
rspa.royalsocietypublishing.org

Research
Cite this article: Liu J, Bertoldi K. 2015 Bloch
wave approach for the analysis of sequential
bifurcations in bilayer structures. Proc. R. Soc. A
471: 20150493.
http://dx.doi.org/10.1098/rspa.2015.0493

Received: 23 July 2015
Accepted: 21 September 2015

Subject Areas:
mechanical engineering,
structural engineering

Keywords:
bifurcation, Bloch wave, bilayer

Authors for correspondence:
Katia Bertoldi
e-mail: bertoldi@seas.harvard.edu

Bloch wave approach for the
analysis of sequential
bifurcations in bilayer
structures
Jia Liu1 and Katia Bertoldi1,2

1Harvard John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA
2Kavli Institute, Harvard University, Cambridge, MA 02138, USA

A wide variety of surface morphologies can be formed
by compressing a bilayer comprising a thin film
bonded to a compliant substrate. In particular, as the
applied strain is increased, secondary instabilities are
triggered and the initial sinusoidal wrinkles evolve
into new complex patterns. Here, we propose a
robust numerical analysis based on Floquet–Bloch
boundary conditions to detect the primary and
secondary instabilities triggered upon compression.
Because the proposed method is based on unit
cell simulations, it is computationally very efficient.
Moreover, it accurately predicts not only the critical
strains, but also the corresponding critical modes and
their wavelengths, enabling us to follow the evolution
of the surface morphology as the applied strain is
progressively increased.

1. Introduction
Bilayers comprising a thin film bonded to a compliant
substrate wrinkle under compression [1–5]. Interestingly,
this observation has not only motivated the formulation
of theories to predict both the critical strain and the
wavelength of the wrinkles [6–9], but has also been
instrumental for a wide range of applications. These
include the design of tunable flexible electronics [10–13],
novel micro/nanofabrication techniques [14,15], optical
tunable devices [16,17] and adhesives [18,19], and
the development of new approaches to measure the
mechanical properties of thin films [20,21].

More recently, several experiments have revealed
that for large values of applied compressive strain the
wrinkles are no longer stable and new bifurcations occur,
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accompanied by changes of the wrinkled pattern. In particular, it has been shown that a second
bifurcation can result either in period doubling [22,23] and tripling [23] or in the formation of
chaotic patterns with mixed periodicities [24] and localized ridges [25–27]. Moreover, additional
instabilities have been triggered by further increasing the applied deformation, leading to period
quadrupling [22,23].

To understand these new bifurcations, both analytical and numerical approaches have been
developed. On the analytical side, linearized stability analyses superimposed on the deformed
wrinkled configuration have been used [28,29]. However, because the secondary bifurcation
are triggered at high values of applied compressive strain when both geometric and material
nonlinearities play an important role, these analytical approaches either result in limited accuracy
or require to be complemented by numerical calculations [28].

On the numerical side, the nonlinear finite-element (FE) method employing both finite size
[23,29,30] and unit cell [24,31] models has been successfully applied to capture the patterns
induced by these secondary bifurcations. Although within the FE framework the stability of
a structure can be easily examined using eigenvalue analyses [32], it is important to note
that the wavelength of the pattern induced by the instability in a infinitely long bilayer
system is a priori unknown. Therefore, the stability of models of different lengths capable
of accommodating wrinkled patterns of any wavelength should be investigated. The mode
associated with the minimum of the critical strains on all possible models should be then
selected as the critical one. However, given the significant computational cost associated
with this rigorous procedure, in recent studies the formation of complex patterns has been
investigated either by comparing the elastic energies of modes with a limited set of potential
periodicities [24,31] or by introducing an artificial damping coefficient and simulating directly
the post-buckling response [23,29,30]. A rigorous and efficient numerical approach to fully
track the sequential bifurcations observed during compression of an infinitely long bilayer is
still lacking.

