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Three dimensional curls (‘‘hemi-helices’’) consisting of multiple, periodic and alternating helical

sections of opposite chiralities, separated by perversions, are one of a variety of complex shapes that

can be produced by a simple generic process consisting of pre-straining one elastomeric strip, joining it

side-by-side to another and then releasing the bi-strip. The initial wavelength of the hemi-helix and the

number of perversions are determined by the strip cross-section, the constitutive behavior of the

elastomer and the value of the pre-strain. The hemi-helix has no net twist. Topologically, the

perversions separate regions of the hemi-helix deforming principally by bending from those where

twisting dominates.

I. Introduction

Nature abounds with complex three-dimensional morphol-

ogies,1,2 many of which can be reproduced by simple growth

rules, for instance by diffusion limited aggregation3 and cellular

automata.4 Other complex shapes can be generated in initially

flat sheets or ribbons by simple operations. For instance, the

Mobius strip can be produced by taking a long strip of material,

twisting one end with respect to the other and then joining the

two ends of the twisted strip. Moreover, Sharon and Efrati5 have

demonstrated that complex shapes can be produced by a differ-

ential swelling operation and recently Savin et al.6 have shown

that the looped pattern of the gut can be reproduced by

a combination of growth and bending of a tube along its length

but constrained at its two ends. In this paper we describe the

formation a hitherto unreported three-dimensional shape—

which we term a hemi-helix—produced by another simple set of

generic operations on a 1D system but without any volume

change, plastic strain, or differential swelling: elongating one

straight strip, joining it side-by-side to a second, flat and

unstrained strip and then releasing the bi-strip formed. The hemi-

helix shape consists of periodic and alternating helical sections of

opposite chiralities, separated by ‘‘perversion defects’’, is free-

standing and is mechanically stable. Furthermore, its initial

wavelength is determined by the initially applied pre-stretch. An

example is shown in Fig. 1 as a strained bi-strip elastomer is

released by incrementally decreasing the distance between its

ends. Unlike the shapes produced in the above referenced works

in the literature, the formation of the hemi-helix is associated

Fig. 1 Sequence of images (top to bottom) recorded as a bi-elastomer

strip, of initial length 50 cm and pre-strain c ¼ 1.5, is released by moving

the ends of the bi-strip together. (The lengths are indicated on the right

hand side of the figure and the grips holding the ends are not shown.)

Even at the earliest stages of releasing the ends, the perversions (arrowed

and eleven in number) begin to form. After release, the coiled bi-elas-

tomer strip adopts the shape shown in (b). For clarity, the coiled strip is

laid out as a straight strip. The alternative configuration (c) of the same

strip and shown at the same magnification, consisting of a tightly wound

coil with the inner portion being red and the outer portion being blue-

green, is adopted if the ends are twisted by hand after releasing the ends.

Note, the two strips are made of identical material but dyed red and blue-

green to distinguish them and the magnifications of the individual images

are different in figure (a).

School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA. E-mail: clarke@seas.harvard.edu

† Electronic supplementary information (ESI) available. See DOI:
10.1039/c2sm25278c

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 6291–6300 | 6291

Dynamic Article LinksC<Soft Matter

Cite this: Soft Matter, 2012, 8, 6291

www.rsc.org/softmatter PAPER



with a twist component of deformation. We will show through

simulation that the hemi-helix shape has a higher elastic energy

than the simple helix and it is trapped in the higher energy

state because of the twist deformation locked in by perversion

defects.

Among other shapes, helices are ubiquitous in nature and

the study of their formation and properties has attracted

considerable interest for many years. For instance, it has been

found that a rich phenomenology of helical shapes can be

obtained in narrow bilayered ribbons depending on the orien-

tation and width of the strips.7,8 In twist-nematic elastomers,

transitions between helicoids and helical ribbons has been

reported as the width increases.9 Moreover, the degree of twist

and the pitch of ribbons in bilayers of Gemini surfactants have

been successfully tuned introducing opposite-handed chiral

counterions in various proportions.10 Inversion of chirality is

observed in some helices. For instance, plant tendrils can

switch from a left-handed helix to a right-handed one (or vice

versa) at some point in their growth as originally discussed by

Darwin. (An excellent account of the history of understanding

perversions in tendrils is given by McMillen and Goriely11). As

Darwin proposed and has been discussed more recently in

topological terms,12 once the growing tendril has attached to

a support, it’s ends are fixed and so to minimize the possibility

of breaking by continued twisting, a perversion forms to create

equal left and right-handed segments and the net twist is

conserved. Similarly, bacteria can change direction of motion

propagating a right-handed helix into a left-handed helix, thus

creating a perversion.13 Most recently, in the chemical litera-

ture, peptide molecules have been synthesized that switch from

one chirality to another along their length.14 Although helical

structures with one perversion have been reported on several

occasions in the biological and plant literature as mentioned

above, three dimensional structures with several periodically

arranged perversions have not been. In the area of mechanics,

numerical studies of the buckling of stretched slender, long

rods with an initial curvature have revealed that a single

perversion can form when they are compressed11,13 but there

have been no previous reports of multiple perversions that we

are aware of. Thus, not only is the formation of hemi-helices

a new and unexpected morphological response to a very simple

generic pre-straining rule applied to a bi-strip but also the

creation of numerous perversions, periodically arranged along

the bi-strip provides an opportunity to investigate aspects of

perversions themselves.

