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astic rod embedded on an
elastomeric matrix: planar vs. non-planar
configurations†

Tianxiang Su,‡§a Jia Liu,‡a Denis Terwagne,‡{b Pedro M. Reis*bc and Katia Bertoldi*ad

We investigate the buckling of a slender rod embedded in a soft elastomeric matrix through a combination

of experiments, numerics and theory. Depending on the control parameters, both planar wavy (2D) or non-

planar coiled (3D) configurations are observed in the post-buckling regime. Our analytical and numerical

results indicate that the rod buckles into 2D configurations when the compression forces associated to

the two lowest critical modes are well separated. In contrast, 3D coiled configurations occur when the

two buckling modes are triggered at onset, nearly simultaneously. We show that the separation between

these two lowest critical forces can be controlled by tuning the ratio between the stiffness of the matrix

and the bending stiffness of the rod, thereby allowing for specific buckling configurations to be target by

design.
1 Introduction

A slender ber can buckle under axial compression even when
embedded, and therefore supported, inside an elastomeric
matrix.1–3 As a result, planar periodic congurations (2D) have
been observed in microtubules,4,5 ber-reinforced compos-
ites,6–8 and pipelines on seabeds.9,10 Non-planar coiled cong-
urations (3D) have also been observed from the buckling of
other constrained rodlike structures, including: plant roots
growing in soil,11 packaged DNA in viruses,12 and coil tubing in
oil-eld operations.13,14 Interestingly, it has recently been shown
that a silicon nano-wire attached to a so substrate15 can exhibit
either planar or non-planar congurations, depending on the
stiffness of the substrate, which can be tuned. Finding both 2D
and 3D congurations in the same system raises the funda-
mental question regarding the conditions under which an
embedded ber can buckle in-plane or out-of-plane. From a
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practical perspective, modern nano-devices that include rodlike
components can be used for sensors, resonators and electro-
magnetic wave absorbers.16–18 Rationalizing the post-buckling
regime in this class of embedded lamentary structures could
therefore open opportunities for functionality by generating
complex 3D shapes, reversibly and on-demand.

Here, we investigate the mechanical response, under
compression, of a single elastic ber (rod) embedded in an
elastomeric matrix. We seek to rationalize the conditions under
which either planar or non-planar buckling congurations are
attained, depending on the combined stiffnesses of the matrix
and the rod. Throughout, we assume that no delamination
occurs between the rod and the matrix. We start by performing
precision model experiments where a Nitinol rod is embedded
within a polydimethylsiloxane (PDMS) cylinder, and the
ensemble is compressed uniaxially. Our experiments reveal that
for matrices that are sufficiently stiff (with respect to the
bending stiffness of the rod) the rod buckles directly onto a non-
planar coiled conguration. By contrast, with soer matrices,
both 2D and 3D buckling congurations can be observed.
Moreover, we nd that the morphology of the buckled patterns
and their associated characteristic length scales can be tuned by
changing the geometric and material parameters of the system.
These results are rationalized by a model based on the classic
Winkler foundation.19 Our analysis suggests that non-planar
congurations are triggered when the critical buckling loads
associated to the rst two eigenmodes become comparable.
This hypothesis is tested numerically by performing both
dynamic simulations and nite element analyses. The simula-
tions conrms that the separation between the two lowest
critical loads determines whether a rod buckles in-plane or
out-of-plane. Moreover, the numerical results highlight the
Soft Matter
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important effect of the boundary conditions and the presence of
shear deformation in the matrix in setting the observed buck-
ling patterns.
2 Experiments
2.1 Experimental setup

In Fig. 1 we present a photograph of the experimental apparatus
that we used to uniaxially compress our samples. Each sample
consisted of a slender Nitinol rod that was concentrically
embedded inside an elastomeric cylinder (the matrix) made out
of polydimethylsiloxane (PDMS). We fabricated, characterized
and tested a total of 15 samples for which we changed the
stiffness of the matrix, as well as the radius and length of the
rod (see Table S1† for detailed geometric and material proper-
ties). Upon compression, the Nitinol rod buckled within the
matrix and the process was imaged by two perpendicular digital
cameras. Representative congurations from the two orthog-
onal views are shown in the insets of Fig. 1.

Each experimental sample contained a SE508 Nitinol rod
that is 10 cm long. At both ends of the sample, the rod wasmade
to pass through a tight clearance hole centered on an acrylic
disk, onto which it was glued, which ensured clamped boundary
conditions. We used ve Nitinol rods with radii and Young's
moduli in the ranges 25.4 < rr [mm] < 127, and 59 < Er [GPa] < 78,
respectively (see ESI for exact values†). Nitinol is known for its
unique hyperelastic and shape memory properties.20,21 Given
that all experiments were performed at constant room temper-
ature, T ¼ 20 �C, we did not make use of its shape memory
characteristics. Hyperelasticity, on the other hand, was impor-
tant since it confers reversibility to the experimental tests, even
Fig. 1 Experimental apparatus. A Nitinol rod is embedded within a
cylindrical PDMS matrix (inside dashed frame). The sample is uniaxially
compressed under displacement control. Two synchronized cameras
placed on the top and side of the setup capture snapshots of the
buckling of the rod (insets). The paired images are then sent to a
computer for reconstruction of the configuration of the rod and
further analysis.
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for the geometrically nonlinear congurations observed in the
post-buckling regime.

The elastomeric matrix (10 cm long and 2.6 cm in diameter)
was cast in a cylindrical mold using PDMS (Sylgard 184 from
Dow Corning Inc.), with the Nitinol rod held in between the two
acrylic disks, along the central axis. Using PDMS had the
advantage that its Young's modulus can be tuned during
fabrication by varying the relative mixture of base and curing
agents, from 0.4 kPa to 3 MPa (ref. 22) (see Fig. S1†). In our
experiments, however, we focused on the range 17 < Em [kPa] <
84, which enabled us to fully explore the post-buckling regime
of the rod under compression, while preventing delamination
between the Nitinol and the PDMS matrix. Moreover, this range
ensured that the samples could be supported horizontally,
without signicant deection under their own weight.

Once fabricated, the samples were mechanically tested on a
custom-made uniaxial compression device (Fig. 1). Each sample
was laid horizontally on top of a series of ve independent
acrylic braces that were set perpendicular to the axis of
compression (see inset of Fig. 1). These braces supported the
sample and could slide along the axis of compression using
two PTFE (polytetrauoroethylene) linear guides. A computer
controlled linear stage uniaxially compressed the whole sample
(matrix, rod and acrylic disks). Each test was performed quasi-
statically under conditions of controlled displacement. Note
that our setup differs from a previous study,23 where only the
rod, without the matrix, was compressed.