Here, we present a robust and efficient numerical approach to accurately determine all
instabilities triggered in an infinitely long bilayer system upon compression. Our method is
based on the Floquet–Bloch boundary conditions [33], which have been recently proved valuable
to investigate the changes in periodicity induced by instabilities in infinite periodic structures
[34–38]. In fact, it has been shown that in such structures buckling can be explored considering
a given unit cell and investigating the propagation of small-amplitude perturbations of arbitrary
wavelength superimposed on the current state of deformation. While a real natural frequency
corresponds to a propagating wave, a complex natural frequency identifies a perturbation
exponentially growing with time. Therefore, the transition between a stable and an unstable
configuration is identified when the frequency vanishes and the periodicity of the associated
mode is provided by the wavelength of the perturbation. While in previous studies this procedure
has been successfully used to identify the first critical bifurcation, here we also extend it to capture
the secondary instabilities, providing a robust tool to accurately investigate the formation of
complex morphologies in bilayers.

The paper is organized as follows. After presenting the geometry (§2a), constitutive material
model (§2b) and loading conditions (§2c) considered in this study, in §2d,e, we describe the
numerical analysis that is used to investigate the primary and secondary bifurcations triggered
upon compression. Finally, numerical results are presented and discussed in §3, highlighting the
effect of the prestretch applied to the substrate on the formation of complex patterns.

2. Modelling
To study the response under uniaxial compression of a bilayer comprising a thin film bonded to a
compliant substrate, we perform nonlinear simulations on unit cell models using the FE package
ABAQUS/Standard. All models are constructed using eight-node quadratic quadrilateral plane
strain elements with reduced integration (CPE8R element type). Each mesh is most dense towards
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Figure 1. Schematic shows the deformation of the film–substrate bilayer system considered in this study. (a) A soft infinitely
long substrate is first stretched and then attached to a thin, rigid film.When subjected to compressive strain, sinusoidalwrinkles
emerge first, followed by amore complex pattern triggered by a second instability. (b) To investigate the response of the bilayer
under uniaxial compression, we start by performing a Bloch wave analysis on a unit cell of arbitrary length L. Such analysis
provides both the critical strain, εcr, and the wavelength of the critical mode, Lcr. A post-buckling analysis is then conducted
using a unit cell of length Lcr to capture the formation of the pattern triggered by the instability. Additional instabilities are
detected by performing the Bloch wave analysis on the deformed (wrinkled) unit cell. (Online version in colour.)

the top (where the thin film is bonded) and gradually coarsens as we move towards the bottom,
with approximately 9000 elements per unit cell.

Here, after briefly describing the material model and loading conditions, we present the
Bloch wave analysis that we perform on a unit cell to investigate the stability of the structure.
Interestingly, this analysis allows us to capture the strains and modes associated not only with
the critical instability, but also with the subsequent secondary bifurcations.

(a) Geometry
In this study, we consider a bilayer structure under plane strain conditions, as that shown in
figure 1. The system comprises an infinitely long, thin and stiff film of thickness hf perfectly
bonded to a prestretched compliant substrate. In particular, we assume that a prestretch λp is
applied to the substrate along the direction of the thin film prior to bonding. Finally, although
in the analytical calculations developed to predict the onset of the first critical bifurcation
the substrate is assumed to be infinitely thick [8], owing to computational limitations we set
hs = 4600hf, hs denoting the substrate thickness. Note that this choice for hs guarantees that the
substrate thickness is much greater (approx. 30 times) than the expected wrinkling wavelength,
so that the infinite substrate assumption is satisfied.
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(b) Material constitutive behaviour
In this study, both the substrate and the film are modelled as hyperelastic materials. In particular,
their stress–strain response is captured using a nearly incompressible neo-Hookean model [39],
whose strain energy is given by

W = μ

2
(I1 − 3) − μ log J + K

2
(J − 1)2, (2.1)

where μ and K are the initial shear and bulk moduli, respectively. Moreover, I1 = tr FTF and
J = det(F), where F = ∂x/∂X denotes the deformation gradient—a linear transformation which
maps a material point from its reference position X to its current location x. For such material,
the Cauchy stress, σσσ , is given by