In this contribution, we describe the formation of hemi-helices,

the dependence of their characteristic features, such as initial

wavelength and number of perversions on the values of the

pre-strain and geometrical cross-section, and show that all the

experimental observations can be reproduced through simula-

tion using the well-established Gent constitutive law to represent

the deformation behavior of elastomeric materials. We also

demonstrate by simulation that the hemi-helix is a higher energy

configuration than a simple helix and is trapped in that state by

the presence of the perversions. Finally, we show that the

formation of a hemi-helix does not depend on the non-linearity

of the elastomer and linear elastic materials can be expected to

form hemi-helices if they can be pre-strained sufficiently without

breaking.

II. Observations

The sequence of operations applied to the two strips of elastomer

of different initial length is shown schematically in Fig. 2. In the

first step, the shorter, red strip, length L0 is stretched by pulling

on its ends to be equal in length to the longer blue-green strip,

length, L. This operation produces an elongational pre-strain

defined as c ¼ (L # L0)/L0, in the red strip. While still stretched,

the red strip is then glued along its narrow edge to an unstrained

strip of the same elastomeric material, but dyed blue-green, and

of the same length as the elongated strip, L, along its narrow

edge. The glue used is another silicone rubber product that has an

elastic modulus reported to be the same as that of the elastomer

strips. At this stage, the bi-strip is flat and no curvature is

observed. Then, in the third step, the force stretching the red strip

is gradually released. As the force is released, the bi-strip distorts

out of plane, twisting and bending to produce the complex

helical-like shape shown in the sequence of successive photo-

graphs in Fig. 1(a). We refer to this new geometrical shape as

a hemi-helix. A line having a hemi-helical shape can be described

mathematically as presented in Appendix One.

In this particular example, the initial length of the bi-strip was

L¼ 50 cm and the length of the bi-strip recorded at the successive

images is shown at the right hand side of Fig. 1. Evidently, out-

of-plane distortions develop very early while their amplitudes

increase as unloading continues. Inspection of the bi-strip reveals

another characteristic feature; irrespective of the value of the pre-

strain, c , it consists of alternating helical sections of opposite

chiralities. The junctions between these alternating chiralities –

sometimes referred to as perversions11 – develop early in the

unloading process but the number of them, N, does not change

Fig. 2 The pre-straining operation used to form the strained bi-strip. (a)

The initial geometry of the elastomeric strips before pre-straining. (b) The

red strip is stretched by a force until it has the same length as the

blue-green strip. The two strips are then glued together. The pre-strain is

defined as: c ¼ (L # L0)/L0.
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with continuing unloading, although the average buckling

wavelength, as well as the length between the ends of the strip,

decreases as the force holding the ends is decreased. For the

bi-strip shown in Fig. 1 there are eleven, arrowed in Fig. 1(a). We

note that spacing of the perversions is not perfectly periodic and

the wavelengths along the hemi-helix vary a little but attribute

this to random, local imperfections in the bi-strip. The obser-

vations, including the local variations in wavelength are,

however, fully reproducible in any one bi-strip; the same bi-strip

can be released to form the hemi-helix, stretched back to being

a straight bi-strip, released again innumerable times and each

time the initial wavelength of the hemi-helix is the same and the

same number of perversions form. We also observed the same

number of perversions, when multiple bi-strips of the same

dimensions and the same value of the pre-stretch are made. Also,

although the cross sections of the two strips are not equal (the

pre-stretched one is smaller due to Poisson’s contraction), the

occurrence of hemi-helix is found not to be affected by this, as

confirmed by repeating the experiment using two strips with the

same cross-sections after pre-straining.

The spatial separation into regions of predominately twisting

and bending can be clearly seen in the micro-computerized

tomography (micro-CT) image of a similar hemi-helix shown in

Fig. 3. The image reveals that the bi-strip is locally bent about an

axis approximately perpendicular to the line originally joining

the ends of the bi-strip, with little twist but substantial bending,

at the perversions, marked by the dashed vertical lines. In

contrast, between the perversions, the strip is twisted about the

long axis of the hemi-helix with a small degree of bending. This

suggests that the perversions form so as to produce alternating

regions of large twist and small bending separated from regions,

where the perversion is geometrically located, of small twist and

large bending. This spatial partitioning of bending and twisting

distortions is analogous to a form of phase separation or

ordering in which the perversions are the equivalents of walls or

interfaces, in this case, diffuse interfaces. The most direct analogy

is perhaps the formation of walls that separate regions of

different order parameter,15,16 the simplest case, for instance,

being twin boundaries. If the perversions are considered as

diffuse interfaces separating regions of opposite chiralities, then

it can be anticipated that the number will be determined by the

minimization of the sum of the perversion interface energies, the

stretching, bending and twisting energies, including gradient

energy terms.

While the photographs in Fig. 1 were obtained by holding the

ends of the bi-strip and slowly bringing them together along

a straight line without twisting, the same shape, complete with

the same number of perversions, is obtained under a variety of

boundary conditions, namely if: (i) the ends of the stretched

strips are suddenly released or (ii) the bi-strip is released under

steadily decreasing load, or (iii) one end is free to rotate and

move while the other is fixed. In the third case, the free end is

observed not to rotate even though it is free to do so. This is

shown in a video recording in the ESI† of the release of

a stretched bi-strip whose ends are free to rotate.