During each experimental test, two perpendicular digital
cameras were synchronized to acquire images of the Nitinol
rods (one from the side and the other from above, as shown in
Fig. 1) at every 0.1 mm step of compression. The pairs of frames
were then combined and image-processed to produce 3D
reconstructions of the coordinates of the rod. Two representa-
tive examples of the reconstructed congurations rods in the
planar and non-planar regimes are presented in Fig. 2A and B,
respectively. From the 3D reconstructions we could readily
measure the wavelength of the buckled congurations, as well
as the pitch of the non-planar shapes. Moreover, to further
facilitate the analysis (described in more detail below), we also
performed a Principal Component Analysis (PCA)24,25 that
rigidly rotates the conguration of the rod, without distortion,
such that its major lateral buckling direction is always aligned
with the global horizontal y-axis.
2.2 Experimental results

Both 2D and 3D buckling congurations of the Nitinol rod were
observed during the uniaxial compression of our samples. In
Fig. 2A and B, we present two representative congurations
obtained for samples #1 and #2 (see Table S1†), respectively, at 3
¼ 3% compressive strain. Sample #1 buckled into a periodic
planar conguration, whereas sample #2 buckled into a non-
planar conguration, with deformation in the two orthogonal
lateral directions.

The buckling shapes of each sample are further character-
ized by computing the ellipse of minimum area that encloses
the cross-sectional view of the buckled rod at 3 ¼ 3% (dashed
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Experimental results. Buckled configurations of (A) sample #1
and (B) sample #2 acquired at 3 ¼ 3% compressive strain. Both 3D and
projected views (onto the z–y, y–x and z–x) are shown, clearly indi-
cating that sample #1 buckles into a 2D planar configurations, while
sample #2 buckles into a 3D coiled configuration. The dashed ellipse
shown in the y–z view corresponds to the ellipse with minimum area
that encloses the cross-sectional projection of the rod.
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line in the cross-section views in Fig. 2A and B, see ESI for
details†). The aspect ratio, b/a, between the minor and major
axes of this ellipse, quanties the extent to which the buckled
shape is 2D or 3D. A at ellipse (b/a � 1) indicates a planar
conguration, while a more circular one (b/a � 1) indicates that
it is fully 3D.

In Fig. 3A, we report the aspect ratio, b/a, for all 15 samples,
as a function of their dimensionless matrix stiffness (rational-
ized in detail in Section 3, below),

h ¼ EmLr
4

ErIr
; (1)
This journal is © The Royal Society of Chemistry 2014
where Em is the Young's modulus of the matrix and Er, Ir and Lr
are the Young's modulus, second moment of area and length of
the rod, respectively. The experimental results reveal that: (i) for
stiffmatrices (h > 5� 106) all samples are characterized by large
values of b/a, indicating a coiled, non-planar buckling shape; (ii)
for h < 5 � 106, both small and large values for b/a are observed,
indicating that both planar and non-planar congurations can
occur. Whereas the nding (ii) is consistent with previous
qualitative observations for a nanowire attached to a so
substrate,15 the nding (i) is, to the best of our knowledge,
reported here for the rst time.

We proceed by quantifying the wavelength, l, of the buckled
congurations, which we plot in Fig. 3B for all samples as a
function of the dimensionless matrix stiffness, h, at 3 ¼ 3%
compressive strain. Interestingly, the results for both planar
and non-planar buckling congurations collapse onto the same
curve that is consistent with a power-law l� h�1/4, which we will
show in Section 3 can be rationalized and derived analytically.

Summarizing the experimental results thus far, we have
found that the dimensionless stiffness h ¼ EmLr

4/(ErIr) deter-
mines whether the rod buckles into a planar or a non-planar
conguration and it also sets the characteristic length scales of
the buckling pattern. We now seek to rationalize these results
and proceed by investigating the effect that the stiffness of the
matrix has on the mechanical response of the system, rst
analytically (Section 3) and later numerically (Section 4). The
important role played by the boundary conditions will then be
discussed in more detail in Section 5.
3 Theoretical analysis

Towards rationalizing the conditions that lead to 2D and 3D
buckling congurations, we adopt the Winkler foundation
model19 of a thin and stiff beam supported by a soer elastic
substrate. Moreover, the treatment of our elastomeric matrix is
simplied as an array of springs with stiffness K acting solely in
radial direction.

Assuming small strains and moderate rotations, the gov-
erning equation for the embedded elastic rod is given by,19

ErIr
v4Y

vS4
þ F

v2Y

vS2
þ KY ¼ 0; (2)

where F is the applied compressive force and Y and S denote the
lateral displacement and the arc length of the rod, respectively.
Introducing the normalized displacement, y ¼ Y/Lr, and arc
length, s ¼ S/Lr, allows for eqn (2) to be rewritten in dimen-
sionless form,

v4y

vs4
þ p2f

v2y

vs2
þ p4ky ¼ 0; (3)

where f ¼ FLr
2/(p2ErIr) and k ¼ KLr

4/(p4ErIr) are the dimen-
sionless compressive force and spring constant, respectively.
When both ends of the rod are free to rotate, the solution of eqn
(3) has the form y(s) ¼ A sin(nps), with n denoting the mode
number.

Substituting y(s) into eqn (3), yields the compressive force
required to trigger the n-th mode,19
Soft Matter
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Fig. 3 Characteristic length scales of the buckled samples. (A) Ratio between theminor andmajor axes of theminimum area ellipse that encloses
the cross-sectional view at 3 ¼ 3% as a function of the normalized matrix stiffness h ¼ EmLr

4/(ErIr). Small b/a values indicate a planar buckling
configuration, while large values of b/a correspond to 3D coiled configurations. (B) Normalized buckling wavelength l/Lr as a function of the
normalized matrix stiffness h. Excellent agreement is found between the experimental results (data points) and the analytical prediction (dashed
black line – eqn (10)) obtained using the Winkler foundation model. The color of the markers indicates the corresponding b/a value for each
sample, as given by the adjacent color bar.
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fn ¼ n2 þ k

n2
; (4)

which can be alternatively obtained using an energy
approach26,27(see ESI for details†). Given that the mode associ-
ated to the lowest fn emerges and grows during loading, the
critical buckling force for the system is given by,

fcr ¼ min
n¼1;2;.

�
n2 þ k

n2

�
: (5)

Even though this result is well known in the literature, we
turn our focus to the fact for specic values of k, there can be
two possible modes associated to fcr. In Fig. 4A, we further
highlight this point by plotting the dependence of the dimen-
sionless difference, Df/fcr ¼ (fn0 � fcr)/fcr, between the lowest (fcr)
and second lowest (fn0) compressive forces, as a function of k.
Fig. 4 Theoretical results. (A) Normalized separation of the critical forc
dimensionless matrix spring constant k. The Winkler foundation model
values of k (provided by eqn (6))Df¼ 0, so that twomodes are triggered si
(blue lines) and wavelength l/Lr (red lines) as function of h ¼ EmLr

4/(ErIr) fo
the prediction obtained using eqn (7) and (8), respectively.

Soft Matter
We nd that for the specic values of the normalized spring
constant,

k ¼ m2(m + 1)2, m ¼ 1, 2, 3,. (6)

Df/fcr vanishes, such that the system is degenerated and two
different modes, m and m + 1 say, are both associated with the
same critical compressive force, fcr ¼ fm ¼ fm+1. As a result, two
buckling modes are triggered simultaneously at the onset of
instability and we expect them to interact with one another28 to
produce non-planar (3D) congurations.