σ = 2
J

∂W
∂I1

B + ∂W
∂J

I = μ

J
B + K(J − 1)I − μ

J
I, (2.2)

where I is the identity tensor and B = FFT.
In all our analyses, we use μs = 0.15 MPa and μf = 6.67 GPa as shear moduli of the substrate

and film, respectively. Moreover, we assume Ks = 1000 μs and Kf = 1000 μf, corresponding to
Poisson’s ratios νs = νf = 0.4995. The resulting Young’s moduli are Es = 2μs(1 + νs) = 0.45 MPa
and Ef = 2μf(1 + νf) = 20 GPa.

Finally, to describe the effect of prestretch in the substrate, we decompose the deformation
gradient into a loading component, Fl, and a prestretch component, Fp, [40,41]

F = Fl · Fp, where Fp = diag(λp,
1
λp

, 1). (2.3)

The material behaviour described by equations (2.2) and (2.3) was implemented into the
commercial software ABAQUS/Standard through a user defined material subroutine UMAT.

(c) Loading conditions
A plane–strain deformation in the X–Y plane is considered, where the bilayer is compressed in the
horizontal direction (i.e. in the direction of the thin film) by applying a strain ε. To subject the unit
cells used in this study to such deformation, we define periodic boundary conditions on their two
vertical edges (because the structure is periodic only along the horizontal direction). Focusing on
pairs of nodes periodically located on the left and right edges, we relate their displacements (ux

and uy) as [37,42]
ur

x − ul
x = ε(Xr − Xl), ur

y − ul
y = 0, (2.4)

where the superscripts r and l denote quantities associated with nodes on the right and left edges,
respectively. Moreover, we assume traction free boundary conditions on the top and bottom
edges. Note that equations (2.4) are implemented into ABAQUS/Standard via linear multi-point
constraints and the virtual node approach [37,42].

(d) Instability analysis: Bloch wave analysis
Although the wavelength of the wrinkled pattern triggered at instability is a priori unknown,
buckling can still be rigorously studied on a unit cell of fixed length L by investigating the
propagation of small-amplitude waves of arbitrary wavelength superimposed on the current state
of deformation [37,43]. Because a wave motion can be described as u(x, t) = ũ(x)eiωt, it is easy to
see that waves with real natural frequency ω correspond to propagating (stable) perturbations,
whereas waves with imaginary natural frequencies ω correspond to exponentially growing
(unstable) perturbations. Therefore, the onset of instability is identified when ω changes from
real to imaginary (i.e. when a wave with vanishing frequency, ω = 0, is detected). The periodicity
and deformation of the associated mode is then provided by the wavelength and Bloch mode of
the perturbation.
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To investigate the stability of the considered bilayer, we first finitely deform the unit cell by
applying a strain ε and then investigate the propagation of small amplitude elastic waves in the
deformed configuration. To this end, we apply Bloch-periodic boundary conditions [33] on the
two vertical edges of the unit cell,

ũr = ũl exp(ikL), (2.5)

where ũ = (ũx, ũy) is the incremental displacement associated with the perturbation, L is the
undeformed length of the unit cell and k is the magnitude of the wavevector k = kex. In our
analysis, we consider a large number of k vectors in the reciprocal lattice (i.e. k ∈ [0, 2π/L])
and calculate the frequency ω of the waves associated with each k using a linear perturbation
procedure (module *FREQUENCY in ABAQUS). An instability is detected at the smallest
magnitude of compressive strain, εcr, where we find a wavevector kcr = kcrex associated with
a wave with ω = 0. The periodicity of the pattern induced by the instability is then obtained as

Lcr = 2π

kcr
, (2.6)

and the pattern can be easily reconstructed using the corresponding mode shape.
Finally, we note that to work with the complex-valued relations of the Bloch-periodic

conditions (equation (2.5)) in a commercial software such as ABAQUS/Standard, all fields are
split into real and imaginary parts and two identical FE meshes are used for the unit cell [37,44].