Although the formation of a hemi-helix is always observed

during the release process, it is not apparently the uniquely stable

configuration. For instance, the twisted bi-strip of Fig. 1(a) and

1(b) can have a shorter final length and a topologically simpler

structure if, as the ends are gradually brought together, one end is

manually rotated relative to the other. Then, the bi-strip adopts

a tightly packed, simple linear helix in the fully released state as

illustrated in Fig. 1(c), recorded at the same magnification as the

hemi-helix in Fig. 1(b). This structure is distinctly different as it

does not express any perversions; there is little twist and the

helical wavelength as well as the final length is consistently

smaller although the radius of curvature is, within experimental

uncertainty, the same. Finally, it is also interesting to observe

that in the fully released state where the deformation is domi-

nated by bending with little remaining twist, both the hemi-helix

and helix are characterized by the same major radius of the coils

viewed along the long axis of the hemi-helix. This can be seen by

comparing the diameter in the images, recorded at the same

magnification, of Fig. 1(b) and 1(c). Indeed, the radius of the

hemi-helix and the helix are both dependent on the value of

the elongational pre-strain. Measurements of this radius are

presented in Fig. 4 together with an analytical solution for the

curvature developed in Appendix Two.

Fig. 3 Detail of the hemi-helix imaged by micro X-ray computerized

tomography. The spatial separation into regions of predominately

twisting and bending is apparent. The approximate positions of the

perversions are indicated by the dashed vertical lines and the regions of

pronounced twisting are highlighted by the dashed circles. As can be seen

the perversions are located in the regions of pronounced bending.

Fig. 4 The radius of curvature as a function of pre-strain for both hemi-

helices and helices after stretching and releasing them. Red circles and

black squares are the experimental results for hemi-helices and helices,

respectively. The blue line is the analytical prediction from Appendix

Two. The radius of curvature decreases with pre-strain since larger

pre-strains produce larger differential stresses and thus the bi-strip system

has a smaller radius of curvature.
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The dynamics of the hemi-helix when the ends are rotated are

also notable. When one end of the hemi-helix is held fixed and the

other rotated uniformly at a constant rate to convert to a regular

helix, it does not un-twist uniformly. Instead, it does so by

a series of sudden ‘‘snap-through’’ rotations, each of which

abruptly removes one perversion at a time. Concurrently, there is

a spatial re-organization along the strip as the hemi-helical

wavelength adjusts to a new value and the spacing between the

remaining perversions increases. The dynamics of the process

following this ‘‘snap-through’’ rotation are as if the positions of

the perversions re-arrange because they repel one another.

To investigate the dependency of the initial buckling wave-

length of the hemi-helix on the pre-strain and the thickness and

width of the strips, we fabricated and tested a set of bi-strip

samples where we systematically changed both the pre-strain and

the cross-section. The initial buckling wavelength, defined as l0¼
2L/N, developed as the ends of the bi-strip were gradually

released is found to depend on the pre-strain, c, as well as the

geometrical width, w, and thickness, h, of the individual strips,

defined in Fig. 2, as shown in Fig. 5(a) and 5(b), respectively. The

initial average wavelength varies as a power law of the pre-strain

according to (c)#1/3. The variation with the width and thickness

are slightly different, w2/5and h3/5, respectively. All the data

obtained fits a linear relationship between the wavelength and

a length scaling parameter w2/5h3/5c#1/3 shown in Fig. 5(c). The

physical basis for these particular scaling dependences on the

individual width and thickness parameters is not known

although the last scaling relation follows from dimensional

arguments alone. Nevertheless, while we do not have analytical

expressions that lead to these parametric dependencies they are

reproduced by the simulations as will be described in the

following section.

III. Modeling and analysis

Conceptually, the deformation observed on releasing the ends of

the stretched bi-strip can be considered as an unusual form of

buckling instability with the onset of out-of-plane twisting and

bending being symmetry breaking: the twist can form in either

a clockwise or anti-clockwise manner at each end even though the

net twistmust remain zero if the ends do not rotate. At the onset of

the release process, the bi-strip is subject to a uniaxial state of

deformation; the blue-green strip is under compression while red

strip is under tension. During the continued release, the tensile

stress in the red strip decreases while the blue-green strip is

compressed further and at some strain, relative to the initial, pre-

stretched state, bifurcation occurs and the bi-strip buckles. This

process can be seen in the first sequences of images in Fig. 1(a). In

essence, the shortening of the red strip provides the driving force

for the instability since to accommodate the shortening of the red

strip, the blue-green strip is progressively compressed. Therefore

at a critical decrease in length, the bi-strip will begin to buckle out

of plane. Formally, this process is analogous to the buckling of

a strip attached to a foundation17 although the foundation in this

case is a narrow strip of the samematerial rather than a large, solid

substrate that is usually the subject of analysis. To study the

formation of the hemi-helix and the conditions under which it

forms, the combination of twisting, compression and bending,

together with the highly nonlinear constitutive behavior of

elastomer need to be included. To do this, we have used numerical

simulations employing finite element modeling to investigate

both the buckling behavior and the post-buckling response of

the bi-strip. Before describing these simulations in detail, the

constitutive behavior of the elastomer is first presented.

