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Osmotic collapse of a void in an elastomer: breathing, buckling and creasing†‡
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This paper studies the collapse of a void in an elastomer caused by osmosis. The void is filled with liquid

water, while the elastomer is surrounded by unsaturated air. The difference in humidity motivates water

molecules to permeate through the elastomer, from inside the void to outside the elastomer, leaving the

liquid water inside the void in tension. When the tension is low, the void reduces size but retains the

shape, a mode of deformation which we call breathing. When the tension is high, the void changes

shape, possibly by two types of instability: buckling and creasing. The critical conditions for both types

of instability are calculated. A tubular elastomer collapses by buckling if the wall is thin, but by creasing

if the wall is thick. As the tension increases, a thin-walled tube undergoes a buckle-to-crease transition.
Fig. 1 A void in an elastomer is filled with pure liquid water, and the

elastomer is surrounded by unsaturated water vapor. The difference in

humidity motivates water molecules to permeate through the elastomer,

from inside the void to the outside of the elastomer. The osmosis leaves

the liquid water inside the void in a state of triaxial tension.
1. Introduction

Soft materials, such as elastomers and polymeric gels, are

extensively used in biomimetic microvascular systems.1–5 Appli-

cations include tissue scaffolds,6 self-healing materials,7 and

microreactors.8 A microvascular system contains channels that

transport water or other liquids. In some designs, the flow in

a channel can be regulated by swelling or elastic deformation of

the soft materials.9–13 The channel may collapse and open

reversibly, in response to changes in environmental variables,

such as a mechanical force, humidity, temperature, pH, and ionic

strength.

This paper is motivated by an observation made in a study of

artificial trees on chips.1 Fig. 1 illustrates the cross section of

a spherical or cylindrical void in an elastomer. The void is filled

with pure liquid water, while the elastomer is surrounded by

unsaturated air. The difference in humidity motivates water

molecules to permeate through the elastomer, from inside the

void to outside the elastomer. Consequently, the liquid water

inside the void is in a state of triaxial tension. It is known that

liquid water can sustain tension well in excess of 1 MPa,14

a condition commonly found in nature in the xylem of trees.15

The tension inside the void causes the elastomer to deform

(Fig. 2). When the tension is low, the void reduces size but retains

the spherical or cylindrical shape, a mode of deformation which

we call breathing. Breathing involves a field of inhomogeneous

and finite deformation, and has been studied extensively.16–20

When the tension is high, the void changes shape, possibly by two

types of instability, buckling and creasing. Buckling keeps the

surface of the void smooth, but creasing causes the surface of the

void to self-contact.
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This paper studies the osmotic collapse, with emphasis on

transitions from one type of deformation to another. Further-

more, we attempt to elucidate the distinction between buckling

and creasing within the context of osmotic collapse. Both

buckling and creasing set in by deviating from breathing. The

natures of the small deviation, however, differ for the two types

of instability. Buckling sets in when the deformation deviates

from breathing by a field of strain infinitesimal in amplitude, but

finite in space. By contrast, creasing sets in when the deformation

deviates from breathing by a field of strain large in amplitude,

but infinitesimal in space. The two types of instability are remi-

niscent of Gibbs’s two categories of infinitesimal changes to

which a metastable phase must resist. One is a change infinites-

imal in degree but large in extent, and the other is a change large

in degree but infinitesimal in extent.21

We will analyze the onset of buckling by perturbing the state of

breathing with a field of infinitesimal strain. This approach,

known as the linear perturbation analysis, leads to an eigenvalue

problem with a spectrum of solutions.22–28 Each solution corre-

sponds to a mode of buckling, with the eigenvalue representing

a critical value of the internal tension, and with the eigenfuntion

representing a field of infinitesimal strain superimposed on the

finite deformation of breathing.

We will analyze the onset of creasing by perturbing the state of

breathing with creases of small lengths. The perturbed field is
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/C0SM00451K


Fig. 2 The tension in the liquid water causes the elastomer to deform. Illustrated are three types of deformation: breathing, buckling, and creasing.

Fig. 3 Constrained in a bowl, a rising dough forms creases (courtesy of

Michael D. Thouless).
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equilibrated by using the finite element method. While creases are

readily observed in daily life (e.g., Fig. 3), their scientific under-

standing is at its beginning.29–37 Because the initial creases are

localized in space, the onset of each crease is autonomous, when

a material particle reaches a critical state of strain. The set of

critical states of strain can be determined, independent of specific

boundary-value problems. We will ascertain this autonomy by

comparing the critical condition for creasing on the curved

surface of the void to that on the flat surface of a block.