(e) Post-buckling analysis: formation of complex patterns
Conclusively, to investigate the formation of complex wrinkled patterns in the bilayer system, we
use the Bloch wave analysis in combination with post-buckling analysis. In particular, as shown
in figure 1b,

(i) we perform the Bloch wave analysis on a unit cell of arbitrary length L to detect the critical
strain, εcr, and the associated mode with periodicity Lcr;

(ii) we create a new unit cell of length Lcr and introduce an imperfection in the form of the
critical mode;

(iii) we perform a nonlinear static analysis and apply a strain ε < εcr to capture the formation
of the wrinkled pattern induced by the instability;

(iv) we repeat the Bloch wave analysis on the wrinkled unit cell of length Lcr to detect
the critical strain, εcr,2, and mode with periodicity Lcr,2 associated with the second
bifurcation;

(v) we create a new unit cell of length Lcr,2 and introduce an imperfection in the form of a
combination of the critical modes associated with the first and second bifurcation;

(vi) we perform a nonlinear static analyses and apply a strain ε < εcr,2 to capture the formation
of the complex wrinkled pattern induced by the second bifurcation; and

(vii) we repeat the same procedure to detect additional bifurcations encountered during
loading.

3. Results
Here, we present numerical results obtained from the unit cell analysis discussed in §2d,e. To
validate the proposed method, we first compare the numerically calculated critical strain and
wrinkle wavelength associated with the first bifurcation to analytical predictions. Then, we show
that our numerical analysis correctly captures the different types of secondary bifurcations that
have been observed when the prestretch applied to the substrate is varied.

(a) First bifurcation
It is well known that sinusoidal wrinkles form almost immediately when a compressive strain is
applied to a bilayer and that the magnitude of the critical strain, |εcr|, decreases as the stiffness
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contrast between the film and substrate increases. In particular, for the case of a neo-Hookean
substrate subjected to a prestretch λp and bonded to an elastic beam, it has been shown that εcr is
given by [23]1

εcr = −
λpk̄4 + 4(1 + λ2

p)Qk̄3 + 6λp(1 − λ2
p)2Qk̄2 + 12λ4

p(1 + λ2
p)Qk̄ + 24λ3

p(1 + λ4
p)Q2

12λ2
pk̄[λpk̄ + (1 + λ2

p)Q]
, (3.1)

and that the wavelength of the wrinkles, Lcr, can be obtained by solving [23]

2λ2
p

Q3(1 + λ2
p)

k̄5 + 7λp

Q2 k̄4 +
8(1 + λ2

p)

Q
k̄3 − 6λ

Q2 [2λ4
p + (λ2

p − 1)Q]k̄2

−
48λ4

p(1 + λ4
p)

Q(1 + λ2
p)

k̄ − 24λ3
p(1 + λ4

p) = 0, (3.2)

where k̄ = 2πλphf/Lcr is the scaled wavevector and Q = μs(1 − νf)/(2μf) is the scaled stiffness
ratio. Note that in the limit case of no prestretch applied to the substrate (i.e. λp → 1),
equations (3.1) and (3.2) reduce to the well-known results obtained assuming linear elasticity [8],

εcr = −1
4

(
3Ēs

Ēf

)2/3

and Lcr = 2πhf

(
Ēf

3Ēs

)1/3

, (3.3)

where Ēf = Ef/(1 − ν2
f ) and Ēs = Es/(1 − ν2

s ) are the plane strain moduli of the film and substrate,
respectively.

While in previous numerical analysis, these analytical results are taken as input and used
to determine the size of the FE model [30], here we use them to validate the stability analysis
discussed in §2d. We start by considering a stress-free substrate (i.e. λp = 1) and choose the
length of the unit cell to be one-fourth of the predicted wavelength (i.e. L = 0.25Lcr). We then
progressively increase the applied compression and after each strain increment 	ε = −2.0 × 10−4

we check the propagation of waves characterized by a wavevector ranging from k = 2π/(20L) to
k = 2π/L with an increment of 	k = 2π/(20L).