Fig. 5 (a) The initial hemi-helical wavelength as a function of the pre-

strain ratio for red and blue-green strips each of equal width and height

(w ¼ h ¼ 3 mm) and initial length of 50 cm. The line through the data

corresponds to a power law dependence on c with an exponent of #1/3.

The results of the numerical solution simulation using a hyper-elastic

Gent model for the constitutive behavior are indicated. (b) Variation in

the initial hemi-helical wavelength as a function of the width and height

of the individual strips for fixed pre-strain of 0.5. Initial bi-strip length of

50 cm. The simulation results are included for comparison. (c) Experi-

mentally determined scaling between the initial wavelength and the

parameter w2/5h3/5(c)#1/3, again with the simulation results for compar-

ison. The error bars in the experimental data are approximately the same

size as the symbols.
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Material constitutive behavior

To characterize the constitutive response of the elastomer for use

in the simulations, uniaxial tensile stress–strain tests were con-

ducted on the elastomer. The tests show that the material exhibits

a large strain elastic behavior typical of elastomers with signifi-

cant stiffening (see Fig. 6). To capture the observed deformation

response we modeled the material as a hyper-elastic solid,18 and

computed the stresses and elastic energies using the nearly-

incompressible Gent model,19 typically used for simulating

elastomers. The basis of this phenomenological model is that it

captures the limiting molecular chain extensibility at the molec-

ular level that leads to the deformation-induced stiffening of the

elastomer.

Formally, the deformation is described in terms of a local

deformation gradient, F ¼ vx

vX
; mapping a point in the

material from the reference position X to its current location x.

We denote J as its determinant, J ¼ det(F). For an isotropic

hyperelastic material, the strain energy, W, is a function of the

invariants of the tensor B ¼ FFT, the left Cauchy–Green tensor:

W ¼ W(I1,I2,I3) (1)

where

I1 ¼ tr(B),I2 ¼ [(trB)2 # trB2]/2,I3 ¼ det(B) ¼ J2 (2)

For a nearly incompressible Gent model the strain energy is given

by:

W ¼ #m

2
Jm ln

!

1# I1 # 3

Jm

"

# m ln J þ
!

K

2
# m

Jm

"

ðJ # 1Þ2 (3)

Where m andK are the initial shear and bulk moduli, respectively,

and Jm is a constant related to the strain saturation of the

material. The Cauchy stress, a measure of the force acting on an

element of area in the deformed material, is given by

s ¼ 2

J

vW

vI1
Bþ vW

vJ
I (4)

yielding the expression

s ¼ mJm

JðJm # I1 þ 3ÞB# m

J
Iþ

!

K # 2m

Jm

"

ðJ # 1ÞI (5)

with the corresponding nominal stress s ¼ Js$F#T, a measure of

the force acting on an element of area in the undeformed, original

configuration, being

s ¼ mJm

Jm # I1 þ 3
F# mF#T þ

!

K # 2m

Jm

"

JðJ # 1ÞF#T (6)

For the analysis, the parameters m, Jm, K were obtained by

fitting to experimental load-displacement curves measured in

tension (see Fig. 6), yielding values m ¼ 0.06 MPa, K ¼ 24 MPa

and Jm¼ 28.2. To account for the pre-stretch, c, the deformation

gradient F is decomposed into a load-induced gradient, FL, and

a gradient produced by pre-stretching, FS, following the multi-

plicative decomposition method originally introduced by Kroner

and Lee,20,21

F ¼ FLFS
; with FS ¼ diag

#

cþ 1; 1
.

ffiffiffiffiffiffiffiffiffiffiffiffi

cþ 1
p

; 1
.

ffiffiffiffiffiffiffiffiffiffiffiffi

cþ 1
p

'

(7)

This material behavior described by eqn (3) to (7) was imple-

mented into the commercial software ABAQUS/Standard and

ABAQUS/Explicit through user defined material subroutines

and used to investigate the full deformation response of the bi-

strips.

Eigenvalue analysis

The stability of the bi-strips was first examined using standard

eigenvalue analyses. A linear perturbation procedure that fully

accounts for the pre-loading was used and implemented within

the commercial finite element code ABAQUS/Standard using the

*BUCKLE module. Models meshed with 3D quadratic reduced

integrations elements (ABAQUS element type C3D20R) were

built and tested and the accuracy of the mesh was ascertained

through a mesh refinement study.

In the simulations, to mimic the experiments, one end of the

bi-strip was rigidly displaced towards the fixed end without

allowing any rotation until at a displacement (DLcrit), relative to

the initial, pre-strained length, the bifurcation point (indicated by

a zero eigenvalue for the stiffness matrix of the bi-strip) was

found. By performing this for a series of pre-strains, the critical

strain DLcrit/L can be obtained as shown in Fig. 7.

