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Most materials have a unique form optimized for a specific property

and function. However, the ability to reconfigure material structures

depending on stimuli opens exciting opportunities. Although

mechanical instabilities have been traditionally viewed as a failure

mode, here we exploit them to design a class of 2D soft materials

whose architecture can be dramatically changed in response to an

external stimulus. By considering geometric constraints on the

tessellations of the 2D Euclidean plane, we have identified four

possible periodic distributions of uniform circular holes where

mechanical instability can be exploited to reversibly switch between

expanded (i.e. with circular holes) and compact (i.e. with elongated,

almost closed elliptical holes) periodic configurations. Interestingly,

in all these structures buckling is found to induce large negative

values of incremental Poisson's ratio and in two of them also the

formation of chiral patterns. Using a combination of finite element

simulations and experiments at the centimeter scale we demonstrate

a proof-of-concept of the proposed materials. Since the proposed

mechanism for reconfigurable materials is induced by elastic insta-

bility, it is reversible, repeatable and scale-independent.
Mechanical instabilities are not always deleterious though they
are conventionally regarded as failure modes. Because of the
large deformation and dramatic shape changes that accompany
them,1,2 mechanical instabilities in elastic structures provide
opportunities for designing responsive materials capable of
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reversibly switching between two different congurations with
applications in sensors, microuidics, bioengineering, robotics,
acoustics and photonics.3–8 In particular, instabilities in periodic
porous structures comprising of square and triangular arrays of
circular holes have been found to lead to the transformation of
the pores in ordered arrays of high-aspect ratio (almost closed)
ellipses9–11 and have been demonstrated to be instrumental for
the design of phononic switches,7 color displays12 and materials
with unusual properties such as large negative Poisson's
ratio.13,14 However, to design the next generation of responsive
and recongurable materials and devices that take advantage of
the dramatic changes in geometry induced by instabilities, the
effect of pore shape and lattice topology on the response of the
system need to be fully understood. While it has been recently
shown that thepore shapehas a strong effect bothon the onset of
instability and on the postbuckling behavior,13 there has been no
systematic study on the effect of the hole arrangement. So far the
selection of the architecture has been guided by intuition and
buckling has been exploited as a folding mechanism only in
square and triangular arrays of holes.7,9,12–15

Here, werst identify possible periodic distributions ofmono-
disperse circular holes where buckling can be exploited to
reversibly switch between expanded (i.e. with circular holes) and
compact (i.e. with elongated, almost closed elliptical holes) peri-
odic congurations. Then, we conrm the validity of our ndings
through a combination of experiments and numerical simula-
tions.While twoof these four congurationshavebeenpreviously
reported,9,10,16 the other two are newly discovered. Remarkably, in
these two new congurations elastic buckling not only can be
exploited to design materials with negative Poisson's ratio (also
known as auxetic material), but also acts as a reversible chiral
symmetry-breaking mechanism, enabling the reversible switch
between the initial nonchiral and the buckled chiral pattern.
Furthermore, since the proposed folding mechanism exploits
mechanical instabilities, our study opens avenues for the design
of recongurable materials over a wide range of length scales.

We start by nding periodic monodisperse circular hole
arrangements in plates where buckling can be exploited as a
Soft Matter
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mechanism to reversibly switch between undeformed/expanded
and deformed/compact congurations. Therefore, we require
that the instability does not only reduce the symmetry, but also
leads to the transformation of the circular holes into elongated
(almost closed) ellipses. Inspired by recent work on buckling of
spherical structured shells, where hole arrangements were
systematically explored through polyhedra,6 here we investigate
the hole arrangements by considering geometric constraints on
the tilings (i.e., tessellations) of the 2D Euclidean plane.

In order for all the monodisperse circular holes to close
through buckling of the ligaments, the plates should meet the
following requirements: (a) the center-to-center distances of
adjacent holes are identical, so that all the ligaments are char-
acterized by the same minimum width and undergo the rst
buckling mode in an approximately uniform manner; (b) there
is an even number of ligaments around every hole, so that the
deformation induced by buckling leads to their closure. Math-
ematically, these geometric constraints can be rephrased as: the
skeleton of the porous structure should (a0) be a convex uniform
tiling of the 2D Euclidean plane (which are vertex-transitive and
have only regular faces) (b0) with an even number of faces
meeting at each vertex. Focusing on convex uniform tilings (i.e.
Platonic and Archimedean tilings) where all the vertices are the
same, so that all the holes deform similarly, we nd that there
are only four tessellations which meet the above requirements:
square tiling, triangular tiling, trihexagonal tiling and rhombi-
trihexagonal tiling (see Fig. 1A). Note that these tilings can be
Fig. 1 Geometric compatibility for the arrangement of circular holes on the
porous structures, restricted to four specific configurations (shown in each row).
(A) Tilings. (B) Expanded undeformed porous structures. (C) Compact porous
structures, which are buckled under uniaxial compression. The green-shaded
regions in (B) and (C) denote the unit cell in the undeformed and deformed
configurations, respectively.