We will study the transition between buckling and creasing.

For a void in a large block of an elastomer, we find that the

critical value of the internal tension to initiate creasing is lower

than that to initiate buckling. As osmosis builds up the internal

tension, the void initially shrinks but retains the cylindrical or

spherical shape, and then creases set in. By contrast, for a void in

an elastomer of a sufficiently small thickness, we find that the

critical value of the internal tension to initiate creasing is higher

than that to initiate buckling. The void buckles when the internal

tension exceeds the critical value. As the internal tension

increases further, the void deforms in the buckled shape, and

then forms creases.

The elastomer is taken to be permeable to water molecules. As

water molecules permeate out, the void reduces size, and the

liquid water inside the void builds up tension. A full analysis of

this process involves the kinetics of permeation. Attention in this

paper will be restricted to the state of equilibrium, when the

chemical potential of water has equalized between the liquid

water inside the void and the water vapor outside the elastomer.

Furthermore, we will neglect swelling of the elastomer due to the

absorption of water. This simplification may be justified in

practice, because the magnitude of the internal tension is
This journal is ª The Royal Society of Chemistry 2010
relatively high, and elastomers used in experiments are often

heavily crosslinked.
2. Tension in liquid water caused by osmosis

With reference to Fig. 1, in equilibrium, the tension in the liquid

water inside the void can be related to the humidity outside the

elastomer by the method of thermodynamics. When liquid water

equilibrates with its own vapor, in the absence of any other

species of molecules, the pressure in the coexistent liquid and

vapor is denoted by p0. (At room temperature, p0¼ 3.2 kPa.) The

coexistent liquid and vapor are taken as the state of reference, in

which the chemical potential of water is set to be zero. We next

list the chemical potentials of water in several idealized systems.

The air outside the elastomer has several molecular species,

and is modeled as an ideal gas. The chemical potential of water in

the gas is

m ¼ kTlog(p/p0) (1)

where kT is the temperature in the unit of energy, and p the

partial pressure of water molecules in the gas. The ratio p/p0

defines the relative humidity of the gas.

For a gas in a closed environment, the relative humidity can be

set by placing in the environment an aqueous solution. In a dilute

aqueous solution, the chemical potential of water is given by the

van’t Hoff equation:

m ¼ �UckT (2)

where U is the volume per water molecule (U ¼ 3.0 � 10�29m3), c

is the concentration of the solution (i.e., the number of solute

particles per unit volume of the solution). When the gas equili-

brates with the solution, the chemical potential of water in the

gas equals that in the solution. A comparison of (1) and (2)

relates the partial pressure of water in the gas to the concentra-

tion of the solution.

When pure liquid water is subject to a triaxial stress s, the

chemical potential of water is

m ¼ �U(s + p0) (3)

We adopt the sign convention that the stress in the liquid water is

a tension if s > 0, and is a pressure if s < 0. Eqn (3) recovers the

state of reference: the chemical potential vanishes when s ¼ �p0.

Often the magnitude of the vapor pressure p0 is negligible

compared to the magnitude of the stress s in the liquid water, so

that we may drop p0 from (3).
Soft Matter, 2010, 6, 5770–5777 | 5771
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When the pure liquid water inside the void equilibrates with

the water molecules in the gas outside the elastomer, the chemical

potential of water equalizes. A comparison of (1)–(3) gives the

tension in the liquid water inside the void:

s ¼ kT

U
log

�
p0

p

�
¼ ckT (4)

For example, the tension in the liquid water inside the void is

s ¼ 1 MPa when the relative humidity outside the elastomer is

p/p0 ¼ 99.3%, or when the concentration of the aqueous solution

is c ¼ 0.4M.
Fig. 4 Under internal stress, the void changes size but retains shape,

a mode of deformation which we call breathing. (a) Undeformed state.

(b) Deformed state. (c) Normalized stress inside the void as a function of

the normalized radius of the void (B/A / N).
3. Breathing

This section assumes that the elastomer deforms by either

spherical or cylindrical symmetry (i.e., the breathing mode). As

mentioned in the Introduction, we consider the state of equilib-

rium and neglect the swelling of the elastomer. Consequently, the

phenomenon reduces to a void in an incompressible solid subject

to traction on the surface of the void. Boundary-value problems

for both cylindrical and spherical voids have been solved

analytically,16 and used to interpret cavitation in soft mate-

rials.17–20 We list the governing equations in Appendix A (ESI†),

and discuss the results here within the context of osmotic

collapse.