The calculations indicate that multiple instability modes con-

sisting of alternating regions of opposite chirality do form and

the critical strains at which these occur are very closely spaced as

shown in Fig. 7. The first eigenmode is characterized by two

regions of opposite chiralities with one perversion, the second

mode consists of a sequence of three regions of opposite chiral-

ities and two perversions, the third mode consists of four regions

of opposite chirality with three perversions and so on with the

number of perversions monotonically increasing linearly with the

eigenmode number. The appearance of closely spaced modes is in

marked contrast to buckling in many other systems, including

the classical Euler buckling of columns in compression for

Fig. 6 The uniaxial stress-stretch response of the elastomer material

used to produce the bi-strips. The red circles correspond to the experi-

mental data, while the continuous curve corresponds to the best fit to the

hyper-elastic Gent model. Here, the stretch l is defined as current length

dividing by the original length. The nominal stress, s, is obtained as the

force divided by the original area.
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instance, where the eigenvalues are well separated and the one

with the lowest eigenvalue invariably grows. Furthermore, the

critical strains are very small ('0.1) indicating that the buckling

instability with twist occurs almost as soon as the ends are

released. This, too, is consistent with Fig. 1. Moreover, according

to Koiter’s theory we expect the instability to occur at a lower

load because of imperfections in the samples. As in the analysis

of other elastic buckling situations, the mode selection and hence,

in this case the number of perversions, need to be determined by

a post-buckling analysis.22

Finally, consistent with the experimental observations, the

response of the bi-strips is found not to be affected by the choice

of whether the boundary conditions are both fixed or one is fixed

and the other free to rotate, confirming that the formation of the

hemi-helix is a robust and deterministic process.

Post-buckling analysis

To simulate the large displacement behavior of the bi-strips after

the onset of buckling, we used numerical analyses. Static finite

element analyses were effective in determining the number N of

perversions in the system shortly after buckling but they were not

suitable to simulate the complete release process. In part this was

because of the large geometric changes and the material non-

linearity. To capture the response behavior over the entire

unloading path, dynamic explicit simulations were performed

within the ABAQUS/Explicit software. For this set of simula-

tions, models with 3D linear reduced integration elements

(ABAQUS element type C3D8R) are used and quasi-static

conditions were ensured by monitoring the kinetic energy and

introducing a small damping factor. In all the simulations, the

accuracy of each mesh was ascertained through a mesh refine-

ment study.

To illustrate that the dynamic explicit method captures the

experimental observations, the release of the bi-strip in Fig. 1

with a pre-strain of c ¼ 1.5 and initial length of 50 cm with both

ends unable to rotate was simulated. Images from the simulation

are reproduced in Fig. 8(a) to illustrate the development of the

hemi-helix on release to the lengths indicated in the figure.

Random imperfections were included in the finite element model

by successively running the model after randomly perturbing the

positions of the individual elements. It was found that irre-

spective of the type of random imperfection introduced, the

eleventh eigenmode grew, consistent with the observations in

Fig. 1. A higher magnification snap-shot taken from another

simulation, in this case of a 25 cm long bi-strip and pre-strain of c

¼ 0.5, is shown in Fig. 8(b) as a direct comparison with the

micro-CT image in Fig. 3. The distinct regions where twisting

and bending deformation predominate are faithfully reproduced

and the perversions can also be distinguished in both images.

Post-buckling computations for bi-strips of different cross-

sectional geometries and having different pre-strains are

compared with experimental data in Fig. 5. Excellent agreement

between the simulations and experiment is seen over the range of

pre-strain values and cross-sectional geometries investigated.

Furthermore, the numerical analysis also correctly captures the

dependence of N on the pre-strain and strip dimensions. We

believe that the slight discrepancies can be explained by differ-

ences in the constitutive behavior of the elastomer and the

idealization of the end effects compared with the finite extent of

the gripped ends in the experiments.

Elastic energies

The numerical simulations using the strain energy formulation of

eqn (3) enables the energies of the hemi-helix to be directly

compared to those of a simple helix and address the question of

whether or not the hemi-helix is a configuration trapped in

a higher energy state as a result of the onset of the buckling

Fig. 7 The calculated critical applied strain at which buckling occurs for

different eigenmodes. Initial strip length 50 cm and w ¼ h ¼ 3 mm. Note

that the critical strains for the different eigenmodes are very close to

one another and that the critical strain increases only slightly with the

pre-strain ratio, c.

Fig. 8 (a) A series of images from the simulation of the release of a 50 cm

long bi-strip pre-strained by c ¼ 1.5 simulating the hemi-helix in Fig. 1.

(b) A snap-shot taken from a simulation sequence of the release of

a 25 cm bi-strip, pre-strained by c ¼ 0.5. The variation in von Mises

stresses are shown by the color scale. As in the micro-computerized

tomography image of Fig. 3, alternating regions of predominately

bending and twisting form along the length of the hemi-helix as well as

the perversions. (The von Mises stress is a scalar given by the equation:

2s2
V ¼ [(s11 # s22)

2 + (s22 # s33)
2 + (s11 # s33)

2 + 6(s2
23 + s2

31 + s2
12)].)
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instability associated with the formation of the hemi-helix and

perversions. Since there are complex, nonlinear coupling between

the twist, bending and stretching contributions to the overall

strain energy of the hemi-helix, and the observations suggest that

there is a repulsive interaction between perversions, we simulated

the energy of the simplest hemi-helix containing just one

perversion. Using the data in Fig. 5(a), a 10 cm long bi-strip of

equal 3 ( 3 mm cross-section strips and a pre-strain c ¼ 0.5 was

selected. The elastic energy was then computed as the two, fixed

ends were slowly displaced towards one another and the

instantaneous shape monitored. The dynamics simulations were

performed sufficiently slowly to ensure that the kinetic energy

was zero throughout. As shown in the results in Fig. 9, the elastic

energy decreases nonlinearly with displacement and at a critical

displacement the bi-strip no longer remains flat and bifurcation

occurs, at point A, to form a hemi-helix with a single perversion.