The above interpretation is supported by our experimental
results since in all cases of 3D coiled congurations, two
neighboring modes were observed to grow in perpendicular
directions. For example, the conguration shown in Fig. 2B
exhibits the orthogonal modes m ¼ 2 and m ¼ 3, simulta-
neously. In contrast, when k is far from the specic values given
es associated with the two lowest modes, Df/fcr, as a function of the
as been used and the rod has free-to-rotate ends. For some specific
multaneously at the buckling onset. (B) Dimensionless spring constant k
r a rod with radius rr ¼ 101.5 mm. Solid and dashed lines correspond to

This journal is © The Royal Society of Chemistry 2014
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k The buckling wavelength l associated to eqn (7) has been calculated following a
similar procedure to that reported above – see ESI for details.
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by eqn (6), the critical forces for adjacent modes are sufficiently
separated such that only a single mode is expected to be trig-
gered and grow, resulting in a 2D planar buckling congura-
tion. It is also interesting to note that the maxima of Df/fcr
plotted in Fig. 4A decrease for increasing values of k. Conse-
quently, rods embedded in stiff matrices are expected to
always buckle into non-planar congurations, which is also
consistent with the experimental results reported in Fig. 3A
(for h > 5 � 106).

The relation between our analysis and the experimental
results can now be made more quantitative. We make use of
existing results for the spring stiffness,6,7

K ¼ 16pGmð1� nmÞ
2ð3� 4nmÞK0ðnprr=LrÞ þ nprrK1ðnprr=LrÞ=Lr

; (7)

arising when a rod of radius rr and length Lr buckles into mode
n inside a matrix with shear modulus Gm¼ Em/[2(1 + nm)], where
K0($) and K1($) are the modied Bessel functions and Em and nm

are the Young's modulus and Poisson's ratio of the matrix,
respectively. In the limit of a slender rod, i.e. rr/Lr / 0, eqn (7)
can be further simplied (see ESI for details†) to

K ¼ 8pGmð1� nmÞ
lnð2Lr=nrrÞ ; (8)

which has been recently used to study buckling of conned
microtubules (assuming nm ¼ 0.5).5

Eqn (7) and (8) indicate that K depends on both Gm and n,
suggesting that attaining a general description for all buckling
modes may be challenging. However, a unique relation between
the wavelength of the mode, l ¼ 2Lr/n, and the spring and matrix
stiffness can indeed be determined upon calculation of the mode
number thatminimize fn (i.e. determining the values of n for which
vfn/vn ¼ 0). In particular, minimization of fn using eqn (8) yields,

ðl=LrÞ4ð2 lnðl=rrÞ � 1Þ
½lnðl=rrÞ�2

¼ 24p3

h
; (9)

where h ¼ EmLr
4/ErIr is the dimensionless stiffness of the matrix

introduced earlier in eqn (1). Eqn (9) can be solved iteratively to
obtain l for a given set of matrix and rod properties.

This analysis reveals that l depends on both the dimen-
sionless stiffness of the matrix, h, and the radius of the rod, rr,
but the dependence on the latter is found to be weak. As a
result, we can further simplify eqn (9) to

l

Lr

¼ ah�1=4; (10)

where the prefactor a is found to depend weakly on l/rr. For
example, in our experiments where 134.4 < l/rr < 432.8, the
prefactor can be calculated to lie within 6.71 < a < 7.04. Given
this limited range for a, and without loss of generality, for
the reminder of this analysis we choose l/rr ¼ 240, for which
a ¼ 6.88. Note that an almost identical prediction for the
wavelength (i.e. l/Lr ¼ 6.62h�1/4) has been obtained using an
energy approach and a nonlinear von Karman formulation to
model the rod26 (see ESI for details†).

In Fig. 4B we plot the evolution of the dimensionless spring
constant, k ¼ KL4/(pErIr), (le axis) and the buckling
This journal is © The Royal Society of Chemistry 2014
wavelength, l, (right axis) as a function of the dimensionless
matrix stiffness, h, determined by combining either eqn (7)k or
(8) and (10). Using either the full version of K from eqn (7) or its
slender rod limit from eqn (8), provide nearly identical predic-
tions (solid lines and dashed lines, respectively) within the
range of dimensionless matrix stiffness explored in this study.
In Fig. 3B, the theoretical prediction for l (black dashed line) is
also superposed on top of our experimental results discussed
above, showing excellent quantitative agreement.

In summary, our linear stability analysis is therefore able to
correctly predict the experimentally observed buckling wave-
length. Moreover, eqn (6) indicates that, for certain values of k,
two eigenmodes can be triggered simultaneously at the buck-
ling onset, suggesting that the formation of non-planar buck-
ling modes results from their interaction. This stability analysis
is, however, unable to provide information on how these modes
grow and interact. We now gain further insight into both of
these effects through numerical simulations.
4 Numerical simulations
4.1 Discrete elastic rod simulations

We performed dynamic rod simulations using a code developed
by Bergou et al.,29 where the response of an extensible Kirchhoff
rod30,31 under external forces is computed using a symplectic
Euler method to update the position of the discretized system.
More details on the code can be found in the original paper.29

In our simulations, we matched the geometric and materials
properties of the experimental Nitionol rods (Er ¼ 64 GPa, rr ¼
50 mm and Lr ¼ 9.7 cm), with free rotation at both ends.
Following the simplications introduced in the theoretical
description of Section 3, we modeled the connement provided
by the matrix as a series of linear springs with stiffness K given
by eqn (8), acting in the radial direction. A total of 22 rods were
simulated, with different values of K; the exact value of the
parameters for each analysis is provided in Table S2 of the ESI.†

In Fig. 5A and B we present two representative simulated
buckling congurations for k ¼ KL4/(pErIr) ¼ 2450 and 1764,
respectively. For the case of k¼ 2450, our analytical model from
Section 3 predicts that the compressive forces associated with
the rst and second eigenmodes are well separated (see eqn (6)
and Fig. 4), which is consistent with the numerical nding that
the rod buckles into a 2D planar conguration (Fig. 5A). By
contrast, for k ¼ 1764, eqn (6) is satised with m ¼ 6, such that
the critical buckling forces associated with modes 6 and 7 are
the lowest and identical. In this case, theory predicts that the
rod should buckle into a non-planar 3D conguration. This is
corroborated by the numerical conguration in Fig. 5B where
modes 6 and 7 are triggered almost simultaneously and grow in
two perpendicular lateral directions. We note that the rods that
buckle into planar congurations may eventually deform into
non-planar shapes because of a second bifurcation.32,33

However, this transition occurs at strains much higher than
Soft Matter
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Fig. 5 Discrete elastic rod simulations. (A and B) Buckling configura-
tions for (A) k ¼ 2450, and (B) k ¼ 1764. (C) Ratio between the minor
and major axes b/a of the minimum area ellipse that encloses the rod
cross sectional view as a function of dimensionless spring constant k.
The critical k ¼ m2(m + 1)2 where two modes are expected to occur
simultaneously are shown in vertical lines.
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those associated to the onset of the rst instability, and is
therefore beyond the scope of our study.

