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We report a new class of tunable and switchable acoustic metamaterials comprising resonating units
dispersed into an elastic matrix. Each resonator consists of a metallic core connected to the elastomeric
matrix through elastic beams, whose buckling is intentionally exploited as a novel and effective approach to
control the propagation of elastic waves. We first use numerical analysis to show the evolution of the locally
resonant band gap, fully accounting for the effect of nonlinear pre-deformation. Then, we experimentally
measure the transmission of vibrations as a function of the applied loading in a finite-size sample and find
excellent agreement with our numerical predictions. The proposed concept expands the ability of existing
acoustic metamaterials by enabling tunability over a wide range of frequencies. Furthermore, we
demonstrate that in our system the deformation can be exploited to turn on or off the band gap, opening
avenues for the design of adaptive switches.
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Artificially structured composite materials that enable
manipulation and control of elastic waves have received
significant interest in recent years [1], not only because of
their rich physics, but also for their broad range of
applications, including wave guiding [2–7], cloaking [8]
and noise reduction [9–11]. An important characteristic of
these heterogeneous systems is their ability to tailor the
propagation of elastic waves due to the existence of band
gaps—frequency ranges of strong wave attenuation. In
phononic crystals, band gaps are generated by Bragg
scattering [12], whereas in acoustic metamaterials, local-
ized resonance within the medium is exploited to attenuate
the propagation of waves. Analogous to the case of
photonic crystals where split-ring resonators have been
embedded within a medium to excite electromagnetic
resonances [13,14], in acoustic metamaterials the internal
resonance is typically realized by dispersing heavy inclu-
sions coated with a soft layer into a matrix [15].
Interestingly, acoustic metamaterials are capable of
manipulating waves with wavelengths much larger than
the structural features of the system [15] and have been
successfully exploited for vibration control [16,17], imag-
ing [18], design of exotic elastic solids [19,20], and thermal
management [21].
Most of the phononic and acoustic metamaterial con-

figurations proposed to date are characterized by a passive
response and operate at fixed frequency ranges, limiting the
number of possible applications. In an effort to design
tunable systems, it has been shown that Bragg-type band
gaps can be controlled by instability-induced pattern trans-
formations [22–24]. On the other hand, for acoustic
metamaterials, tuning of functionalities has been achieved
by altering the resonant frequency via piezoshunting [25],

adaptive connectivity [26], and fluid-structure inter-
actions [27].
Here, we report a new class of adaptive acoustic

metamaterials whose response is controlled by mechanical
deformation. In the proposed metamaterial, the elastomeric
coating that typically surrounds the resonating mass is
replaced by easy-to-buckle elastic beams, as shown in
Fig. 1(a). When the system is compressed statically, these
beams buckle at a relatively low level of applied uniaxial

FIG. 1 (color online). Tunable acoustic metamaterial: (a) The
undeformed configuration comprises resonating units dispersed
into an elastomeric matrix. Each resonator consists of a metallic
mass connected to the matrix through elastic beams, which form a
structural coating. The black regions in the picture indicate voids
in the structure. The unit cell size is A0 ¼ 50.0 mm. (b) When a
compressive strain ε ¼ −0.10 is applied in the vertical direction,
buckling of the beams significantly alters the effective stiffness of
the structural coating, which in turn changes the band gap
frequency.
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strain ε, as seen in Fig. 1(b) for ε ¼ −0.1. Interestingly,
buckling dramatically alters the stiffness of the beams and
consequently the natural frequency of the resonating units,
which in turn determines the frequency range of the
band gap.
Through a combination of analyses and experiments, we

demonstrate that elastic instability and deformation can be
exploited to effectively tune and even completely suppress
the band gaps of the system. Hence, the metamaterial can
be used as an acoustic switch that provides on or off
capabilities.
To fully understand the effect of deformation on the

propagation of small amplitude elastic waves in the
proposed acoustic metamaterial, we focus on the elastic
system shown in Fig. 1 (the structure is uniform in the out-
of-plane dimension with height of 50.0 mm). Here we
consider a square array of locally resonant unit cells with
center-to-center distance A0 ¼ 50.0 mm, but the response
of the system is not affected by the spatial arrangement of
the resonators [28,29]. Each resonating unit comprises (i) a
portion of the elastomeric matrix, (ii) a metallic circular
core with radius R0 ¼ 7.9 mm, and (iii) four beams with
length L0 ¼ 16.9 mm and thickness t0 ¼ 1.8 mm that
connect the metallic core to the matrix.
Both the beams and the matrix are made of silicon rubber