Thereafter, the elastic energy decreases further, again non-

linearly, with continued end displacement and the amplitude of

the hemi-helix increases. At an arbitrary displacement, at 30 mm

in Fig. 9, point C, one end is rotated without any end displace-

ment to remove the perversion converting the hemi-helix to

a regular helix. There is initially a slight increase in energy,

(0.235 mJ), from C to C0, corresponding to having to overcome

an energy barrier in rotating the end, and then the elastic energy

drops to point D. In Fig. 9 this drop is 0.735 mJ. The energy

change and energy barrier is shown in the insert of the figure. The

shapes just before and after the end rotation, C and D respec-

tively, are also shown in Fig. 9 for comparison. As the

displacement of two ends towards one another is continued, the

energy decreases further as shown by the segment DE in the

figure. If the displacement direction is then reversed so that

strained helix at point E is now elongated, the energy path is

reproduced until the 30 mm displacement is reached and then the

energy follows the lower path shown in Fig. 9. Not only is the

path lower in energy but it has a shallower dependence on

displacement. When the simulation was re-run from point C but

without rotating one of the ends, the strain energy path

continued smoothly along the original path to the point F.

The energy simulations confirm that the hemi-helix

morphology indeed has a higher elastic energy than that of the

simple helix. Furthermore, the energy of a perversion depends on

the stretching strain, presumably through a twist-elongation

coupling. Thus it can be expected that the energy drop in Fig. 9 at

a displacement of 30 mm is significantly smaller than the energy

difference between the hemi-helix and the helix at smaller

displacements. This is suggested by the steeper slope of the hemi-

helix energy curve compared with that of the helix extension

about point D.

IV. Discussion

As mentioned in the Introduction, the three-dimensional hemi-

helical configuration formed by the relaxation of a pre-stretched

and planar bi-strip is a new geometry. Unlike previous reports of

the buckling of a slightly bent uniform rod11 where a single

perversion forms, the hemi-helix consists of a periodic arrange-

ment of multiple perversions separating regions of opposite

chiralities. Experiments over a range of pre-strains and cross-

sectional dimensions indicate that the number of perversions and

their separation depend on these parameters, findings substan-

tiated by finite element simulations of both the buckling and

post-buckling analysis. The simulations provide the important

insight that the hemi-helix forms as a result of the early onset of

a buckling instability associated with out-of-plane twisting of the

bi-strip rather than a bending instability that leads to the

formation of a normal helix.

The simulations also reveal that, in contrast to other buckling

phenomena, such as standard Euler buckling of a column, the

possible eigen-modes are closely spaced in critical strains indi-

cating that there are a variety of possible closely-bunched

bifurcations. Because the deformation of the pre-strained bi-strip

is so complex, incorporating extensile and bending as well as

twisting strains, simple closed-form analysis of the mode selec-

tion and deformation paths has not been feasible. This is unlike

column buckling where only bending and extensile strains are

involved, and where analytical solutions are possible. Never-

theless, the fact that the simulations of the experimental obser-

vation in Fig. 1 predict that the eleventh eigenmode grows,

consistent with what is observed, suggests that the simulation

correctly incorporates the full deformation behavior. Further-

more, the consistency between the perversion separation and the

pre-strain simulated and observed provides further support

that the formation of the hemi-helices is fully deterministic as

suggested by the experimental findings. The physical rationale

for the observed scaling of the perversion wavelength and the

pre-strain and cross-sectional geometry remains to be under-

stood but provides further evidence for the hemi-helix formation

Fig. 9 Elastic strain energy of a 10 cm long bi-strip as its two ends are

gradually displaced towards one another. At a displacement of 10 mm,

point A, the straight bi-strip becomes unstable to twisting and a hemi-

helix with a single perversion forms. With further displacement, the

elastic energy continues to decrease. At an arbitrary displacement of

30 mm, point C, the displacement is paused and one end is rotated to

remove the perversion and form a helix. The elastic energy first increases

to C0 and then drops to point D as shown in the insert, indicating that

there is an excess energy associated with the perversion. With continued

end displacement, the energy decreases continuously along path DE (in

blue). When the direction of displacement is reversed, the path ED is

retraced followed by the lower path shown in red. If the end is not

rotated, the energy path continues fromC toE (green). Pre-strain, c¼ 0.5

and cross-section w ¼ h ¼ 3 mm. For clarity only one third of the

computed data points are shown.
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being deterministic and robust, at least for the slender geometry

of the bi-strips studied.

The simulations also resolved a question not amenable to

experiment, namely whether hemi-helices form in linear elastic

materials as distinct from highly non-linear materials. To date we

have not found any linear elastic material that can sustain the

large pre-strains necessary to form hemi-helices without breaking

and hence could not resolve the question experimentally.

However, the simulations indicate that the occurrence of the

hemi-helix does not depend on the constitutive behavior of the

material. Indeed, post-buckling modeling of bi-strips made of

linear elastic materials also reveals that hemi-helices form upon

release. More specifically, when we simulated a linear elastic bi-

strip having dimensions w ¼ h ¼ 3 mm in which both strips had

a shear modulus and bulk modulus of 0.06 MPa and 24 MPa,

respectively, and a pre-strain c ¼ 0.5, hemi-helices with an initial

wavelength of 12.23 cm formed when the ends were released. The

initial buckling wavelength of the hemi-helices formed is only

slightly different than when the constitutive behavior of Fig. 6 is

used (12.045 cm). Further simulations are clearly necessary to

explore the dependence on elastic modulus, pre-strain and

geometric parameters and are underway but this simulation

demonstrates that the formation of the hemi-helix is not depen-

dent on the non-linearity of the elastic material.