Similarly to the analysis of the experimental results dis-
cussed in Section 2, for each simulated conguration, we have
also computed the ellipse of minimum area that encloses the
cross-sectional projection of the rod. In Fig. 5C we present the
aspect ratio of this ellipse, b/a, as a function of the dimen-
sionless spring constant k. For high values of the matrix stiff-
ness (k > 5000), we nd that b/a � 1 and the rod buckles in a
non-planar conguration. On the other hand, for more
moderate connements (k < 5000), there is an alternation of 2D
(b/a � 0) and 3D congurations as k is increased. These
numerical ndings are in good agreement with the experi-
mental results presented earlier in Fig. 2.

These dynamic simulations agree qualitatively with the
experiments of Section 2, and support the stability analysis and
subsequent interpretation presented in Section 3: the formation
of 3D buckling conguration is due to the interactions between
eigenmodes that are triggered nearly simultaneously. It is
important to note, however, that in these dynamic simulations,
similarly to the analytical model in Section 3, we have made the
simplifying assumption that the elastomeric matrix is modeled
as an array of linear springs that only act in the radial direction.
In doing so, we have completely neglected the effect of shear of
the distorted matrix, which we shall now see through nite
element analysis becomes important past the onset of the
buckling instability.
4.2 Finite element simulations

In order to more accurately capture the effect of the deforma-
tion of the elastomeric matrix on the response of the rod, we
have performed nite element (FE) simulations of our system
using the commercial package Abaqus. In these analyses the
matrix was discretized using brick elements (Abaqus element
type C3D8R) and, because of the small strains considered in this
study, was modeled as a linear elastic material with Poisson's
ratio nm ¼ 0.495. The rod was modeled as a beam (Abaqus
element type B31) and assumed to be perfectly bonded to the
matrix (using the embedded element algorithm available in
Abaqus). The accuracy of the mesh was ascertained through a
mesh renement study, resulting in 11 700 elements for the
elastomeric matrix and 194 elements for the rod. In all FE
simulations, we considered a rod with Young's modulus Er ¼ 59
GPa, radius rr ¼ 101.5 mm, length Lr ¼ 9.7 cm and both ends
were free to rotate. Moreover, the diameter of the matrix
cylinder was chosen to be 2 cm, which was found to be sufficient
to eliminate any boundary effects.

First, a buckling analysis was performed using a linear
perturbation algorithm (through the BUCKLE module in Aba-
qus). We carried out 50 simulations with the dimensionless
matrix stiffness in the range (0.54 < h < 2.69) 105 to investigate
its effects on the stability of the rod. In Fig. 6A we report the
normalized separation between the lowest two critical forces,
Df/fcr, as a function of h, where the FE results (blue continuous
line) are compared with the previous analytical prediction
(red dashed line). The corresponding dimensionless spring
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Finite element (FE) results. (A) Normalized separation of the
critical forces associated with the two lowest modes, Df/fcr, as a
function of k (bottom) and the dimensionless matrix stiffness h (top)
predicted by the theory (red line) and FE simulations (blue line). (B and
C) Configurations recorded immediately after the buckling onset for
systems with h¼ 1.30� 105 and 8.40� 104, corresponding to markers
B and C in (A).

This journal is © The Royal Society of Chemistry 2014
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constant, k, calculated using eqn (7) is also quantied on the
upper horizontal axis. Both numerical and analytical results
show the expected alternations of maxima and minima.
However, there is a clear horizontal shi between the two sets of
data. For example, in the region where theory predicts n ¼ 5, we
nd n ¼ 4 in the numerics and likewise for higher modes. This
discrepancy indicates that although the simple Winkler foun-
dation description does successfully provide a qualitative
description of the response of the system, it is not sufficiently
accurate to predict the exact conditions for which the rod will
buckle into a 2D or 3D conguration. We speculate that the
reasons for the differences between the reduced model (used in
the analytical and the dynamic simulations) and the FE results
is due to shear deformation in the matrix, which the Wrinkler
model does not take into account.

Next, the post-buckling response was captured through
dynamic explicit simulations, which were performed under
quasi-static conditions ensured by monitoring the kinetic
energy. In Fig. 6B and C we show two representative congu-
rations recorded immediately aer the buckling onset for two
values of the dimensionless matrix stiffness h ¼ 1.30 � 105 and
8.40 � 104 (each marked in Fig. 6A by the points B and C,
respectively). For h ¼ 1.30 � 105 a 2D buckling conguration is
observed, as expected given that Df/fcr is large in this case. In
contrast, for h¼ 8.40 � 104 a clear 3D buckling pattern emerges
as the result of the interaction between two eigenmodes trig-
gered nearly simultaneously, which grow in perpendicular
directions. These FE results provide further conrmation that
the dimensionless matrix stiffness determines whether the
conned rod buckles into a 2D or 3D conguration by
controlling the separation between the critical forces associated
with the two lowest eigenmodes.

5 Discussion and conclusions

We have shown through a combination of experiments, theo-
retical analyses and numerical simulations that an elastic rod
embedded within an elastomeric matrix can buckle into either a
planar wavy conguration or a non-planar coiled conguration.
Our analytical and numerical studies indicate that the separa-
tion Df/fcr between the two lowest critical forces dictates the
post-buckling behavior of the rod and that this parameter can
be effectively controlled by changing the ratio between the
stiffness of the matrix and the bending stiffness of the rod (i.e.
the dimensionless matrix stiffness h ¼ EmLr

4/ErIr). For large
values of h the rod always buckles into a 3D coiled congura-
tion, whereas for so matrices, a monotonic increase of the
stiffness results in an alternation between 2D planar and 3D
coiled buckling congurations.

Good qualitative agreement was found between our analysis
and experiments. However, a direct quantitative comparison is
challenging due to the important role played by imperfections
and measurement uncertainties. In fact, our analysis indicates
that Df/fcr is extremely sensitive to imperfections. For example,
for a rod with Er ¼ 59 GPa, Lr ¼ 4 cm, rr ¼ 101.5 mm embedded
in a matrix with Em ¼ 1.3 kPa a relative uncertainty in the
measurement of rod length and rod radius as small as 5%
Soft Matter
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Fig. 7 Effect of boundary conditions. (A) Analytical predictions for the normalized separation of the critical forces associated with the two lowest
modes, Df/fcr, as function of k for a rod with free-to-rotate (blue line) and fixed (red line) ends. (B) FE predictions for the normalized separation of
the critical forces associated with the two lowest modes, Df/fcr, as function of h for a rod with free-to-rotate (blue line) and fixed (red line) ends.
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(i.e. DLr/Lr # 5% and Drr/rr # 5%) modies the prediction of
Df/fcr from 0.28 to 0.021, leading to a switch from a 2D to a 3D
buckling conguration.

Furthermore, we have also found that the buckling pattern is
highly sensitive to the boundary conditions imposed at the two
ends of the rod. In the experiments, small segments of the rod
near its ends were embedded into a much stiffer disk to provide
support and minimize rotation. In analysis and simulations,
however, we assumed for the sake of simplicity that both ends
of the rod were free to rotate.