Fig. 4 illustrates a cross section of a void in an elastomer of

spherical or cylindrical symmetry. When the elastomer is unde-

formed, the radius of the void is A, and the external radius of the

elastomer is B. When the elastomer is deformed, the radius of the

void becomes a, and the external radius of the elastomer becomes

b. For the time being, the thickness of the elastomer is taken to be

much larger than the radius of the void, B/A / N. For the

cylindrical void, the elastomer is taken to deform under plane-

strain conditions, and the stress s inside the cylindrical void

relates to the radius a of the void as

s

G
¼ � 1

2
þ 1

2

�a

A

��2

� log
a

A
(5)

For a spherical void, the relation is

s

G
¼ � 5

2
þ 2
�a

A

��1

þ 1

2

�a

A

��4

(6)

Fig. 4 shows the normalized stress in the void, s/G, as a function

of the stretch of the void, a/A. The void enlarges when the water

inside the void is under pressure, and the void shrinks when the

water inside the void is under tension.

The curves for the cylindrical void and the spherical void look

similar, but differ in some details. For the cylindrical void, s/G

/ �N as a/A / N. By contrast, for the spherical void, s/G /

�5/2 as a/A / N. Consequently, the spherical void enlarges

indefinitely when the internal pressure reaches a critical value,

known as the cavitation limit. This difference between the

cylindrical and spherical void, however, may not be pronounced

in practice. The elastomer is a network of polymer chains, and

stiffens steeply when the polymer chains are stretched near their

contour lengths. The steep stiffening is not represented by the

neo-Hookean material model, which is used to obtain the solu-

tions (5) and (6). Once the steep stiffening is considered, for both
5772 | Soft Matter, 2010, 6, 5770–5777
the cylindrical and spherical voids, the magnitude of the internal

pressure will increase without limit as the voids expand. Fig. 4

does illustrate a qualitative trend: the voids can expand

substantially for modest increase in the internal pressure.

Of more relevance to the present work is when the water inside

the voids is under tension. As shown in Fig. 4, for both the

spherical and the cylindrical voids, the internal tension rises

steeply as the voids shrink. The breathing mode of deformation

may be used to estimate the shear modulus of the elastomer. For

example, for a pHEMA gel with crosslinker of 6 v% EGDMA,

the experiment showed that a spherical void shrank by a/A ¼
0.71 when the relative humidity was 0.98 outside the elastomer;

see Fig. 2(B) of ref. 1. According to (4), this relative humidity

induces in the liquid water inside the void a tension of s ¼ 2.8

MPa. Reading from Fig. 4, a stretch of a/A¼ 0.71 corresponds to

s/G ¼ 2.3. Consequently, the shear modulus of the elastomer is

estimated to be G ¼ 1.2 MPa. Unfortunately, the value of the

shear modulus was not reported in the original paper.

Observe that the stress-stretch curves in Fig. 4 are steep when

the water is in tension, and are much less steep when the water in

compression. Consequently, more accurate determination of the

modulus of the elastomer is possible by observing an expanding

void under internal pressure. Indeed, a technique in which
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/C0SM00451K


D
ow

nl
oa

de
d 

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

on
 1

4 
Ja

nu
ar

y 
20

11
Pu

bl
is

he
d 

on
 0

2 
N

ov
em

be
r 

20
10

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
45

1K
View Online
pressurized water is injected into a soft material by a syringe has

been developed recently.18 The pressure in water can also be

induced by osmosis, when the void contains a concentrated

aqueous solution, imbibing water from outside the elastomer.
Fig. 5 (a) Critical tension as a function of B/A for m ¼ 2, 3, 10 and 100.

(b) Critical tension for case B/A ¼ 5, 10, 100 as a function of the mode

number m.
4. Buckling

When the tension in the liquid water inside the void is high, the

deformation of cylindrical or spherical symmetry becomes

unstable. This section considers one type of instability, buckling,

which can be analyzed by the method of linear perturbation

analysis.22–28 Implementation of this method for the cylindrical

void is summarized in Appendix B (ESI†). Here we discuss the

main results.