Soft Matter
fully described by their vertex gures (i.e. a sequence of
numbers representing the number of edges of the polygons
going around the vertex): 4.4.4.4 for the square, 3.3.3.3.3.3 for
the triangular, 3.6.3.6 for the trihexagonal and 3.4.6.4 for the
rhombitrihexagonal tiling. The corresponding porous struc-
tures are then obtained by placing a circular hole at each vertex
of the tiling (Fig. 1B and ESI†). To help us refer to these four
periodic porous structures, hereaer we use the vertex gure of
the corresponding tiling to denote them, as indicated in Fig. 1B.
Fig. 1C shows the compact/folded congurations of the porous
structures, which are obtained through nite element (FE)
buckling analysis under uniaxial compression. They clearly
show that all the ligaments in the structures undergo the rst
buckling mode uniformly. The instability is found not only to
change the planar symmetry group of the structures (i.e. for
4.4.4.4 from p4m to p4g, for 3.3.3.3.3.3 from p6m to pgg, for
3.6.3.6 from p3m1 to p3, and 3.4.6.4 from p6m to p6), but also to
lead to closure of the holes and compaction of the structures. It
is worth noting that the same compact patterns can also be
predicted using continuum elasticity theory and modeling each
buckled elliptical hole as a dislocation dipole that interacts
elastically with all the other dipoles in the system17 (see ESI†).

Guided by our analysis, we built physical and numerical
models of all four porous structures (see Fig. 2A). The structures
are characterized by an initial void-volume-fraction j4.4.4.4 ¼
j3.6.3.3.6 ¼ j3.4.6.4 ¼ 0.49 and j3.3.3.3.3.3 ¼ 0.48 (j ¼ total hole
area/total area). Note that the slight variation in porosity
between the four structures is related to limited accuracy during
the fabrication process. The samples for the experiments were
fabricated using silicone rubber with Young's modulus E ¼ 0.9
MPa and a mold-casting process with molds prepared by 3D
rapid prototyping. In all the structures, the holes are charac-
terized by radius r ¼ 4 mm and a large out-of-plane thickness is
employed to avoid out-of-plane buckling. Uniaxial compression
tests were performed on a standard quasi-static loading frame
under displacement-control (see ESI† for details on the experi-
mental setup). On the numerical side, simulations were per-
formed using the non-linear Finite Element code ABAQUS/
Standard. Plane strain conditions were assumed and the
behavior of the silicone rubber used in the experiments was
captured using the Yeoh hyperelastic model.18 Uniaxial
compression tests were simulated by imposing vertical
displacements at the top face, while keeping all other degree of
freedom of both top and bottom faces xed (see ESI† for details
on the FE simulations).

Representative pictures taken during the tests at different
levels of nominal strain 3 (calculated as change of height
divided by the original height) are presented in Fig. 2, showing
an excellent agreement between experiments and FE simula-
tions. At small nominal strains, the holes are observed to
deform uniformly (see Fig. 2B). However, when a critical value
of applied nominal strain is reached, the thin ligaments
between the holes start to buckle in a uniform manner. Even-
tually, at 3 ¼ �0.15 (Fig. 2C), a distinctive buckled pattern is
observed in the central part of the samples, only marginally
affected by the boundary conditions. Finally, the buckled
pattern becomes further accentuated for larger values of applied
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Numerical (left) and experimental (right) images of all four structures (4.4.4.4, 3.3.3.3.3.3, 3.6.3.6 and 3.4.6.4) at different levels of deformation: (A) 3¼ 0.00, (B)
3 ¼ �0.07, (C) 3 ¼ �0.15 and (D) 3 ¼ �0.21. All configurations are characterized by an initial void-volume-fraction j z 0.5. Scale bars: 20 mm.

Fig. 3 (A) Experimental and numerical stress–strain curves for the four struc-
tures. S denotes the nominal stress (calculated as force divided by the cross-
sectional area in the undeformed configuration). Dashed lines correspond to
experiments and solid lines to simulations. Note that for 3 < �0.20 the porous
structure 4.4.4.4. shows a stiffening behavior due to densification. A similar
response is observed also for the other three structures, but for larger values of
applied strain 3. (B) Table summarizing the mechanical properties of the four
periodic structures measured from experiments and simulations.