To address this issue on the important role of the boundary
conditions, we have repeated the stability analysis presented in
Section 3 and the FE simulations in Section 4.2, but now also for
rods whose ends are xed (see ESI for details†). In Fig. 7A and B
we present analytical and numerical (FE) results, respectively, for
the evolution of the normalized separation between the two
lowest critical forces as a function of the dimensionless matrix
stiffness and compare the two cases of a rod with xed and free-
to-rotate ends. Both sets of results indicate that the prole of
Df/fcr for the case of a rod with xed ends is shied by approx-
imately half a zone compared to that corresponding to a rod with
free-to-rotate ends. By way of example, for a dimensionless
stiffness of k ¼ 576, our theory predicts that a conned rod
buckles into a non-planar conguration if its ends are xed, but
into a planar conguration if the ends are free to rotate. More-
over, for the rod with xed ends, the peaks of Df/fcr are lower in
magnitude and decreases considerably faster as a function of k,
indicating a greater tendency to buckle into a 3D coiled shape,
when compared to the rod with free-to-rotate ends. These results
demonstrate that the boundary conditions at the extremities of
the rod play an important role in determining the buckling
shape. If the boundary conditions are not perfectly xed in the
experiments, we expect these uncertainties to have a signicant
inuence on the nal buckled conguration.

In conclusion, we have demonstrated that a rod embedded
in an elastomeric matrix can buckle either into a planar (2D) or
a non-planar (3D) conguration, in a way that depends non-
trivially on the geometric and material parameters, as well as
the boundary conditions. The 3D buckling congurations were
Soft Matter
rationalized to arise when two eigenmodes are triggered nearly
simultaneously. Furthermore, our analysis indicate that the
buckling pattern can be controlled by tuning both the matrix
stiffness and the boundary conditions. This tunability,
combined with the scalability of the buckling phenomenon,
opens avenues for exploiting the underlying mechanical insta-
bilities to generate the next generation of future photonic and
piezoelectric devices with complex 3D structure. However, given
the sensitivity of the system to imperfections, our study calls for
more accurate fabrication protocols and experimental proce-
dures to be able to exploit buckling as mechanism to generate
complex patterns with ne tunable features.
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S1 Experiment setup

Fabricating matrices with different stiffness

For the fabrication of the elastomeric matrix surrounding the Nitinol rod, we used PDMS (Syl-
gard 184 from Dow Corning Inc.). This product comes in two parts, a curing agent and a base
agent, that we have to mix prior curing. Curing of the PDMS was performed using a convection
oven at a low temperature of T = 40˚C for 24 hours ensuring a negligible thermal dilatation of
the molds and PDMS and thus stress free samples after curing. The Dow Corning recommanda-
tion is to use a base/cure ratio in weight of 10:1, which produce an elastomer of Young modulus
of 2100 kPa after curing. By varying the base/cure ratio from 80:1 to 10:1 and thus changing the
amount of cross linkers, one can vary the Young modulus of the elastomeric sample, typically
from 1 kPa to 2.1 MPa.

To measure the elastic modulus, we casted a small cylinder sample (2 cm long and 2.6
cm in diameter) along with each PDMS matrix using the same mixture and protocol. These
small cylinders were then tested under compression using a Zwick material testing machine. By
importing the displacement and force measurements and using a linear elastic model, we deduced
the Young modulus for each or the elastomeric matrices. Due to the geometry of our test, i.e.
the barreling of the sample cylinder when compressed, a correction factor on the inferred Young
modulus had to be taken into account [1]. These measurements of the elastic modulus as a
function of ratio base/cure agent are represented on Fig. S1 along with other results taken from
the literature [2, 3, 4, 5].
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Figure S1: Elastic modulus of Polydimethylsiloxane Dow Corning Sylgard 184 as a function of
the ratio of base agent on cure agent. Measurements on our samples are represented using full
disk symbol along with other measurements form the literature [2, 3, 4, 5].

Sample parameters

We made a total of 15 samples in this study. The parameters for all the samples and their
cross-sectional buckling shapes at compressive strain ε = 3% are shown in Tab. S1.
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Table S1: Parameters characterizing all the 15 samples. dr is diameter of the rod; Er is the
Young’s modulus of the rod; Em is the Young’s modulus of the matrix; Lr is the length of the rod;
δmax is the maximum applied displacement during the test; EmL

4
r/(ErIr) is the dimensionless

matrix stiffness, Ir = πd4r/64 being the second moment of inertia of the rod cross section. In
the last column a cross sectional view of the buckled sample at ε = 3% is shown.

Name dr Er Em Lr δmax EmL
4
r/ErIr Buckled shape

[µm] [GPa] [kPa] [m] [mm] [106] ε = 3%

S26 203 59.23± 0.07 32.59± 0.69 0.041 2 0.0190 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

S25 254 67.01± 0.69 32.59± 0.69 0.055 2.5 0.0213 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

S15 254 67.01± 0.69 29.45± 0.50 0.097 4 0.19 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

S24 203 59.23± 0.07 13.85± 0.33 0.098 5 0.26 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

S8 254 67.01± 0.69 66.73± 0.96 0.099 5 0.47 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

S17 203 59.23± 0.07 32.85± 0.54 0.097 3 0.59 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

S23 152 67.95± 0.77 13.85± 0.33 0.097 7 0.69 −2 0 2

−1

0

1

y [mm]
z 

[m
m

]

S21 203 59.23± 0.07 49.63± 0.67 0.097 4 0.89 −2 0 2
−2

−1

0

1

y [mm]

z 
[m

m
]

S14 152 67.95± 0.77 29.45± 0.50 0.097 4 1.46 −1 0 1

−1

0

1

y [mm]

z 
[m

m
]

S7 152 67.95± 0.77 59.96± 0.78 0.094 4 2.63 −1 0 1
−1

−0.5
0

0.5

y [mm]

z 
[m

m
]

S22 100 64.24± 0.24 13.85± 0.33 0.097 9 3.89 −1 0 1

−0.5

0

0.5

y [mm]

z 
[m

m
]

S16 100 64.24± 0.24 32.85± 0.54 0.097 9 9.22 −1 0 1

−0.5

0

0.5

y [mm]

z 
[m

m
]

S20 100 64.24± 0.24 49.63± 0.67 0.097 6 13.93 −0.5 0 0.5
−0.5

0

0.5

y [mm]

z 
[m

m
]

S18 50.8 60.93± 1.26 10.05± 0.32 0.097 5 44.68 −0.5 0 0.5
−0.5

0

0.5

y [mm]

z 
[m

m
]

S13 50.8 60.93± 1.26 29.45± 0.50 0.097 5 130.87 −0.4−0.2 0 0.2 0.4

−0.2

0

0.2

y [mm]

z 
[m

m
]
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S2 Computing the minimum area ellipse that encloses the cross-
sectional view of the buckled rod

To better characterize the buckling shape, for each sample we computed the minimum area
ellipse that encloses the cross-sectional view of the buckled rod at a given level of applied
compressive strain ε. First, to facilitate the analysis, we rigidly rotated the rod using Principal
Component Analysis (PCA) [6, 7] and aligned the major lateral buckling direction with the y
axis (the matrix central axis was aligned with x). Then, we focused on the lateral y − z plane
and computed the ellipse with the smallest possible area that encloses all points [yi, zi] along
the rod (note that to eliminate boundary effects, we only focused on points of the rod away
from the boundaries and neglected those within 1/6 of its length from both ends). Therefore,
denoting with a and b the major and minor axes of the ellipse, we required

y2i
a2

+
z2i
b2
≤ 1, for all i = 1, 2, 3, · · ·N (S1)

so that

a2 ≥ max
i

(
y2i

1− z2i /b2

)
. (S2)