The results of the Bloch wave analyses are shown in figure 2a. In the plot, we report the
evolution of the squared frequency, ω2, as a function of the applied strain ε for seven different
wavevectors. In the undeformed configuration (i.e. ε = 0), all frequencies are positive. However,
as ε increases in magnitude, the frequencies associated with each wavevector k gradually
decrease and eventually become negative. The critical strain parameter associated with each k
can be easily extracted from the plot, because it corresponds to the intersection point between
each curve and the horizontal line (ω = 0). Finally, the onset of instability for the bilayer is
defined as the minimum critical strain on all the considered k. As expected, the frequency
associated with k = 2π/(4L) vanishes first at εcr = −4.14 × 10−4, yielding a perfect match with
the analytical predictions (equation (3.3)). Moreover, the critical mode can be reconstructed from
the corresponding Bloch mode. As shown in figure 2b, the wrinkled pattern is characterized by a
perfect sinusoidal profile, as predicted analytically.

Next, we repeat the same analysis on bilayers in which the substrate is subjected to different
amounts of prestretch λp and compare the numerical results with the analytical solutions. The
results reported in figure 2c,d show that the numerical analysis correctly capture the evolution
of both the critical strain, εcr, and wavelength, Lcr, as a function of λp, further validating the
proposed numerical analysis.

(b) Second bifurcation
If the compressive strain is further increased after the formation of sinusoidal wrinkles,
new instabilities can be triggered, resulting in significant changes of the surface morphology

1Note that in the derivation of equations (3.1) and (3.2), the magnitude of critical strain, εcr, is assumed to be much smaller
than the prestretch, λp (i.e. |εcr| � λp).
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Figure 2. First bifurcation. (a) Bloch wave results for a stress-free bilayer (λp = 1.0). In the plot, we report evolution of the
squared frequency, ω2, as a function of the applied strain for seven different values of the wavevector. (b) Critical mode
for a stress-free bilayer (λp = 1.0). The first unit cell on the left is the Bloch mode obtained from the stability analysis.
The deformation of the four neighbouring cells is constructed applying Bloch-periodic boundary conditions (equation (2.5)).
(c) Evolution of the critical strain, εcr, as a function of the prestretch,λp, as predicted by the analytical solution (equation (3.1),
continuous line) andnumerical simulations (markers). (d) Evolutionof the criticalwavelength, Lcr, as a functionof theprestretch,
λp, as predicted by the analytical solution (equation (3.2), continuous line) andnumerical simulations (markers). (Online version
in colour.)

[22,23,25–27]. It has been recently shown that these post-wrinkling bifurcations are highly
affected by the prestretch applied to the substrate [24,45]. In particular, (i) for 1.4 ≥ λp ≥ 0.7,
the second bifurcation has been found to be associated with period doubling and to be
followed by a third instability resulting in period quadrupling [22,23]; (ii) for λp ≤ 0.7 (large
precompression) the formation of chaotic patterns with mixed periodicities has been observed
[24]; (iii) finally, for λp ≥ 1.4 (large pretension) it has been shown that localized ridges
emerges [25–27].

Here, we first focus on a stress-free substrate (i.e. λp = 1.0) and show that in this case our
numerical analysis correctly captures the second bifurcation that results in period doubling.
Moreover, our stability analysis also detects a third bifurcation accompanied by period-
quadrupling when the applied compression is further increased. Then, we investigate the
response of a bilayer in which the substrate is largely precompressed (i.e. λp ≈ 0.6). In this case,
our numerical analysis indicates that several modes are triggered almost simultaneously. As a
result, they interact upon loading and lead to the formation of chaotic patterns. Finally, we study
the response of a bilayer in which the substrate is largely pretensioned (i.e. λp = 2.0) and find that
the secondary instability results in the formation of ridges.
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predicted critical mode. (Online version in colour.)