In the limit that the buckling wavelength is much smaller than

the radius of the void, the critical condition for buckling is

unaffected by the curvature of the void. The buckling of a flat

surface of a semi-infinite block was analyzed by Biot.22 Before

buckling, the block is in a state of homogeneous and finite

deformation, of principal stretches l1, l2 and l3. When this state

is perturbed by a field of infinitesimal strain, the resulting inho-

mogeneous state is also a state of equilibrium, and the pertur-

bation is required to be localized to the surface of the block. Any

such a field of infinitesimal strain is a linear superposition of a set

of eigenfields, each of which is sinusoidal, with the wavevector

pointing in a direction parallel to the surface, and the amplitude

decaying exponentially in the direction normal to the surface.

Because the semi-infinite block offers no length to the boundary-

value problem, the eigenfields can be of any wavelength, and the

wavelength does not affect the critical condition. Biot’s analysis

gave the critical condition for buckling:

l3/l1 ¼ 3.383 (7)

Here direction 3 is normal to the surface of the block, and

direction 1 coincides with that of the wave vector of the sinu-

soidal perturbation. The critical condition is valid under the

generalized plane-strain condition, where l2 is constant in the

block, but need not be the unity. The three principal stretches

satisfies the condition of incompressibility, l1l2l3 ¼ 1.

On the surface of the cylindrical void under the plane-strain

conditions, lz ¼ 1, lq ¼ a/A, and lr ¼ (a/A)�1. Consequently, we

can specialize Biot’s condition (7), giving the critical condition in

terms of the stretch of the void, a/A ¼ 0.5437. Inserting this

critical stretch into (5), we obtain scr ¼ 1.801G, the critical value

of the internal tension for the cylindrical void to buckle.

The surface of the spherical void is under stretches l1¼ l2¼ a/

A and l3 ¼ (a/A)�2. Consequently, we can specialize Biot’s

condition (7), giving the critical condition in terms of the stretch

of the void, a/A ¼ 0.6661. Inserting this critical stretch into (6),

we obtain scr ¼ 3.042G, which is the critical condition for the

spherical void to buckle.

We next discuss the effects of the ratio B/A and the mode

number m. When the wavelength of perturbation is small

compared to the radius of the void, the effect of the curvature of

the void is negligible, and Biot’s solution of wrinkling of flat

surface should apply. Inserting a/A ¼ 0.5437 into (A1) and (A6),

we obtain the critical stress inside the void as a function of B/A.

This function is plotted as a dashed line in Fig. 5a. When the
This journal is ª The Royal Society of Chemistry 2010
wavelength of perturbation is comparable to the radius of the

void, the critical condition depends on the mode of buckling, m.

This critical condition is obtained by numerical integration of the

eigenvalue problem described in Appendix B (ESI†). Fig. 5a

shows the critical stress for the cylindrical tube for several values

of m. As expected, Biot’s limit is approached when m / N.

(Observe that the difference between Biot’s limit and the

numerical results for m ¼ 100 is within 1.5%.) The critical stress

for the onset of buckling of each mode increases with the

thickness of the tube, approaching an asymptotic value as

B/A / N.

Fig. 5b plots the critical stress as a function of m at several

values of B/A. For a tube with B/A < 8, the critical tension for

buckling is lowest when m ¼ 2. For a thicker tube (e.g., B/A¼ 10

and B/A ¼ 100), the critical tension for buckling is lowest when

m ¼ 6. These results indicate that, for a given value of B/A, the

expected mode number m for buckling is finite. As will be shown

in Fig. 11, however, for a tube with B/A > 3, a different type of

instability, creasing, sets in at a stress lower than that for
Soft Matter, 2010, 6, 5770–5777 | 5773
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Fig. 6 The difference in the free energy between the creased state and the

axisymmetric state.
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buckling. Consequently, here we will not pursue the dependence

of the critical stress on buckling mode any further.

5. Creasing

When a block of an elastomer is bent, the compressed surface

remains smooth initially, but then suddenly forms a crease.29–34

Similar creases have also been observed when a gel swells under

constraint.35–38 As mentioned before, buckling and creasing are

different types of instability. Buckling sets in when the
Fig. 7 As the tension in the liquid water inside the void increases, the field

prescribed in the beginning of the simulation. The color indicates the level of

5774 | Soft Matter, 2010, 6, 5770–5777
deformation deviates from breathing by a field of strain infini-

tesimal in amplitude, but finite in space. By contrast, creasing sets

in when the deformation deviates from breathing by a field of

strain finite in amplitude, but infinitesimal in space.