(Elite Double 32, Zhermack) with measured shear modulus
μ0 ¼ 4.44 × 105 N=m2, Poisson’s ratio ν0 ¼ 0.499, and
density ρ0 ¼ 1050 kg=m3 (so that in the undeformed
homogeneous material the elastic wave speeds are cT ¼
20.6 m=s and cL ¼ 460.1 m=s for shear and pressure
waves, respectively). Differently, the metallic cores are
built using copper rods (with shear modulus μCu ¼
4.78 × 1010 N=m2, Poisson’s ratio νCu ¼ 0.34 and density
ρCu ¼ 8960 kg=m3).
We first investigate the effect of uniaxial compression on

the static and dynamic responses of the system via finite
element (FE) simulations using the commercial software
ABAQUS/STANDARD. In the simulations we focus on a
representative volume element comprising a single reso-
nating unit [see Fig. 2(a)] and use periodic and Bloch-type
boundary conditions for the static and dynamic analyses
[23], respectively. Two-dimensional (2D) models are con-
structed using quadrilateral plane strain hybrid quadratic
elements (Abaqus element type CPE8 H) and the response
of the elastomeric matrix is described by a nearly incom-
pressible Neo-Hookean model with initial shear modulus
μ0 and Poisson’s ratio ν0.
To begin with, we focus on the static response of the unit

cell and perform a linear perturbation analysis to investigate
the stability of the beams. A local instability is detected at
εcr ¼ −0.0247, associated with buckling of the two vertical
beams. The postbuckling response of the system is then
simulated by introducing small random imperfections into
the initial geometry and performing a nonlinear static
analysis. Snapshots of the deformed configurations at

different levels of the applied strain are shown in
Fig. 2(a). As predicted by the stability analysis, when
the structure is compressed uniaxially in the vertical
direction, the two vertical beams buckle at εcr.
Moreover, the buckling of vertical beams is also accom-
panied by rotation of the metallic core that, in turn, results
in the stretching of the two horizontal beams. In Figs. 2(b)
and 2(c) we show the significant effect of the applied
deformation on the axial and tangential forces transmitted
by the beams to the matrix. Initially, most of the load is
carried by the two vertical beams in their axial direction.
However, after the onset of instability the axial stress in the
vertical beams is found to plateau, while both the axial and
tangential force components transmitted by the horizontal
beams significantly increase due to their stretching induced
by the rotation of the metallic core. Hence, our results
indicate that the applied deformation significantly alters the
effective stiffness of the resonator.
Next, we numerically investigate the effect of such

change in effective stiffness on the propagation of small
amplitude elastic waves. For this, we calculate the
dispersion relations for both the undeformed and deformed
configurations using frequency domain analyses, fully
accounting for the effect of precompression [23,29].
In Fig. 3(a) we report the dispersion relation of the

metamaterial in the undeformed configuration, while in
Fig. 3(b) the Bloch mode shapes of the four lowest bands at
the high-symmetry points, X, M, and Y of the Brillouin
zone are shown [29]. For clarity, in Fig. 3(a) we use red

FIG. 2 (color online). Static response: (a) Distribution of the
normalized Von Mises stress, σVM=μ0 at different levels of
applied strain ε. (b) Effect of the applied deformation on the
reaction force transmitted by the vertical beams to the matrix. The
normalized reaction forces acting both in axial (normal compo-
nent), Snormal ¼ Rnormal=ðt0μ0Þ, and tangential (shear component),
Sshear ¼ Rshear=ðt0μ0Þ, are reported, Rnormal and Rshear denoting
the total reaction force measured at the end of the beam in the
normal and tangential directions, respectively. (c) Effect of the
applied deformation on the force transmitted by the horizontal
beams to the matrix.
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and blue lines to represent pressure-dominated (longi-
tudinal) and shear-dominated (transversal) wave modes,
respectively. Interestingly, the first three modes at X, M,
and Y show a strong localization of vibration, with only the
metallic core vibrating and the matrix mostly at rest. By
contrast, the fourth mode at X,M, and Y points has a global
nature, since the entire matrix vibrates while the modal
displacement of metallic core is negligible. We note that