(i) Stress-free substrate: period doubling and quadrupling

To investigate the response under large values of applied compression of a bilayer system with a
stress-free substrate (i.e. λp = 1), we use a unit cell of length Lcr (Lcr = 154hf being the wavelength
predicted by the first bifurcation analysis). We first introduce a geometric imperfection into the
mesh in the form of the critical sinusoidal mode with an amplitude of 0.05hf and then compress
the system by applying a uniaxial strain ε. As expected, for ε < εcr = −4.14 × 10−4 a sinusoidal
wrinkled pattern emerges and becomes more accentuated as the magnitude of the applied strain
is increased.

For ε < εcr, we monitor the stability of the wrinkled pattern by investigating the propagation of
small-amplitude waves superimposed to the deformed configuration after each strain increment
	ε = −0.01. Note that in this case we consider wavevectors k = 2π/(m Lcr), where m is an integer
number that varies from 2 to 20. In fact, while for the first bifurcation any wavelength is possible
(so that, in principle, any wavevector within the reciprocal lattice should be considered), for this
second instability the periodicity of the new pattern should be a multiple of the wavelength of
the sinusoidal mode, Lcr.

The results of this stability analysis are reported in figure 3a, where only the frequencies
associated with five wavevectors are shown for the sake of clarity. The numerical data clearly
show that at ε = εcr,2 = −0.187 the mode resulting in period doubling (i.e. kcr,2 = 2π/(2Lcr))
becomes unstable, in good agreement with previous studies [24,29]. The mode triggered by this
second bifurcation is then reconstructed from the corresponding Bloch mode and is reported in
figure 3b, showing that neighbouring valleys alternatively sink and rise.

To capture the formation of this complex pattern, we then use a unit cell with length of
Lcr,2 = 2Lcr and introduce a geometric imperfection in the form of the mode shown in figure 3b
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with an amplitude of 0.05hf. The model is then uniaxially compressed and snapshots of its
deformed configurations at different levels of applied strain ε are shown in figure 3c. Clearly,
for ε > −0.187, the bilayer is characterized by a sinusoidal wrinkled pattern. However, as ε is
decreased below εcr,2 one of the valleys rises, whereas the other becomes more pronounced,
resulting in a pattern similar to that shown in figure 3b.

Again, for ε < εcr,2, we monitor the stability of this new, more complex surface pattern
after each strain increment 	ε = −0.01 by investigating the propagation of small amplitude
waves with k = 2π/(mLcr,2) (m ∈ [2, 20]) superimposed on the deformed configuration. The results
reported in figure 4a indicate that at ε = εcr,3 = −0.256 a wave with vanishing frequency exists for
k = 2π/(2Lcr,2). Therefore, at εcr,3, a third instability is triggered resulting again in period doubling
(period quadrupling with respect to the initial sinusoidal wrinkled pattern). The reconstructed
mode shown in figure 4b shows that neighbouring valleys alternatively sink and rise, resulting
in the formation of pronounced folds. Finally, we use a unit cell with Lcr,3 = 4Lcr to investigate
the post-buckling deformation. Snapshots reported in figure 4c show how the deformation
evolves up to a compressive strain ε = −0.3. As predicted by the stability analysis, for ε < εcr,3
the wavelength of the pattern becomes 4Lcr and pronounced folds emerge. Note that similar
deformed configurations have been observed in experiments when large compressive strains are
applied [22,23].

The above-reported post-buckling results are obtained performing unit cell simulations with
periodic boundary conditions. To further validate the results, we also conduct dynamic implicit
simulations using ABAQUS/Standard. For this set of simulations, we use a finite size model
of length 12Lcr and, to facilitate convergence, we introduce some artificial, numerical damping
(by setting the parameter α in the Hilber–Hughes–Taylor time integration algorithm equal to
−0.1). Moreover, quasi-static conditions are ensured by monitoring the kinetic energy, and
no geometric imperfection is introduced (because the numerical imperfection introduced by
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the integration algorithm is enough to trigger the formation of wrinkles). Considering the
tremendous computational cost, we use four-node linear quadrilateral plane strain elements with
reduced integration (CPE4R element type) and reduce the mesh density, resulting in a total of
13 000 elements. Finally, in these simulations, we uniformly displace horizontally all the nodes
on the right edge, while constraining the horizontal displacement of the left edge (note that the
vertical displacement of all the nodes on both the left and right edges is unset).