Therefore, for a given a value of b the lower bound for the area of the ellipse S = π a b was
obtained as

S = πab ≥ max
i

 πyi√
1/b2 − z2i /b4

 . (S3)

Finally, we determined numerically the minor axis b that minimizes the area,

Smin = min
b

max
i

 πyi√
1/b2 − z2i /b4

 . (S4)

Two examples of minimum area ellipses (black dashed line) obtained for samples #7 and #18
together with the trace of rod coordinates (red line) are shown in Fig. S2A and B . Note that the
aspect ratio of the ellipse (i.e., the ratio between the minor and major axes b/a) characterizes
whether the buckling shape is 2D or 3D: A flat ellipse with a small b/a value indicates an in-plane
buckling shape, while a more circular one with b/a→ 1 indicates a 3D buckling shape.

S3 Buckling analysis using the Winkler foundation model

While in the main text we focus on the results of the buckling analysis, here we present the
details of the analysis.

To understand and quantify the conditions leading to 2D and 3D buckling configurations,
we adopt the Winkler foundation model and simplify the matrix as an array of springs with
stiffness K acting only in radial direction. Consequently, assuming small strain and moderate
rotation, the governing equation for the embedded elastic rod is given by

ErIr
∂4Y

∂S4
+ F

∂2Y

∂S2
+K Y = 0, (S5)

where ErIr is the bending stiffness of the rod, F is the applied compressive force and Y and
S denote the lateral displacement and the arc length of the rod, respectively. By introducing
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Figure S2: Two examples of minimum area ellipses (dashed black lines) that enclose the cross-
sectional view of the buckled rod (red traces).

the normalized displacement, y = Y/Lr, and arc length, s = S/Lr, Eq. (S5) can be rewritten in
dimensionless form as

∂4y

∂s4
+ π2f

∂2y

∂s2
+ π4k y = 0, (S6)

where f = FL2
r/(π

2ErIr) and k = K L4
r/(π

4ErIr) are the dimensionless compressive force and
spring constant, respectively.

To solve for the critical force fcr, one needs to specify boundary conditions. Here, we consider
two types of boundary conditions: (Case A) both ends are free to rotate; (Case B) both ends
are fixed.

Case A: Both ends are free-to-rotate

When both ends of the rod are free to rotate,

y(0) = y(1) = 0, y′′(0) = y′′(1) = 0 (S7)

where (·)′ = ∂(·)/∂s. For this case, the solution of Eq. (S6) takes the form

y(s) = A sin(nπs), (S8)

where n is an integer. Substitution of Eq. (S8) into Eq. (S6) yields

An4π4 sin(nπs)−An2π4f sin(nπs) +Aπ4k sin(nπs) = 0, (S9)

which can be simplified as
n4 − n2f + k = 0. (S10)

Therefore, non-trivial solutions to Eq. (S6) exist when

f = fn =
k + n4

n2
, (S11)

where fn denotes the compressive force fn required to trigger the n-th mode. Since during
loading the mode associated to the lowest fn emerges and grows, the critical buckling force for
the system is given by

fcr = min
n=1,2,···

(
n2 +

k

n2

)
. (S12)
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Case B: both ends are fixed

When both ends of the rod are fixed

y(0) = y(1) = 0, y′(0) = y′(1) = 0, (S13)

and the form of solution to Eq. (S6) is found by examining the roots of its characteristic equation

x4 + π2f x2 + π4k = 0. (S14)

Note that the form of the solution depends on the sign of f2 − 4k.

1. For f2 − 4k > 0, Eq. (S14) has four imaginary roots,

α = ± iπ√
2

√
f +

√
f2 − 4k, β = ± iπ√

2

√
f −

√
f2 − 4k. (S15)

Therefore, the general solution to Eq. (S6) is given by

y(s) = A1 sin(αs) +A2 cos(αs) +A3 sin(βs) +A4 cos(βs), (S16)

so that
y′(s) = A1α cos(αs)−A2α sin(αs) +A3β cos(βs)−A4β sin(βs) (S17)

whereA1, A2, A3, A4 are arbitrary constants which are determined by imposing the bound-
ary conditions. Substitution of Eqs. (S16) and (S17) into the boundary conditions (S13),
yields

A2 +A4 = 0

A1α+A3β = 0

A1 sin(α) +A2 cos(α) +A3 sin(β) +A4 cos(β) = 0

A1α cos(α)−A2α sin(α) +A3β cos(β)−A4β sin(β) = 0 (S18)

which can be written as Ka = 0, where K is a coefficient matrix and a = (A1, A2, A3, A4)
T .

Generally, the matrix K is not singular and only the trivial solution a = 0 exists. However,
for certain values of f , K becomes singular (i.e. det(K) = 0) and in that case a non-zero
solution is found, indicating the occurrence of buckling. Note that in this case explicit
formulae for the critical force cannot be obtained and buckling is detected numerically by
finding the values of f for which det(K) = 0.

2. If f2 − 4k = 0, the roots of Eq. (S14) are given by

α = ±i πk1/4, (S19)

and the solution of Eq. (S6) takes the form

y(s) = A1 sin(αs) +A2s sin(αs) +A3 cos(αs) +A4s cos(αs), (S20)

so that
y′(s) = A1α cos(αs) +A2(sin(αs) + αs cos(αs))

−A3α sin(αs) +A4(cos(αs)− αs sin(αs))
(S21)
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Substitution of Eqs. (S20) and (S21) into the boundary conditions (S13), yields

A3 = 0
A1α+A4 = 0
A1 sin(α) +A2 sin(α) +A3 cos(α) +A4 cos(α) = 0
A1α cos(α) +A2(sin(α) + α cos(α))
−A3α sin(α) +A4(cos(α)− α sin(α)) = 0

(S22)

which admit only trivial solution a = 0, since f in this case has a fixed value (i.e. f = 2
√
k)

and cannot vary.

3. For f2 − 4k < 0, Eq. (S14) has four complex roots

α = πk1/4 (± cos θ ± i sin θ) , (S23)

where

θ =
1

2

[
π − arcsin

(√
1− f2

4k

)]
(S24)

. Therefore, the general solution of Eq. (S6) has the form

y(s) = A1 exp(γs) sin(βs) +A2 exp(γs) cos(βs)
+A3 exp(−γs) sin(βs) +A4 exp(−γs) cos(βs),

(S25)

so that

y′(s) = A1 exp(γs)(γ sin(βs) + β cos(βs)) +A2 exp(γs)(γ cos(βs)− β sin(βs))
+A3 exp(−γs)(−γ sin(βs) + β cos(βs))−A4 exp(−γs)(γ cos(βs) + β sin(βs)),

(S26)
where γ = πk1/4 cos θ and β = πk1/4 sin θ. Finally, the boundary conditions require that

A2 +A4 = 0
A1β +A2γ +A3β −A4γ = 0
A1 exp(γ) sin(β) +A2 exp(γ) cos(β)+
A3 exp(−γ) sin(β) +A4 exp(−γ) cos(β) = 0
A1 exp(γ)(γ sin(β) + β cos(β)) +A2 exp(γ)(γ cos(β)− β sin(β))
+A3 exp(−γ)(−γ sin(β) + β cos(β)) +A4 exp(−γ)(−γ cos(β)− β sin(β)) = 0,

(S27)

which can be rewritten as Ka = 0, and the non-zero solution, if exists, is detected by
setting det(K) = 0.