Although the hemi-helix configuration is stable and is always

observed in our experiments, this does not mean that it has the

lowest energy for all possible configurations. For instance, as

illustrated by our simulations, a different loading path can be

constructed to change the bi-strip hemi-helix into a helix: after

the hemi-helix is formed and the ends moved towards one

another, one end can be twisted. In rotating one end, the elastic

energy is decreased, which indicates that the helix has a lower

energy than the hemi-helix at the same distance between the ends,

but an energy barrier must first be overcome, as is illustrated in

the insert of Fig. 9. This can also be understood qualitatively: if

one starts with either a right or left handed helix and with one

end fixed, the other end is wound in the counter-direction to

create a hemi-helix, work must be done in twisting the helix.

Furthermore, the larger the number of perversions that are

introduced, the more work that must be done. The dynamic

simulations show that as the hemi-helices are turned into helices

by a snap-through process there is transient wave propagation,

as observed in the experiments. More detailed simulations are

necessary to determine whether the twisting bifurcation resulting

in the formation of the hemi-helix occurs because there is an

insurmountable energy barrier to be overcome in adopting the

helical shape.

In future work, the range of cross-sectional geometries and

pre-strains over which a hemi-helix forms needs to be clarified.

Since the hemi-helix forms as a result of an out-of-plane twisting

deformation, it can be anticipated that as the height-to-width

aspect ratio of the bi-strip is increased, twisting will not be the

energetically preferred initial instability. Thus, one can anticipate

that hemi-helices will only form for a certain range of geometric

ratios between height and width. Outside of this range, normal

helical morphological shapes can be expected. This expectation

was confirmed by performing a numerical simulation for a larger

aspect strip, h/w ¼ 20/3. A series of images from the simulation

sequence is shown in Fig. 10 which clearly indicates that a simple

helix does form. Also, in those cases where the pre-straining does

not give rise to appreciable twist, hemi-helices will not be

expected to form. This is perhaps the reason that the three-

dimensional shapes by Chen et al.8 were all regular helices

without the formation of any hemi-helices.

The formation of multiple perversions in a single strip provides

an opportunity to study the essential physics of perversions as

a ‘‘defect’’ or ‘‘singularity’’ in materials. (We use the term

‘‘defect’’ in the same sense that magnetic and ferroelectric domain

Fig. 10 Three snap-shots from the simulation sequence of the release of a wide bi-strip, h/w ¼ 20/3, indicating the formation of a helix rather than

a hemi-helix. Length 50 cm and pre-strain c ¼ 0.5.

Fig. 11 Schematic figures for a small portion of strips in the initial and

fully released state. The straight portion (with a length DL) deforms into

a fan-shape segment, leading to a curved outer layer with major radius of

curvature R and length ~lDL. Subscripts a and b are used to describe the

non-prestretched and prestretched strips, respectively.
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walls, for instance, are defects that form in materials in response

to the imposed boundary conditions and increase the total energy

of the material. By changing the boundary conditions, the

‘‘defects’’ can move as we have demonstrated by slowly rotating

one end of a hemi-helix much as domain walls move in response

to changing the external field, for instance.) The observations

reported in this work indicate that topologically they separate

regions of opposite chirality, that they separate regions of

predominately twist and bending deformation, and that they

repel one another. They also have an excess elastic energy asso-

ciated with them and presumably also a rotational strain gradient

that causes them to repel.

Finally, although formally the hemi-helix shape can be

obtained by winding a simple helix in the opposite direction to its

existing chirality, the important result of this paper is that the

shape can be produced spontaneously by constructing a long,

pre-strained bi-strip and releasing it. Irrespective of the end

conditions during the release, the shape is reproducible and the

number of perversions and their wavelength are fully determined

by the cross-section geometry and the value of the pre-strain.

These features enable the hemi-helix, a three-dimensional shape,

to be designed and produced from two-dimensional strips for

practical applications. These might be elastic springs with

unusual non-linear behavior for MEMS applications or light

filters if one of the strips is made of a chiral polymer, for instance.

V. Conclusions

Upon release, a simple stretched bi-strip of elastomers, consisting

of a long pre-strained strip attached side-by-side to an unstrained

strip, undergoes a complex buckling instability to form a hitherto

unreported three-dimensional shape. We term this new shape

a hemi-helix. It consists of multiple, alternating helical sections of

opposite chiralities. Separating the regions of opposite chiralities

are perversions. The geometry of the hemi-helix is determined by

the pre-strain, the cross-section and the constitutive deformation

behavior of the elastomer. Also, unlike the shapes produced by

swelling of gels produced by changes in pH23 or by differential

cross-linking,24 the pre-straining operation is characterized by

a well defined strain. Numerical simulations indicate that the

hemi-helix forms preferentially because the initial instability

involves twisting as well as bending and extension. The simula-

tions also show that the hemi-helix has a higher energy than the

corresponding helix formed when the ends of the hemi-helix are

rotated to remove the perversions. Furthermore, the formation

of the hemi-helix is not a result of the non-linear elastic behavior

of the elastomers since simulations show that they can also form

with linearly elastic materials. It does, however, require that the

materials have the capability of large strain, elastic behavior and

so seems to form only in soft materials with large extensibility to

failure, such as elastomers.