In figure 5, we report three snapshots from the dynamic implicit simulation at ε = −0.08,
−0.21 and −0.271. The results perfectly agree with the predictions of our stability analysis and
confirm that for bilayers comprising moderately prestretched substrates the surface morphology
evolves from a perfectly sinusoidal pattern (see snapshot at ε = −0.08) to a pattern with double
(see snapshot at ε = −0.21) and then quadruple (see snapshot at ε = −0.271) wavelength.

(ii) Largely precompressed substrate: chaotic patterns

Next, we investigate the response of a bilayer in which the substrate is largely precompressed and
assume λp = 0.63. As for the case of the stress-free substrate, we choose a unit cell of length Lcr (in
this case Lcr = 174hf) and monitor the stability of the sinusoidal wrinkled pattern that emerges
upon compression by conducting the Bloch wave analysis. The results reported in figure 6a
show that at ε = εcr,2 = −0.0125 a second bifurcation is triggered, this time resulting in period
tripling (because kcr,2 = 2π/(3Lcr)). However, differently for the case of the stress free substrate
where the critical strain associated with higher modes are well separated, the modes resulting in
period tripling, doubling and quadrupling have very close critical strains (−0.0125, −0.013 and
−0.013, respectively). Therefore, we expect that these modes interact upon loading, resulting in
the formation of a chaotic pattern.

As a result, although the snapshots reported in figure 6c show that for a unit cell of length
3Lcr with periodic boundary conditions period tripling occurs when ε < εcr,2, we do not expect to
observe such periodic pattern in a long bilayer. To substantiate this point, we perform dynamic
implicit simulations on a finite size model of length 12Lcr (note that these simulations are
performed exactly as described in §3b(i)). The snapshots reported in figure 7 confirm that a
chaotic pattern emerges when the bilayer is largely compressed. In fact, while at ε = −0.011, a
sinusoidal pattern is observed, at ε = −0.013, the periodicity is lost and we do not see any sign of
period tripling.
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Finally, we perform the Bloch wave analysis also for bilayers characterized by λp = 0.61 and
λp = 0.59. The results shown in figure 8 are similar to those reported in figure 6, except that the
critical mode in this cases results in period quadrupling and quintupling, respectively. However,
in both cases, the critical strains associated with the first few modes are still very close, so that we
expect again the formation of chaotic patterns when the system is largely compressed.

(iii) Largely pretensioned substrate: ridges

Finally, we study the response under uniaxial compression of a bilayer comprising a largely
pretensioned substrate (λp = 2.0). In this case, sinusoidal wrinkles with wavelength Lcr = 114hf
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start to form at εcr = −7.6 × 10−4 and we investigate their stability by conducting a Bloch wave
analysis. The results reported in figure 9a indicate that a second bifurcation is triggered at
εcr,2 = −0.0264. The corresponding mode shown in figure 9b has wavelength Lcr,2 = 7Lcr and is
characterized by the flattening of several wrinkles and the rising of a few ridges.

We then investigate how the surface morphology evolves for ε < εcr,2 by uniaxially
compressing a unit cell of length 7Lcr with an imperfection in the form of the critical mode shown
in figure 9b. Because it has been recently shown that the ridges are the result of a snap-through
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instability [28,45], for this nonlinear static analysis, we use the pseudo-dynamic method and
introduce a viscous force in the equilibrium equations (such force is defined as a damping factor,
δ = 0.0002, times the nodal velocity times an artificial mass matrix with unit density) [45]. Note
that such velocity-dependent damping provides numerical stabilization when loss of stability
occurs and allows the unstable transition from wrinkles to ridges to take place (differently from
the case studied in previous sections, without this damping term, the simulations are found to
stop at the onset of the second instability).