Consider a semi-infinite block in a homogeneous state of finite

deformation, of principal stretches l1, l2 and l3. The critical

condition for the onset of a crease of the surface of the is34

l3/l1 ¼ 2.4 (8)

Here direction 3 is normal to the surface of the block, and

direction 1 is in the surface and normal to the crease. The critical

condition is valid under the generalized plane-strain condition,

where l2 is constant in the block, but need not be the unity. The

three principal stretches satisfies the condition of incompressi-

bility, l1l2l3 ¼ 1.

Because the initial creases are localized in space, each initial

crease is autonomous. Consequently, the critical condition (8) is

expected to be applicable to the onset of a crease on the surface of

an elastomer of any shape. On the surface of the cylindrical void,

before a crease sets in, the principal stretches are l1¼ a/A, l2¼ 1,

and l3 ¼ (a/A)�1. Consequently, the critical condition (8) gives a/

A ¼ 0.65. Inserting this critical stretch into (5), we obtain scr ¼
1.12G, the critical condition for the onset of creasing for the

cylindrical void.
of deformation in the elastomer evolves. The number of creases, N, is

the von Mises stress.

This journal is ª The Royal Society of Chemistry 2010
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Fig. 8 The length (a) of the creases and the cross-sectional area (b) of the

void change with the internal tension, as well as with the number of creases.

Fig. 10 Stress in the cylindrical void as a function a/A for several values

of B/A.

Fig. 9 The difference in the free energy between the creased state and the

axisymmetric state.
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On the surface of the spherical void, before a crease sets in, the

principal stretches are l1 ¼ l2 ¼ a/A and l3 ¼ (a/A)�2. Conse-

quently, the critical condition (8) gives a/A ¼ 0.75. Inserting this

critical stretch into (6), we obtain scr ¼ 1.75G, the critical

condition for the onset of creasing for the spherical void. Creases

of an initially spherical void have been reported; see Fig. 2B of

ref. 1. The reported experimental details, however, are insuffi-

cient to be compared to theoretical predications.

To illustrate the autonomy of the onset of individual creases,

we analyze creases on the surface of the cylindrical void by using

the finite element code ABAQUS. In the calculation, the elas-

tomer is represented by a tube, of inner radius A and outer radius

B. We consider the onset of two creases on the surface of the

void, as illustrated in Fig. 2. Symmetry is assumed such that only

a quarter of the elastomer is simulated. Following an approach

described in ref. 34, we introduce a crease of length L by

prescribing the displacements of the creased region as boundary

conditions. To study the onset of creasing, the length of crease is

set to be small compared to the radius of the void, say, L/A ¼
1/20. The inner surface of the elastomer is prescribed with the

uniform tension s normal to the surface, and the outer surface is

traction-free. In the calculation, we use elements of type

CPE6MH. The free energy of the system P consists of the elastic

energy of the elastomer and the potential energy due to the

prescribed internal tension. Dimensional analysis indicates that

the free energy per unit thickness of the creased elastomer minus

that of the axisymmetrically deformed body should take the form

DP ¼ GL2f
�s

G

�
(9)

The dimensionless function f(s/G) is obtained by using

ABAQUS, and is plotted in Fig. 6. The outer radius is varied in

the calculation, and the results shown in Fig. 6 are for B/A ¼ 20.

The numerical result shows that the creased body has a lower free

energy than the smooth body when s > 1.12G. This result

reproduces the critical stress estimated above.

After the creases set in, as the internal tension increases, the

elastomer deforms further. Fig. 7 shows the shape of the void at

several levels of internal tension. The color indicates the level of

the von Mises stress. The calculation starts with a number of

prescribed small creases of a small length. We use ABAQUS to

evolve the field of deformation in the elastomer as the internal

tension s increases. Fig. 8 plots the length of the creases and the

area of the void as functions of the internal tension. A void with

two creases is particularly effective in reducing its area. In

practice, the change in the area of the void can be used to regulate

vascular transport.