similar modal patterns have been observed not only in
acoustic metamaterials [15,34], but also in photonic crys-
tals [35]. Further inspection of the modes reveals that the
first localized mode [black line in Fig. 3(a)] is purely
rotational, so that it has a very weak coupling with the
propagating shear and pressure waves and does not open a
band gap [34]. Differently, in the second and third modes
the resonators interact with the shear and pressure waves,
respectively. This coupling between the vibration of the
metallic core and the propagating waves in the media
generates a band gap, highlighted by the grey area in
Figs. 3(a) and 3(c). Finally, we note that, although our
numerical results indicate an anisotropy in the modes [see
mode 2 in Fig. 3(b)], the locally resonant band gap is an
omnidirectional complete gap.
The effect of deformation on the propagation of elastic

waves is shown in Figs. 3(c) and 3(d) for ε ¼ −0.065 and
in Figs. 3(e) and 3(f) for ε ¼ −0.1. Under small ε, the
softening of the two vertical beams induced by buckling
is found to dominate over the stiffening of the two
horizontal beams induced by their stretching, so that the
band gap frequency decreases, as shown in Fig. 3(c).
However, due to the increase in tangential stiffness
induced by instability, the rotational mode rises above
the shear and pressure modes [see Fig. 3(d)] and splits
the band gap. If we further increase the applied strain to
ε ¼ −0.10, the band gap then completely closes because of
the modal transformation of the rotational band near the G
point [see Fig. 3(e)]. Therefore, our results clearly dem-
onstrate that the proposed metamaterial acts as a reversible
phononic switch, since the applied deformation can be
exploited to tune and switch the band gap on or off.
To validate the numerical predictions, a sample of the

locally resonant metamaterial comprising 6 × 3 unit cells
(see Fig. 1) is fabricated using silicon rubber (Elite
Double 32, Zhermack) and a mold-casting process with
the mold prepared by 3D rapid prototyping. We first
apply the desired level of strain ε using a fixture made of
acrylic plates and nylon bolts or nuts. Next, wave
propagation in the sample is excited by an electrody-
namic shaker (model K2025E013, Modal Shop), which is
directly connected to one end of the sample to provide a
white noise input signal over a broadband frequency
range. The dynamic response at different levels of applied
strain ε is recorded using two miniature accelerometers
(352C22, PCB Piezotronics) attached to both ends of the
sample and the transmittance is computed as the ratio
between the output and input acceleration signals
(i.e., ∥AoutðωÞ=AinðωÞ∥).
In Fig. 4(a) we report the transmittance of the sample

measured at ε ¼ 0.0;−0.065, and −0.10. In the unde-
formed configuration (i.e., ε ¼ 0.0) a significant drop in
the transmittance is observed between 80 Hz and 100 Hz
with a pronounced minimum at 95 Hz, which corresponds
to the resonance frequency of vibration localization. Note

FIG. 3 (color online). Effect of the applied deformation on the
band structure: Dispersion relations from Bloch-wave analysis
for the infinite metamaterial in (a) the undeformed configuration
and under uniaxial compressive strain (c) ε ¼ −0.065 and (e)
ε ¼ −0.10. Shear dominated bands are colored in blue, pressure
dominated bands in red and locally rotational bands in black. The
grey region in (a) and (c) highlights the band gap induced by local
resonance. The Bloch modes of the lowest four bands at high-
symmetry points of the Brillouin zone (X, M, and Y ) [29] are
shown in (b), (d), and (f) for ε ¼ 0.0;−0.065, and −0.10,
respectively. The distribution of the magnitude of the modal
displacement field is shown.
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that in finite-size locally resonant metamaterials the lowest
transmittance is usually observed at the resonant frequency
of the embedded resonators, which corresponds to the
lower edge of the band gap predicted by the dispersion
relation [15]. This result not only proves the existence of
the band gap predicted by the simulations, but also
quantitatively agrees with the FE results in which the
lower edge of the band gap (i.e., the frequency with
strongest resonance) was observed at 92 Hz [see
Fig. 3(a)]. Moreover, as predicted by the numerical results,
when a uniaxial strain ε is applied, the experimentally
measured band gap is found to shift towards lower
frequencies. In particular, for ε ¼ −0.065 the drop in
the transmittance is shifted to the range of 60–85 Hz, with
the minimum at 76 Hz. We also note that the band gap
splitting predicted at ε ¼ −0.065 by the FE simulations
[see Fig 3(c)] is not observed in the measured trans-
mittance. This discrepancy is attributed to finite-size
effects such as boundary effects and nonuniform distri-
bution of the predeformation, which are not fully