Communication Soft Matter

Pu
bl

is
he

d 
on

 3
1 

M
ay

 2
01

3.
 D

ow
nl

oa
de

d 
by

 H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
19

/0
6/

20
13

 1
6:

36
:5

4.
 

View Article Online
strain, leading to the formation of a periodic array of elongated,
almost closed ellipses, as shown in Fig. 2D for 3 ¼ �0.21. Since
the specimens are made of an elastomeric material, the process
is fully reversible and repeatable. Upon release of the applied
vertical displacement, the deformed structures recover their
original congurations.

Interestingly, Figs. 2C–D clearly shows that the porous
structures 3.6.3.6 and 3.4.6.4 buckle into a chiral pattern, while
the initially expanded congurations are non-chiral. Therefore,
in these two systems buckling acts as a reversible chiral
symmetry breaking mechanism. Despite many studies on
pattern formation induced by mechanical instabilities,15

relatively little is known about the use of buckling as a reversible
chiral symmetry breaking mechanism. Although several
processes have been recently reported to form chiral
patterns,19–23 all of these work only at a specic length-scale,
preventing their use for the formation of chiral structures over a
wide range of length scales, as required by applications.
Furthermore, most of these chiral symmetry breaking processes
are irreversible19–21 and only few systems have been demon-
strated to be capable of reversibly switching between non-chiral
and chiral congurations.22,23 Remarkably, since the mecha-
nism discovered here exploits a mechanical instability that is
scale independent, our results raise opportunities for reversible
chiral symmetry breaking over a wide range of length scales.

Both experiments and simulations reported in Fig. 2 clearly
indicate that the onset of instability is strongly affected by the
arrangement of the holes. A more quantitative comparison
between the response of the structures investigated in this
paper can be made by inspecting the evolution of stress during
both experiments and simulations (see Fig. 3). Although all
structures are characterized by roughly the same porosity, the
This journal is ª The Royal Society of Chemistry 2013
hole arrangement is found to strongly affect both the effective
modulus Ē (calculated as the initial slope of the stress–strain
curves reported in Fig. 3) and the critical strain 3cr (calculated as
the strain at which the stress–strain curves reported in Fig. 3
plateau), demonstrating that through a careful choice of the
Soft Matter
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architecture materials with the desired response can be
designed.

A clear feature in Fig. 2 is that aer instability the lateral
boundaries of three samples (i.e. 4.4.4.4, 3.6.3.6 and 3.4.6.4)
bend inwards, a clear sign of negative Poisson's ratio.24,25 To
quantify the lateral contraction (and thus the negative Poisson's
ratio) of the porous structures, we investigate the evolution of
the microstructure during both experiments and simulations.
The physical samples were marked with black dots (see Fig. 2)
and their position was recorded using a high-resolution digital
camera and then analyzed by digital image processing (MAT-
LAB). We focused on the central part of the samples where the
response was clearly more uniform and marginally affected by
the boundary conditions. For each structure we constructed
several parallelograms connecting the markers in the central
part of the sample (see Fig. 2A and 4A and ESI† for details) and
monitored their evolution. For each parallelogram, local values
of the engineering strain 3xx and 3yy were calculated from the
positions of its vertices at each recorded frame t as

3xxðtÞ ¼ ðx4ðtÞ � x3ðtÞÞ þ ðx2ðtÞ � x1ðtÞÞ
2jL0

34j
� 1; (1)

3yyðtÞ ¼ ðy1ðtÞ � y3ðtÞÞ þ ðy2ðtÞ � y4ðtÞÞ
2jL0

13jcos q
� 1; (2)

where (xi, yi) denote the coordinates of the i-th vertex of the
parallelogram, |L034| and |L013| are the norm of the lattice vectors
spanning the parallelogram in the undeformed conguration
Fig. 4 (A) Schematic diagram of the central parallelograms used to compute �n

and �ninc. (B) Macroscopic Poisson's ratio �n and �ninc as a function of the local
nominal strain �3yy for all the four periodic porous structures. Finite element
simulations are performed on infinite periodic structures. Error-bars on experi-
mental curves are standard deviation of the quantity calculated for multiple
parallelograms in the central region (see ESI†).