For a void of a perfect cylindrical shape, the state of defor-

mation is the same at every material particle on the surface of the

void. Consequently, creases may set in anywhere on the surface

of the void when the tension inside the void exceeds the critical

value, scr ¼ 1.12G. When the length of each crease is much

smaller than the radius of the void, the fields associated with

individual creases are autonomous, and do not overlap with one

another. Every crease reduces the free energy of the system, so

that a larger number of creases will reduce more energy. When

the length of each crease goes beyond some fraction of the

radius of the void, the fields associated with individual creases are

no longer autonomous, but overlap with one another.
This journal is ª The Royal Society of Chemistry 2010 Soft Matter, 2010, 6, 5770–5777 | 5775
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Fig. 11 Buckling-to-creasing transition. The elastomer is a cylindrical

shell, with inner radius A and outer radius B in the undeformed state. A

thin shell buckles, and a thick shell creases.
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Consequently, some intermediate number of creases will mini-

mize the free energy of the system.

Fig. 9 plots the free energy of a creased body minus that of

a smooth body as a function of the internal tension. When the

internal tension is slightly above scr, the body with more creases

has slightly lower potential energy. When the internal tension is

beyond some level, the body with two creases has the lowest

potential energy. It is likely that multiple creases set in when the

internal tension exceeds the critical value, but the number of

creases reduces to two when the internal tension is high.
6. Buckle-to-crease transition

As described in the previous two sections, for a cylindrical void in

a large block of an elastomer, buckling of mode m ¼N sets in at

the critical tension scr/G ¼ 1.801, and creasing sets in at the

critical tension scr/G¼ 1.12. Fig. 5 shows that, for large values of

B/A, the critical tension for all modes of buckling exceeds that for

creasing. Consequently, when the radius of the void is small

compared to the size of the elastomer, the void will collapse by

creasing.

Also evident in Fig. 5 is that, the critical tension for buckling

reduces for small values of B/A. This trend is readily understood:
Fig. 12 As the internal tension increases, th

5776 | Soft Matter, 2010, 6, 5770–5777
a tube of a thin wall buckles at a lower tension than that of

a thick wall. As the internal tension increases, will a thin-walled

tube buckle before crease? Appendix A (ESI†) derives the

deformation of the breathing mode for a tube under internal

stress. Fig. 10 shows the internal tension as a function of the

stretch of the void for various values of B/A. As expected, thin-

walled tubes are more deformable. Because the onset of each

crease is autonomous, independent of the thickness of the wall,

the crease sets in at the critical stretch a/A ¼ 0.65. This critical

stretch, together with Fig. 10, determines the critical tension for

the onset of creasing for a thick-walled tube. Fig. 11 compares

the critical conditions for buckling and creasing. When B/A is

large, the critical tension for creasing is lower than that for

buckling, and the void is expected to collapse by creasing. When

B/A is small, the critical tension for buckling is lower than that

for creasing, and the void is expected to collapse by buckling.

After the elastomer buckles, the surface of the void remains

smooth as the internal tension increases. However, when a tip of

the buckle is compressed beyond a critical level, the surface may

form a crease. Fig. 12 shows two sequences of finite-element

simulation. In both sequences, the tube buckles prior to creasing.

For B/A ¼ 1.2, the buckled tube first self-contacts in the middle

of the wall, and then creases form at the two tips. For B/A ¼ 1.6,

the buckled tube creases prior to the self-contact in the middle.

The transition between buckling and creasing may be quite

common in practice. A recent example involves a layer of

a hydrogel attached to a rigid substrate.38,39 The hydrogel

contains a lattice of cylindrical holes. When the hydrogel swells

in a solvent, each cylindrical hole collapses by buckling first, and

creases form when the hydrogel swells further. A second example

involves a stiff film attached to a compliant substrate.40,41 When

the substrate is compressed, the film first form periodic wrinkles.

As the compressive strain increases, some of the wrinkles deepen

and self-contact.
7. Concluding remarks

For a water-filled void in an elastomer, the water inside the void

can be in tension due to osmosis, causing the elastomer to
e tube may buckle first, and then crease.

This journal is ª The Royal Society of Chemistry 2010
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deform. As the tension builds up, the void reduces the size, but

the shape of the void initially remains unchanged, a mode of

deformation which we call breathing. When the tension is suffi-

ciently high, the shape of the void changes by buckling or

creasing. Buckling deviates from breathing by a field infinitesimal

in amplitude but large in extent, and creasing deviates from

breathing by a field large in amplitude but infinitesimal in extent.

A tubular elastomer collapses by creasing if the wall is thick, but

collapses by buckling if the wall is thin. In the latter case, as the

internal tension increases, the buckled void can deform further,

leading to the formation of creases. While transitions between

the three types of deformation—breathing, buckling, and

creasing—may be readily observed in nature and in engineering,

the scientific understanding of these transitions requires further

experimental and theoretical exploration.
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