accounted for in the simulations. Lastly, for ε ¼ −0.10,
the measured transmittance shows no band gap, confirm-
ing that the proposed metamaterial can be utilized as a
phononic or acoustic switch.
The comparison between the resonant band gap fre-

quency predicted by simulations and experiments as a
function of the applied strain ε is presented in Fig. 4(b). The
markers and error bars represent the lowest transmittance
frequency and the �3 dB band gap width measured
experimentally, respectively. Moreover, the dashed line
indicates the frequency of the lower edge of the band
gap calculated numerically for the corresponding infinite
system. Remarkably, we find excellent agreement between
the two sets of data. Both experiments and simulations
predict the band gap frequency first to decrease linearly as a
function of ε and then the band gap to completely disappear
as ε approaches −0.10.
In summary, we demonstrated both numerically and

experimentally that large deformation and local instability
can be exploited to effectively control the response of
locally resonant acoustic metamaterials. This remarkable
behavior is achieved by introducing a structural coating
comprising an array of elastic and highly deformable
beams. Our results indicate that under externally applied
load the stiffness of the beams varies significantly due to
their buckling, altering the resonant frequency of the unit
and providing a wide range of tunability for the band gap
(∼30% in frequency). Furthermore, we showed that the
proposed metamaterial can be utilized as an on or off
acoustic switch, since a moderate level of applied uniaxial
strain (ε ∼ −0.10) is enough to entirely suppress the band
gap. Although in this Letter we only verified the concept
with one specific set of material and geometric parameters,
the response of the system is robust. Numerical parametric
studies have also been performed by changing the arrange-
ment of the resonating units, the number of beams in the
structural coating, their slenderness, and the constitutive
behavior of the matrix [29]. Our results indicate that the
proposed mechanism works over a wide range of param-
eters, opening avenues for the design of smart systems that
control the wave propagation depending on the applied
deformation.
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CALCULATION OF DISPERSION RELATIONS

Periodic Structure and Irreducible Brillouin Zone

The propagation of elastic waves within the acoustic metamaterial is investigated numerically by considering a 2D
periodic solid of infinite extent characterized by a primitive cell (i.e. minimum unit identified in the periodic structure)
spanned by the lattice vectors a1 and a2, as shown in Fig. S1A for the undeformed configuration. Thus, any spatial
function field, φ(x), in the infinite periodic structure satisfies the condition:

φ(x + p) = φ(x), (S1)

where

p = p1a1 + p2a2, (S2)

where p1 and p2 are arbitrary integers. Note that when the periodic solid is deformed the lattice vectors a1 and a2
change, as indicated in Fig. S1C, for an uni-axially deformed configuration.

Figure S1: A) Crystal lattice in the undeformed configuration. B) Reciprocal lattice in the undeformed configuration. C)
Crystal lattice in an uni-axially deformed configuration. D) Reciprocal lattice in an uni-axially deformed configuration.

For later use, we define the reciprocal lattice specified by the reciprocal lattice vectors b1 and b2 defined such that

ai · bj = 2πδij , (S3)

where δij is the Kronecker delta. It follows that b1 and b2 are defined as

b1 = 2π
a2 × z

‖ z ‖2
, b2 = 2π

z× a1
‖ z ‖2

, (S4)



2

where z = a1 × a2.
As shown in Figs. S1B and S1D, the reciprocal lattice is characterized by spatial periodicity g

g = g1b1 + g2b2, (S5)

with g1 and g2 being arbitrary integers.