In figure 9c, we report numerical snapshots of the deformed bilayer at different levels of
applied strain. The amplitude of the sinusoidal wrinkles is found to grow up to a strain of
ε = −0.027. At that point, the wrinkles become unstable and a localized ridge abruptly forms,
while the neighbouring wrinkles almost vanish. Note that the pattern emerging from the
nonlinear static analysis comprises a single ridge and is different from that predicted by the
stability analysis (figure 9b). This is because the transition from wrinkles to ridges is unstable.

Finally, we conduct an implicit dynamic simulation and study the response under compression
of a finite size model of length L = 12Lcr. The results reported in figure 10 indicate that also in this
case an abrupt transition from wrinkles to a single ridge occurs. Note that the strain at which it
occurs (ε = −0.0251) is higher than that predicted by the nonlinear static analysis (ε = −0.027). We
attribute this discrepancy in the critical strain to the damping introduced in the simulations [45].

4. Conclusion
In summary, we have proposed a robust numerical approach based on the Bloch wave analysis
to capture the successive bifurcations triggered in an infinitely long bilayer structure upon
compression. We have shown that using computationally efficient unit cell simulations the critical
loads, modes and wavelength associated with the primary and secondary bifurcations can be
detected and a deeper understanding of the highly nonlinear response of the system can be
gained. First, we have validated the proposed approach by comparing the results numerically
obtained for the first bifurcation with available analytical solutions. Then, we have used the
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analysis to investigate the effect of the prestretch applied to the substrate on the secondary
bifurcations. For the case of a stress-free substrate, we have found that upon compression
two secondary instabilities are triggered. In both cases, the eigenvalues associated with the
different modes are well separated, so that the one with the lowest eigenvalue invariably
grows, resulting in period doubling followed by period quadrupling. Differently, for largely
precompressed substrates, our analysis indicates that the secondary bifurcation is characterized
by the appearance of closely spaced modes. This observation explains the formation of chaotic
patterns that have been experimentally observed [24]. In fact, we expect the closely spaced modes
to interact during loading, resulting in a pattern without a well-defined periodicity. Finally, for
largely pretensioned substrates we find that the second instability results in the formation of
ridges. Different from the other cases, the transition from wrinkles to ridges is unstable, resulting
in an abrupt change of the surface morphology.

Compared with standard nonlinear FE simulations performed on finite-size models, our
methods reveal new aspects of the nonlinear response of bilayers upon compression, facilitating
the design of system with target behaviour. Interestingly, although the proposed method assumes
that the pattern triggered at the onset of the instability is periodic, the emergence of irregular
and chaotic surface morphologies can be still detected when closely spaced modes appear (but
classical FE algorithms such as the dynamic implicit method are then required to capture the
details of the emerging non-periodic pattern). Moreover, it is also computationally more efficient
than the approach typically used to numerically investigate the stability of infinitely long bilayers.
While traditionally a large number of models of various size are constructed and the critical strain
of the infinitely long structure is then defined as the minimum of the critical strains on all possible
models (obtained using a linear perturbation procedure), here we focus on a single, minimal unit
cell, significantly reducing the number of degrees of freedom (note that the computational time
is approximately cubic on the number of degrees of freedom). We also note that in this study to
detect an instability we progressively increase the applied compressive strain by a fixed amount
and then perform the Bloch wave analysis on the deformed configuration. While this approach
is straightforward to implement, its convergence is slow. However, if only the critical bifurcation
point is of interest, an efficient root-finding algorithm (such as the bisection or Newton’s methods)
can be used to more quickly detect the critical point. Finally, although in this paper we consider
the simple case of a two-dimensional bilayer structure with both layers made of a neo-Hookean
material, the proposed approach can be extended to study more challenging three-dimensional
geometries as well as different material models.
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