S4 Winkler foundation model: Relation between the spring
stiffness K and the matrix shear modulus Gm

In our analysis we adopted the Winkler foundation model and simplified the matrix as an array of
springs with stiffness K acting only in radial direction. Therefore, to make a connection between
the prediction of the analytical model and the experimental results a relation between the spring
stiffness K and the matrix shear modulus Gm = Em/[2(1 +νm)] needs to be established. For an
elastic rod of radius rr and length Lr buckled into mode n it has been shown that K is related
to Gm and νm as [8, 9]

K =
16πGm(1− νm)

2(3− 4νm)K0

(
nπ rr

Lr

)
+ nπ rr

Lr
K1

(
nπ rr

Lr

) , (S28)
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where K0(·) and K1(·) are the modified bessel function of second kind.
It is worth noting that for slender rods, for which rr/Lr → 0, Eq. (S28) significantly simplifies,

since

lim
rr/Lr→0

nπ
rr
Lr
K1

(
nπ

rr
Lr

)
= 1 (S29)

and

lim
rr/Lr→0

K0

(
nπ

rr
Lr

)
= +∞. (S30)

Therefore, when rr/Lr → 0 the second term of the denominator in Eq. (S28) can be neglected,
so that

K =
16πGm(1− νm)

2(3− 4νm)K0

(
nπ rr

Lr

) , (S31)

Furthermore, we note that for slender rods

lim
rr/Lr→0

ln
(
2Lr
n rr

)
K0

(
nπ rr

Lr

) = 1, (S32)

and

lim
rr/Lr→0

ln

(
2Lr

n rr

)
−K0

(
nπ

rr
Lr

)
= 1.72195, (S33)

so that Eq. (S31) can be rewritten as

K =
16πGm(1− νm)

2(3− 4νm) ln
(
2Lr
n rr

) when rr/Lr → 0. (S34)

Finally, for the case of rods embedded in soft, elastomeric matrices νm = 0.5, so that

K =
4πGm

ln
(
2Lr
n rr

) when rr/Lr → 0, (S35)

which has been recently used to study buckling of confined microtubules [10].

S5 Relation between λ, K and Gm from Eq. (6)

Although both Eqs. (S28) and (S35) (corresponding to Eqs. (6) and (7) in the main text)
indicate that the spring stiffness K depends not only on shear modulus of the matrix Gm, but
also on the mode wavelength, λ = 2Lr/n, in the main text we showed for Eq. (7) that a
unique relation between λ, Gm and K can be established by calculating the mode number that
minimize the critical force fn (i.e. calculating n for which ∂fn/∂n = 0). A similar procedure
can be followed to determine the relation between λ, Gm and K also when Eq. (6) is used:

1. Eq. (6) is substituted into Eq. (3), yielding

fn = n2 +
k

n2
= n2 +

EmL
4
r

ErIr
· 8

3π3
· 1

n2(2K0(nπrr/Lr) + nπrr/Lr ·K1(nπrr/Lr))
, (S36)

where, for the sake of simplicity, we assume νm = 0.5.
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2. The mode number that minimize the critical force fn is calculated by requiring ∂fn/∂n = 0,

2n−EmL
4
r

ErIr

8

3π3
n(2K ′0πrr/Lr + πrr/LrK1 + nπrr/LrK

′
1πrr/Lr) + 2(2K0 + nπrr/LrK1)

n3(2K0 + nπrr/LrK1)2
= 0,

(S37)
where K0 = K0(nπrr/Lr) and K1 = K1(nπrr/Lr). Note that n = 2Lr/λ, so that Eq. (S37)
can be rewritten in terms of λ as(
Lr

λ

)4 (K0 + πrr/λ ·K1)
2

Lr/rr(2K ′0πrr/Lr +K1πrr/Lr + 2πrr/λ ·K ′1 · πrr/Lr) + (2K0 + 2πrr/λ ·K1)
=

1

24π3
EmL

4
r

ErIr
,

(S38)

3. The wavelength λ is solved numerically from Eq. (S38);

4. Eq. (6) now provides a unique relation between K and Gm, since λ is known.

S6 An alternative approach for the buckling analysis: the en-
ergy approach

In the main text, we used the Winkler foundation model to study analytically the stability
of a thin and stiff beam supported by a softer elastic substrate. Following this approach, the
interaction between the rod and substrate is simplified as an array of springs with stiffness K
acting solely in radial direction, so that the differential equation governing the problem can be
easily established and directly solved. However, it is important to highlight the fact the stability
analysis can be alternatively conducted by minimizing the total elastic energy of the system
[11, 12, 13, 14]. In the following, we study the stability of a rod embedded in a softer matrix
using the energy approach and demonstrate that this analysis yields the same results presented
in the main text.

We start by constructing the total elastic energy of the system (per unit length), Πtot,

Πtot = Ubending + Ustretching + Uinteraction, (S39)

where Ubending and Ustretching are the bending and stretching energy per unit length of the rod,
respectively, and Uinteraction denotes the interaction energy between the substrate and the matrix
energy per unit length. As typically done [11, 12, 13, 14], we choose the von Karman formulation
to describe Ubending and Ustretching. Therefore, denoting with ε the applied compressive strain
and assuming the buckling mode to be described by a sinusoidal curve, w = A sin(nπx/Lr), we
get

Ubending =
1

2Lr
ErIr

∫ Lr

0
(w′′)2dx =

1

4
ErIrA

2

(
nπ

Lr

)4

, (S40)

Ustretching =
1

2Lr
ErSr

∫ Lr

0

[
u′ +

1

2
(w′)2

]2
dx =

1

2
ErSr

[
−ε+

1

4
A2

(
nπ

Lr

)2
]2
, (S41)

where Sr is the cross-sectional area of the rod and u and w denote the axial and lateral compo-
nents of its displacement, respectively.

Finally, we need to specify a form for the interaction energy between the rod and the matrix.
Here, as for the Winkler foundation model, we simplified the matrix as an array of springs with
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stiffness K acting solely in radial direction, so that

Uinteraction =
1

2Lr

∫ Lr

0
Kw2dx =

1

4
KA2. (S42)

Note that the spring constant K is not an arbitrary constant. In fact, rigorous expressions for
K have been established by modeling the matrix as infinite elastic solid, using the classic theory
of elasticity and accounting for the radius of the rod [8].