Soft Matter
(see Fig. 4A) and q ¼ arccos
L034$L

0
13

jL034jjL013j
. The local values of the

engineering strain were then used to calculate local values of
Poisson's ratio as

nðtÞ ¼ � 3xxðtÞ
3yyðtÞ ; (3)

and

nincðtÞ ¼ � 3xxðtþ DtÞ � 3xxðtÞ
3yyðtþ DtÞ � 3yyðtÞ : (4)

Note that n characterizes the lateral contraction/expansion of
the structure with respect to the initial/undeformed congura-
tion. Differently, ninc quanties the lateral contraction/expan-
sion with respect to the deformed conguration induced by an
increment in the applied strain D3 and allow us to describe the
Poisson's ratio of a material that operates around a pre-
deformed state. Finally, the ensemble averages �3xx ¼ h3xxi, �3yy ¼
h3yyi, �n ¼ hni, and �ninc ¼ hninci for the central parallelograms
under consideration were computed.

On the numerical side, to verify that the values of �n and �ninc
calculated from the experiments were not affected by the
boundary conditions, we considered innite periodic structures
and investigated the response of representative volume
elements (see insets in Fig. 4B) using periodic boundary
conditions (see ESI† for details). The evolution of the macro-
scopic Poisson's ratio was then obtained from simulation using
eqn (3) and (4), in this case with 3xx and 3yy denoting the
macroscopic component of the strain.

The evolution of the Poisson's ratios �n and �ninc as function of
the local engineering strain �3yy is presented in Fig. 4. As
expected, all the structures are characterized by initially positive
values of �n and �ninc. However, as previously observed for a square
array of circular holes,13,14 the dramatic pattern transformation
introduced by instability strongly affects the Poisson's ratio,
leading to enhanced compaction. Beyond the instability, �n is
found to monotonically decrease as a function of �3yy in all the
four structures and eventually becomes negative for three of
them. While �n gradually decrease aer instability, �ninc is char-
acterized by two plateaus. Before instability setting on, all
structure are characterized by a constant and positive value of
�ninc z 0.4. At instability, a rapid transition to a negative value
that then remains constant for increasing values of deformation
is observed. More specically, we nd that aer instability
�ninc4.4.4.4 z �0.95, �ninc3.3.3.3.3.3 z �0.39, �ninc3.6.3.6 z �0.78 and
�ninc3.4.6.4z�0.75. Therefore, our results reveal that instabilities
in the four periodic porous structures considered here can be
exploited to design materials and devices whose response is
characterized by large values of incremental negative Poisson's
ratio �ninc. The material will exhibit such unusual behavior if pre-
loaded beyond the instability point.

The results reported here clearly show that by carefully
choosing the initial architecture, materials with unconventional
response can be designed. In fact, our study demonstrates that
buckling in four different periodic porous structures may be
exploited to achieve large negative values of incremental
This journal is ª The Royal Society of Chemistry 2013
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Poisson's ratio and in two of them also to induce the formation
of chiral patterns. Furthermore, while in this study we focused
on the response of structures with j x 0.5, the void-volume-
fraction j can be also used to ne-tune the response of the
structures, as revealed by previous studies.13,14 To conrm the
robustness of desired buckling phenomena, detailed FE simu-
lations have been conducted to reveal that for structures with
porosity in the range j ˛ [0.4,0.6] buckling always lead to the
compact congurations shown in Fig. 2C (see ESI†), demon-
strating that the proposed folding mechanism can be effectively
exploited to design a new class of recongurable materials.

In summary, we have identied four periodic distributions
of mono-disperse circular holes in planar elastic structures
where mechanical instability can be exploited to reversibly
switch between expanded (i.e. with circular holes) and compact
(i.e. with elongated, almost closed elliptical holes) congura-
tions. Interestingly, in two of these structures (i.e. 3.6.3.6 and
3.4.6.4) the instability can be exploited to induce the formation
of a chiral pattern. Furthermore, in all the structures the pattern
transformation induced by instability is found to lead to large
negative values of macroscopic Poisson's ratio. Also, due to the
intrinsic characteristics of elastic buckling, our study opens
avenues for the design of novel responsive and recongurable
materials and devices over a wide range of length scales. In
particular, recent developments in microscale fabrication open
exciting opportunities for miniaturization of the proposed
structures, with potential applications ranging from tunable
mechanical metamaterials to switchable optics.

Finally we note that the design principles outlined in this
paper, which combine concepts of topology (i.e. tilings) and
mechanics (i.e. buckling), represent a powerful tool to design
recongurable structures and can be further extended to curved
surfaces and 3D structures.

This work has been supported by Harvard MRSEC through
grant DMR-0820484 and by NSF through grants CMMI- 1149456
(CAREER) and by the Wyss Institute through the Seed Grant
Program. K.B. acknowledges start-up funds from the Harvard
School of Engineering and Applied Sciences and the support of
the Kavli Institute and Wyss Institute at Harvard University.
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