the four tubes in the array, Li. For each target
response we report the numerically obtained evolutions of curvature and pressure of the
optimal system as a function of time.

Pinput, Tinput that correspond to the optimal solution. Moreover, for each target response

we test the response of the system with the tubes and pressure input parameters deter-

mined by the optimization algorithm. For the six cases presented in Fig. S12 we test

the response both numerically and experimentally, while for those reported in Fig. S13

we only perform numerical simulations. In all our tests we find a very good agreement
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Figure S13: (Contd.) Optimal solutions to the inverse problem for a system comprising
four bending actuators connected via four narrow tubes. The top layer thickness of the
actuators are fixed to be t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm. The
system response time is chosen as tmax = 25 sec and the tube radii are fixed to R = 0.38
mm. The optimization algorithm determines the magnitude of the input pressure Pinput,
the pressurization time Tinput and the length of the four tubes in the array, Li. For each
target response we report the numerically obtained evolutions of curvature and pressure
of the optimal system as a function of time.

between the curvature response and the corresponding targets. This indicates that the

inverse problem formulation can successfully and very accurately identify tube lengths

and pressure input parameters resulting in a wide range of target responses.

Even though the results shown in Figs. S12 and S13 indicate that a system consisting

of the four bending actuators characterized by t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1

mm and t4 = 1.5 mm can closely approach a variety of desired responses if the tubes

length and inflation parameters are chosen carefully, target responses will always exist

for which the optimal solution will not be a sufficiently good approximation. However,

it is important to note that in such cases the solution space can be enriched by further
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optimizing with respect to the top layer thicknesses of each actuator. To demonstrate that

such an approach can improve the optimal solution determined by the inverse problem

we consider the target response defined by Ki,max = 0.8− 0.2(i− 1) and Ti,max = 0.15 +

0.1(i − 1) with i = 1, 2, 3, 4. If the geometry of the actuators is fixed (and characterized

by t1 = 4.0 mm, t2 = 2.9 mm, t3 = 2.1 mm and t4 = 1.5 mm), we find that the system

most closely matches the targets for L1 = 4 cm, L2 = 32.4 cm, L3 = 26 cm, L4 = 66

cm, pinput = 22.1 kPa. However, the numerical results reported in Fig. S14a show that

for this set of parameters all four actuators fail to exactly meet the curvature anchor

points, motivating the search for better performing solutions. To this end, we solve the

inverse problem allowing also for the optimization of the top layer thickness, ti, of each

actuator in the array. In this case the optimization algorithm indicates that the system

most closely approaches the prescribed target when the actuators are characterized by

t1 = 3.33 mm t2 = 2.68 mm, t3 = 2.8 mm and t4 = 2.68 mm, the tubes have length

L1 = 89.3 cm, L2 = 17.2 cm, L3 = 4.3 cm, L4 = 357.5 cm and the inflation parameters

are set to pinput = 51 kPa and tinput = 1.88 sec. The numerical results shown in Fig. S14b

demonstrate that the new solution is an evident improvement to the one for which the

actuators’ geometry was not considered in the optimization.
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Figure S14: Allowing for the optimization of the top layer thickness of each actuator. (a)
Optimal solution for the case in which the geometry of the actuators is fixed (so that
the optimization algorithm only determines the tube ξi and inflation parameters Pinput
and Tinput). (b) Optimal solution when the optimization also determines the top layer
thickness of each actuator ti. Note that in both cases the target target response is defined
by the circular markers.
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Additional Numerical Results

In this section we provide additional numerical results. In particular, Fig. S15 presents the

evolution of the objective function and parameter values during optimization with CMA-

ES. The results presented in Fig. S16 compare the magnitude of viscous and inviscid terms

for the 3 different optimized systems presented in Fig S12.
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Figure S15: Optimization metrics for the case shown in Fig. S12a. (a) Evolution of the
objective function during optimization with CMA-ES. (b)-(g) Evolution of the parameter
values along with the standard deviation histories during optimization with CMA-ES
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Figure S16: Comparison of the magnitude of viscous and inviscid terms for the optimized
systems presented in Fig S12. (a), (c) and (e). Numerical and experimental curvature
time response of the optimized systems. (b), (d) and (f) Semilog plots of the magnitude of
εid

2Ṽi/dT
2 and dṼ /dT . Note that the term εid

2Ṽi/dT
2 effectively represents the inviscid

effects in the tube, whereas dṼ /dT represents the viscous effects, since in the limit where
µ→ 0 the term dṼ /dT vanishes (i.e. no viscous contributions). The results suggest that
inviscid effects are always negligible in magnitude compared to the corresponding viscous
effects inside each tube. As such, the solutions presented in this work are only relevant
in scenarios where viscous flow dominates.
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Multi-Objective Optimization

Since soft robots are typically required to perform multiple tasks, we investigate the

design of a system that can achieve two different target responses by simply changing the

inflation parameters. To begin with, we focus on the optimized system shown in Fig. 5a

of the main text and investigate the influence of the inflation parameters to its response

by varying the inflation pressure from 0 to 320 kPa and the inflation time from 0 to 12.5

sec. To quantify the amount of deviation from the optimal solution, in Fig. S17a we

report the evolution of the objective function (Eq. (7) in the main text) as a function

of the input pressure and pressurization time. Moreover, in Figs. S17b-f we show the

numerical (solid line) and experimental (dashed line) curvature responses corresponding

to (pinput, tinput) =(75 kPa, 3.4 sec), (50 kPa, 3.4 sec), (102 kPa, 2.4 sec), (102 kPa, 1.4

sec) and (102 kPa, 3.4 sec). Our results suggest that changes in the input pressure and

pressurization time have the ability to alter the magnitude of the curvature maxima as

well as the temporal response of the system in a uniform manner. However, since the

response type is highly dependent on the tubes, the responses that can be achieved just

by varying the inflation parameters are quite limited.