Frequency-domain analyses

In order to obtain the dispersion relation of the propagating waves in the periodic media at different levels of
deformation, frequency domain analyses are performed on the deformed configurations generated by the post-buckling
analysis. Bloch-type boundary conditions are applied:

u(x + r) = u(x)eik·r, (S6)

where k and r denote the bloch-wave vector and spatial periodicity in the deformed configuration, respectively.

Focusing on the propagation of small-amplitude waves, we solve the linearized wave equation on the non-linearly
obtained post-buckling base state by using a perturbation method to obtain the dispersion relations ω = ω(k).
Details of this formulation and implementation are given in a previous publication [1].

Note that for a 2D infinite periodic structure with spatial periodicity defined by (S1) and (S2), the periodicity in
the reciprocal k-space of the dispersion relation is given by [2]:

ω(k + g) = ω(k), (S7)

with g defined in (S5). Hence, due to translational symmetry specified by (S7), we only need to study ω(k) for k
vectors in the first Brillouin zone [2], indicated by the area inside the square GXMY in Fig. S1B and the area inside
the rectangle GXMY in Fig. S1D. Moreover, the domain can be further reduced by taking advantage of rotational,
reflectional and inversional symmetries of the first Brillouin zone. This allows us to define the irreducible Brillouin
zone (IBZ) [3], shown as the yellow triangle GXM in Fig. S1B and yellow rectangle GXMY in Fig. S1D).

The phononic bandgaps are identified by checking all eigen-frequencies ω(k) for k vectors on the perimeter of the
IBZ. The bandgaps (i.e. range in frequencies for which the propagation of waves is barred) are given by the frequency
ranges within which no ω(k) exist. Numerically, a discrete set of k vectors on the IBZ perimeter needs to be chosen
in the band-gap calculation. For the simulations presented in this paper, twenty uniformly-spaced points on each
edge of the IBZ are used for the purpose of identifying band-gaps.

PARAMETRIC STUDY

In the manuscript we present results only for one specific configuration that comprises a square array of locally
resonant units consisting of metallic circular cores with radius R0 = 7.9 mm connected to the matrix by four beams
with length L0 = 16.9 mm and thickness t0 = 1.8 mm.

Although in the main text we report the results obtained using only this specific set of material and geometric
parameters, the robustness of the proposed concept has been verified through several parametric studies. In this
section, we present the results of the parametric studies we conducted to investigate the effects of: (i) Arrangement
of the resonating units; (ii) Number of elastic beams in the structural coating; (iii) Slenderness of the beams; and
(iv) Constitutive behavior of the matrix material.
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Effect of the arrangement of the resonating units

Although in the main text we report results only for an acoustic metamaterial comprising a square array of
resonating units, the response of the system is not affected by the arrangement of the mechanical resonators within
the matrix. In fact, the coupling effects between different resonators are negligible as long as they are well-separated
by the matrix material. To demonstrate this important point, we have calculated the dispersion relation for a system
with resonators arranged also in triangular and hexagonal arrays, keeping the density of resonators per unit area
constant in all cases. The results are reported in Fig. S2 and clearly indicate that the bandgap of the system is not
affected by the arrangement of the resonators.

Figure S2: Dispersion relations calculated for a metamaterials comprising a square (top), triangular (center) and hexagonal
(bottom) array of resonating units. The dispersion relations are calculated in the undeformed configuration.
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Effect of the number of elastic beams in the structural coating

Although in the main text we only present results for a configuration with a structural coating that comprises four
beams, the proposed mechanism also works for different number of beams. To highlight this point, in Fig. S3 we
report the dispersion relation calculated in the undeformed configuration for resonant units comprising 3, 4, 5 and 6
beams (with length L0 = 16.9 mm and thickness t0 = 1.8 mm). Clearly, in all four configurations a locally resonant
bandgap is generated, as highlighted by the grey region. We also note that the frequency of such a bandgap increases
with the number of beams. This is due to the fact that more beams make the structural coating effectively stiffer,
resulting in a higher resonant frequency for the resonating unit.

Figure S3: Dispersion relations calculated for resonant units comprising 3, 4, 5 and 6 beams (with length L0 = 16.9 mm and
thickness t0 = 1.8 mm). The dispersion relations are calculated in the undeformed configuration.