VI. Experimental procedures

The strips of material used in the experiments were elastomers

cut from platinum cured silicone rubber sheets formed from

a two-part commercial product (Dragon Skin 10 Slow, Reynolds

Advanced Materials). The elastomer was cast as sheets between

two large parallel acrylic sheets (20( 60 cm) held 3mm apart and

cured for 7 h at room temperature. Coloring agents (Silicone

pigment, Reynolds Advanced Materials) were added during

mixing of the elastomer before casting. The elastomer does not

stick to the acrylic sheet and after curing was simply peeled away.

The strips were flat and undistorted after peeling away the sheets

indicating that they were free of any residual stress. The strips

were then scored into strips with a laser beam and cut using

a blade. The glue used to bond the strips together was a silicone

rubber product (Sil-Poxy) also purchased from Reynolds

Advanced Materials.

Appendix one

A line that forms a helix with a radiusR and repeats by a distance

2pb per turn, can be described in Cartesian coordinates by the

parametric equation:

p(t) ¼ (x(t),y(t),z(t)) ¼ {Rsin (t),Rcos(t),bt}

where p(t) is a position vector of a point located a distance t along

the helical line. A line having the ideal hemi-helix geometry with

periodic perversions can similarly be expressed as:

p(t) ¼ {Rcos(psin(t)),Rsin(p sin(t)),bt}.

This function exhibits periodic reversals in chirality with two

perversions repeated every 2pb along the z-direction. Topologi-

cally, the hemi-helix has zero net twist and a writhe number of

zero.

Appendix two

Analysis of the bending radius

We present an analytical expression for the helical radius of

curvature on the tangential plane for a fully released bi-strip.

Under the assumption that the configuration is dominated by

bending, we estimate the radius of curvatures from a simple

bending analysis. Thus, a uniaxial state of stress is assumed

where only the normal stress along the longitudinal direction is

non-vanishing,

s ¼ diag(s11,0,0). (A1)

To derive explicit formula we assume a fully incompressible

elastomer (i.e. det F ¼ 1) so that the state of deformation in each

strip is fully characterized by

F ¼ diag
#

l; 1
.

ffiffiffi

l
p

; 1
.

ffiffiffi

l
p '

(A2)

For the sake of simplicity we focus on a portion DL of the bi-

strip characterized by a 2D fan-shape in the release state with the

major radius contained in the plane (Fig. 11). R is the radius of

curvature of the outer boundary which has undergone a longi-

tudinal stretch, ~l (defined as current length of a line segment

divided by its original length).

According to elastic beam theory and the assumption of pure

bending, the displacement on the cross-section is linearly

dependent on the width coordinates x. The longitudinal stretch at
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an arbitrary point on the cross-section of the two strips is given

by

la ¼
R# x

R
~l; lb ¼

R# x

R
~lð1þ cÞ (A3)

The subscripts a and b denote quantities related to the non-

prestretched and prestretched strips.

For an incompressible Gent material, the strain energy

[eqn (3) in the text] simplifies to

W ¼ #mJm

2
ln

!

1# I1 # 3

Jm

"

; where I1 ¼ trðBÞ ¼ trðFFTÞ and

the Cauchy stress is then

s ¼ #pIþ 2
vW

vI1
B ¼ #pIþ mJm

Jm # I1 þ 3
B (A4)

where p is the hydrostatic pressure whose value is determined by

the boundary conditions. In each strip the pressure can be solved

from the condition s22 ¼ s33 ¼ 0 yielding

p ¼ mJm

lðJm # I1 þ 3Þ; with I1 ¼ l2 þ 2

l
; so that

s11 ¼
!

l2 # 1

l

"!

mJm

Jm # I1 þ 3

"

(A5)

Finally, mechanical equilibrium requires that the net forces

and moments are zero, yielding

ðwa

0

sahadxþ
ðwaþwb

wa

sbhbdx ¼ 0 (A6)

ðwa

0

sahaxdxþ
ðwaþwb

wa

sbhbxdx ¼ 0 (A7)

where sa and sb and the current heights ha and hb in the cross-

section are functions of x with

ha ¼
1
ffiffiffiffiffi

la
p h; hb ¼

1
ffiffiffiffiffi

lb
p h (A8)

Moreover, note that the width of each strip entering the

evaluation of the integrals is obtained using the longitudinal

stretch at the mid-plane in the current state,

wa ¼
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la

#

x ¼ wa

2

'

r ;wb ¼
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lb

#

x ¼ wa þ
wb

2

'

r (A9)

Eqn (A6) to (A9) cannot be solved analytically, so the ‘‘trust-

region-dogleg’’ algorithm within Matlab software was used to

solve numerically for the outer layer radius R and the stretch ~l in

terms of the pre-strain, c. The results are reported in Fig. 4 in the

text along with the experimental data. Note that the main radius

of curvature is only influenced by material and geometry

parameters, and so the predicted outer radius curvature is the

same for both the hemi-helix and simple helix.
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