To determine the critical force Fcr, we now substitute Eqs. (S40), (S41) and (S42) into
Eq. (S39), and minimize Πtot with respect to A, obtaining

1

2
ErIrA

(
nπ

Lr

)4

+
1

2
ErSr

[
−ε+

1

4
A2

(
nπ

Lr

)2
]
A

(
nπ

Lr

)2

+
1

2
KA = 0, (S43)

from which the amplitude of the mode A can be solved as

A =



√√√√ 4L4
r

ErSr (nπ)4

[
−K − ErIr

(
nπ

Lr

)4

+ ErSrε

(
nπ

Lr

)2
]
, if ErSrε

(
nπ

Lr

)2

≥ K + ErIr

(
nπ

Lr

)4

,

0, if ErSrε

(
nπ

Lr

)2

< K + ErIr

(
nπ

Lr

)4

.

(S44)
The compressive strain required to trigger the n-th mode, εn, can be then obtained taking the
limit for A→ 0 in (S44), yielding

εn =
Ir
Sr

(
nπ

Lr

)2

+
K

ErSr

(
Lr

nπ

)2

, (S45)

so that the force required to trigger the n-th mode is given by

Fn = ErSrεn = ErIr

(
nπ

Lr

)2

+K

(
Lr

nπ

)2

. (S46)

At this point we want to highlight the fact that, when normalized, the expression for the critical
force given by Eq. (S46) is identical to that reported in Eq. (4) of the main text, confirming
the fact that the stability analysis reported in the main text and the one based on the energy
approach are equivalent.

The critical mode can then be determined upon calculation of the mode number n that min-
imizes Fn (i.e. determining the values of n for which ∂Fn/∂n = 0). In particular, minimization
of Fn using Eq. (S46) yields,

ErIr

(
nπ

Lr

)2

−K
(
Lr

nπ

)2

+
1

2

∂K

∂n

Lr

π
= 0, (S47)

which reduces to the expression reported in Eq. (9) of the main text when the expression for
K provided by Eq. (S35) is substituted in, further demonstrating that the energy approach
converges to the exact same results obtained by solving directly the differential equations.

Finally, we want to highlight the fact that, although in literature different forms for the
interaction energy Uinteraction have been used [11, 12, 13, 14], the reported results closely resemble
those derived above. To demonstrate this important point, we follow Jiang et al. [13] and
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construct Uinteraction by superposition of a series of solutions for point loads in the (semi-)
infinite 3D space 1, yielding

Uinteraction =
3β2

32πEm

[
3− 2γ − 2 ln

(
nπrr
Lr

)]
, (S48)

where γ = 0.577 is the Euler’s constant and β is given by

β = −ErIrA

(
nπ

Lr

)4

− ErSr

[
1

4
A2

(
nπ

Lr

)2

− ε

]
A

(
nπ

Lr

)2

. (S49)

Substitution of Eq. (S48) into Eq. (S39), and minimization of Πtot with respect to A results
in the following prediction for the wave number n (see Eq. (32) in [13])

n

(
ErIr
Gm

)1/4

=

{
16π[1− γ − ln(n rr)]

[3− 2γ − 2 ln(n rr)]2

}1/4

, (S50)

where Gm = Em/(2(1 + νm)) is the initial shear modulus of the matrix. Noting for an incom-
pressible matrix (i.e. νm = 0.5)

Gm =
Em

3
, (S51)

and that
ln(n rr) = ln(2π)− ln(λ/rr), (S52)

λ = 2π/n being the wavelength, Eq. (S50) can be rewritten as

(λ/Lr)
4[ln(λ/rr) + 1− γ − ln(2π)]

[2 ln(λ/rr) + 3− 2γ − 2 ln(2π)]2
=

3π3

η
, (S53)

where η = (EmL
4
r)/(ErIr) is the dimensionless matrix stiffness. Furthermore, as noted by the

authors in [13], for a wide range of values of Em Eq. (S53) can be simplified to

λ

Lr
= 31/4 · 8π/5 · η−1/4 = 6.62η−1/4. (S54)

The equation above has exactly the same structure as Eq. (10) in the main text

λ

Lr
= αη−1/4, (S55)

where the prefactor α is found to lie within 6.71 < α < 7.04 depending on the values of λ/rr.
Finally, it is worth noting that if we take the limit for λ/rr → +∞, Eq. (S53) and Eq. (9) in
the main text yield exactly the same expression for the wavelength λ.

S7 Discrete elastic rod simulations

In Tab. S2 we summarize all parameters used in the 22 discrete elastic rod simulations we
performed and the corresponding results. In all the simulations we considered a rod with length
Lr = 9.7cm, diameter dr = 100µm, density ρ = 6500kg/m3, Young’s modulus Er = 64.24GPa
and Poisson’s ratio ν = 0.5. We discretized the rod into 203 segments with nv = 204 nodes.
The simulations were performed with control displacement boundary conditions, where one end
of the rod was pined and the other end was displaced at a constant rate of vp = 0.05mm/s.

1Note that the interaction energy constructed in this way does not account for the radius of the rod.

S10



Table S2: BASim parameters and results. For each simulation, the dimensionless contact spring
constant kdim, the predicted buckling mode, the measured b/a for the minimum area ellipse, and
also the buckled configurations are reported.

Simulation Parameters

ρ = 6500kg/m3; Lr = 9.7cm; dr = 100µm; Er = 64.24GPa; Gr = 21.41GPa; ν = 0.5;
nv=204; vp = 0.05mm/s.

ID kdim mode number b/a at ε = 5% Cross-section view Side view 1 Side view 2

1 400 4/5 0.13 −4 −2 0 2 4

−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2
0
2
4

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2
0
2
4

x [mm]

z 
[m

m
]

2 525 5 0.00 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

z 
[m

m
]

3 650 5 0.00 −2 0 2

−1
0
1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

z 
[m

m
]

4 775 5 0.00 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

z 
[m

m
]

5 900 5/6 0.30 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

z 
[m

m
]

6 1116 6 0.03 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

7 1332 6 0.00 −2 0 2
−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

8 1548 6 0.03 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

9 1764 6/7 0.34 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−2

0

2

x [mm]

z 
[m

m
]

10 2107 7 0.39 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

11 2450 7 0.05 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

12 2793 7 0.23 −2 0 2
−2

0

2

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

13 3136 7/8 0.53 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

14 3648 8 0.59 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1
0
1
2

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1
0
1
2

x [mm]

z 
[m

m
]
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Simulation Parameters

ρ = 6500kg/m3; Lr = 9.7cm; dr = 100µm; Er = 64.24GPa; Gr = 21.41GPa; ν = 0.5;
nv=204; vp = 0.05mm/s.

ID kdim mode number b/a at ε = 5% Cross-section view Side view 1 Side view 2

15 4160 8 0.40 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−2

0

2

x [mm]

z 
[m

m
]

16 5184 8/9 0.82 −1 0 1

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

17 6642 9 0.86 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

18 8100 9/10 0.94 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

19 10100 10 0.97 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

20 12100 10/11 1.00 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

21 14762 11 0.97 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40

−1

0

1

x [mm]

z 
[m

m
]

22 17424 11/12 0.96 −2 0 2

−1

0

1

y [mm]

z 
[m

m
]

−40 −20 0 20 40
−1

0

1

x [mm]

y 
[m

m
]

−40 −20 0 20 40
−1

0

1

x [mm]

z 
[m

m
]
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