In addition, our numerical results also indicate that in all the configurations reported in Fig. S3 the applied deform-
ation can be exploited as an effective mechanism to control the propagation of elastic waves. As an example, in Fig.
S4 we report results for the 3-beam design under applied uni-axial loading in the vertical direction up to ε = −0.10.
On the top part of the figure, snapshots of the unit cell at different levels of deformation (ε = 0.0, −0.065, −0.10)
are shown, indicating that in this case the applied compression also leads to buckling of the beams. Moreover,
on the bottom part of the figure we report the dispersion relation for ε = 0.0, −0.065 and -0.10. These results
clearly indicate that for this design the applied deformation can also be exploited to switch the bandgap on and off,
confirming the robustness of the proposed mechanism.

Figure S4: Effect of the applied deformation on the static and dynamic response of a resonating unit comprising 3 beams.
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Effect of the slenderness of the elastic beams

Although in the main text we present results for a metamaterial whose structural coating comprises an array of
beams with aspect ratio t0/L0 = 1.8/16.9, we also investigated the effect of the slenderness of the beams on the
dynamic response of the system. In Fig. S5 we report the evolution of the resonant bandgap frequency predicted
by simulations for a resonant unit comprising 4 beams with t0/L0 = 2.5/16.9, 2.0/16.9, 1.8/16.9 (original design
parameter) and 1.5/16.9. Since an increase of the beam’s aspect ratio t0/L0 results in higher effective stiffness of the
structural coating, the bandgap frequency is found to monotonically increase as a function of t0/L0. However, in all
the cases the bandgap frequency is found to first monotonically decrease as a function of the applied strain ε. The
bandgap then completely closes at ε ∼ −0.10.

Figure S5: Effect of the slenderness of the elastic beams on the bandgap frequency.

Finally, we highlight the fact that to generate a locally resonant bandgap a large contrast in stiffness between
the matrix and the structural coating is required. Therefore, for very thick beams the locally resonant bandgap is
completely suppressed, since the effective stiffness of the coating is comparable to that of the matrix when the beam
thickness is increased above a certain limit. The suppression of the bandgap in the undeformed configuration can
be clearly seen in Fig. S6, where we report the dispersion relation for a coating comprising beams with t0/L0 = 5/16.9.

Figure S6: For very thick beams (t0/L0 = 5/16.9) the locally resonant bandgap is suppressed, since the effective stiffness of
the coating is comparable to that of the matrix.
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Effect of the constitutive behavior of the matrix material

In the main text we report results for a metamaterial in which both the beams and the matrix are made of an
elastomeric material whose response is described by a nearly incompressible Neo-Hookean model with initial shear
modulus µ0 and Poisson’s ratio ν0 = 0.499. The response of such material is weakly nonlinear and the stiffening effect
induced by the applied deformation is negligible in this case. However, we also numerically investigated the effect of
material nonlinearities on the propagation of elastic waves in the metamaterial using the Gent model [4].

The nearly-incompressible version of the strain energy function proposed by Gent [4] is given by

W (I1, J) =− µ0

2
Jm log

(
1− I1 − 3

Jm

)
− µ0 log(J)

+

(
K0

2
− µ0

Jm

)
(J − 1)2,

(S8)

where µ0 and K0 are the initial shear and bulk moduli. Here, Jm denotes a material constant related to the strain
at saturation, since the stress becomes infinite as Jm − I1 + 3 approaches zero. Moreover, for a given deformation
gradient tensor F, I1 = trace

(
FTF

)
and J = det(F). We note that as Jm → +∞ the Gent model reduces to the

Neo-Hookean model [5], for which the nearly-incompressible version of the strain energy density function is given by

W (I1, J) =
µ0

2
(I1 − 3)− µ0 log(J) +

K0

2
(J − 1)2. (S9)

In our numerical study we use both the Gent (with Jm = 2.0) and Neo-Hookean (equivalent to Gent model with
Jm = +∞) models to capture the response of the matrix and the beams. The results are summarized in Fig. S7 and
clearly indicate that the saturation strain of the constituent material (represented by Jm) has no significant influence
on the bandgap evolution of the metamaterial as a function of the applied deformation.

Figure S7: The saturation strain of the constituent material (represented by Jm) has no significant influence on the bandgap
evolution of the metamaterial as a function of the applied deformation.
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