To overcome this limitation, we formulate a multi-objective optimization problem,

the solution of which corresponds to a system that can switch from one desired response

(Target 1) to another (Target 2) just by varying the inflation parameters. In this case,

the parameters to be determined are (a) the dimensionless tube parameters ξi (with i =

1, 2, 3, 4); (b) the magnitude of the input pressure P
(1)
input = p

(1)
input/G and the pressurization

time T
(1)
input = t

(1)
input/tmax that will actuate the system towards the first target response

and (c) the magnitude of the input pressure P
(2)
input = p

(2)
input/G and the pressurization time

T
(2)
input = t

(2)
input/tmax that will actuate the system towards the second target response. In

40



0.0 0.4 0.8 1.2 1.6

Normalized Time T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

al
iz

ed
C

u
rv

a
tu

re
K

0.1

Normalized Inflation Time Tinput

N
or

m
al

iz
ed

In
fl
at

io
n

P
re

ss
u
re

P
in

p
u
t

100

200

300
In

fl
at

io
n

P
re

ss
u
re

p
in

p
u
t

[k
P
a]

2 4 6 8 10 12

Inflation Time tinput [sec]

Excessive 
Inflation Region

Objective Value Z

15.4

10.3

5.1

0.0
0.0 0.50.40.30.2

a) b)

p
input

=102kPa
t
input

=3.4sec

2 3 4 5 6 7 8 9

Figure S17: Influence of Pinput and Tinput on the response of an optimized system. The
system considered here comprises four actuators characterized by t1 = 4.0 mm, t2 = 2.9
mm, t3 = 2.1 mm and t4 = 1.5 mm and connected by tubes with lengths L1 = 78.6
cm, L2 = 10 cm, L3 = 43 cm and L4 = 122 cm. This system was optimized to achieve
Ki,max = 1.0 at Ti,max = 0.1+(i−1) 0.2 (with i = 1, 2, 3, 4). (a) Evolution of the objective
function Z as a function of the input pressure magnitude Pinput and pressurization time
Tinput. (b)-(f) Experimental (dashed lines) and numerical (solid lines) curvature responses
corresponding to (b) pinput = 102 kPa and tinput = 3.39 sec (note that these are the
inflation parameters obtained solving the inverse problem)
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Figure S17: (Contd.) (c) pinput = 75 kPa and tinput = 3.39 sec, (d) pinput = 50 kPa and
tinput = 3.39 sec, (e) pinput = 102 kPa and tinput = 2.4 sec and (f) pinput = 102 kPa and
tinput = 1.4
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Fig. S18 we report results for a system that can achieve two target responses defined by

K
(1)
i,max = 1.0− (i− 1)0.2 , T

(1)
i,max = 0.1 + (i− 1)0.2 (S62)

K
(2)
i,max = 0.1 + (i− 1)0.3 , T

(2)
i,max = 0.1 + (i− 1)0.2 (S63)

with i = 1, 2, 3, 4. To identify the set of optimal parameters we minimize,

Z = αZ(1) + (1− α)Z(2) (S64)

where α ∈ [0, 1] is a scalar parameter weighing the relative importance of the two ob-

jectives and Z(1), Z(2) are the objective functions corresponding to the first and second

target response, which are defined as

Z(1) =
4∑
i=1

(√(
∆K

(1)
i

)2
+
(

∆T
(1)
i

)2
+ w τi

)
, (S65)

Z(2) =
4∑
i=1

(√(
∆K

(2)
i

)2
+
(

∆T
(2)
i

)2
+ w τi

)
. (S66)

The multi-objective inverse problem is again solved using CMA-ES (with the same pa-

rameters used for the single-objective optimization). We find that the system closely

approaches both objectives for α = 0.5 when (L1, L2, L3, L4) = (16.5, 10, 48, 124) cm,

p
(1)
input = 39.6 kPa, t

(1)
input = 6.32, p

(2)
input = 58.5 kPa and t

(2)
input = 3.33 sec. In Figs. S18d and

e we compare the numerically obtained curvature response of the system when inflated

using the optimal pressure input (shown in Figs. S18f and g) to the target curvature an-

chor points. The results indicate that the optimal solution of the multi-objective problem

closely approaches both target responses.
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Figure S18: Multi-objective Optimization. (a)-(b) Curvature anchor points defining the
first and second target response. (c) Evolution of the of min(Z1 +Z2) as a function of α.
(d)-(e) Numerically obtained curvature-time response of the optimal system for α = 0.5.
(f)-(g) Optimal input pressure required for the system to match the first and second target
response, respectively.
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