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A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise
under compressive forces, it has previously been shown analytically that a tensile instability can occur in an
elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale
experiments on thick elastomeric samples under generalized plane strain conditions and observed for the
first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a
wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our
work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space
for smart structures that harness instabilities to enhance their functionality.
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A variety of instabilities can be triggered when elastic
structures are subjected to mechanical loadings [1,2]. While
such instabilities have traditionally been considered as the
onset of failure, a new trend is emerging in which the
dramatic geometric changes induced by them are harnessed
to enable new functionalities [3–6]. For example, buckling
of thin beams and shells has been instrumental in the design
of stretchable electronics [7,8], complex 3D architectures
[9,10], materials with negative Poisson’s ratio [11–13], and
tunable acoustic metamaterials [14,15]. Moreover, changes
in surface curvature due to wrinkling and creases have
enabled the control of surface chemistry [16], wettability
[17], adhesion [18,19], and drag [20].
While most elastic instabilities are the result of com-

pressive forces, elastic bodies may also become unstable
under tensile loading. For example, a wrinkling instability
can be triggered in a thin elastic sheet under uniaxial
extension [21–23], and a meniscus instability can occur
when a thin layer of elastic material is confined and pulled
in the out-of-plane direction resulting in a periodic array
of fingers at its edges [24,25]. Moreover, it is well known
that a cavity can undergo a sudden expansion upon
reaching a critical internal pressure. This instability is
not only observed in the case of thin membranes
[26,27], but also persists in thick solid bodies where it is
often referred to as cavitation [28]. Since cavitation is the
only tensile instability that has been found in thick elastic
bodies, a natural question to ask is whether other elastic
tensile instabilities can occur in such systems.
About half a century ago, it was shown analytically that a

tension instability can be triggered in a block of incom-
pressible elastic material subjected to equitriaxial tension
[Fig. 1(a)] [29–33]. More specifically, it has been demon-
strated that when a cube with edges of length L and made

from an incompressible Neo-Hookean material with initial
shear modulus μ is subjected to uniform tractions resulting
in six tensile normal forces of magnitude F, two possible
equilibrium solutions exist (see Supplemental Material:
Analytical exploration [34]):

FIG. 1. Force-stretch bifurcation diagram for (a) a cube sub-
jected to triaxial tension, (b) a square under plane strain
conditions subjected to biaxial tension, and (c) a biaxially
stretched cross-shaped sample under plane strain conditions.
The solid and dashed lines represent stable and unstable load
paths, respectively. The contours show the maximum in-plane
principal strain. Note that (a) and (b) were obtained analytically,
while (c) was obtained using finite element analysis.
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λ1 ¼ λ2 ¼ λ3 ¼ 1 ð1Þ

and

F
μL2

¼ λ1 þ
1

λ21
; λ2 ¼ λ1; λ3 ¼ λ−21 ; ð2Þ

λi being the principle stretches. As a result, when the
applied force F is gradually increased, the block maintains
its undeformed configuration (λi ¼ 1) until F ¼ 2μL2. At
this point, the solution bifurcates, the initial branch
[Eq. (1)] becomes unstable, and the cube snaps to the
second branch [Eq. (2)] and, therefore, suddenly flattens. It
should be noted that this instability has only been dem-
onstrated analytically and has not been triggered exper-
imentally. In this Letter, guided by both analytical and finite
element models, we report the first experimental observa-
tion of this instability in a thick elastomeric sample that is
stretched equibiaxially under generalized plane strain
conditions.
Designing an experiment to realize the tension insta-

bility.—Although it is possible to analytically obtain the
triaxial tensile instability for a cube under triaxial tension, it
is challenging to realize the same conditions in experi-
ments. First, the instability requires the application of six
equal and orthogonal forces to a block of material. Second,
the forces need to be evenly spread across the whole
surface, and third, the boundary conditions have to adapt to
the large deformation after the instability has occurred.
In an effort to simplify the boundary conditions, we start

by considering an incompressible elastomeric block under
plane strain conditions (i.e., λ3 ¼ 1 and λ2 ¼ λ−11 ) subjected
to four in-plane tensile forces of magnitude F as indicated
in Fig. 1(b). When assuming a Neo-Hookean material, the
potential energy of the system Π is given by

Π ¼ μL2D
2

�
λ21 þ

1

λ21
− 2

�
− FL

�
λ1 þ

1

λ1
− 2

�
; ð3Þ

in which D is the out-of-plane thickness of the sample. The
equilibrium solutions are then found by minimizing Π (i.e.,
∂Π=∂λ1 ¼ 0), yielding

λ1 ¼ λ2 ¼ λ3 ¼ 1 ð4Þ

and

F
μLD

¼ λ1 þ
1

λ1
; λ2 ¼ λ−11 ; λ3 ¼ 1; ð5Þ

which are stable only if

∂2Π
∂λ2 ¼ μL2D

�
1þ 3

λ41

�
− FL

�
2

λ31

�
> 0: ð6Þ

Interestingly, the solutions defined by Eqs. (4) and (5) are
similar to those found for the triaxial case [Eqs. (1) and (2)]
and still show a bifurcation point at F ¼ 2μLD. Differently,
for the plane strain case, no snap-through instability is
observed since the force monotonically increases, as
indicated in Fig. 1(b). Note that during loading the out-
of-plane tensile stress that builds up in the material due to
the plane strain conditions plays an important role, since no
instability occurs if we assume plane stress conditions (see
Supplemental Material: Analytical exploration [34]).
Next, to apply uniformly distributed traction forces to the

edges of the square, we consider a cross-shaped specimen, as
typically done for biaxial experiments [37,38]. More spe-
cifically, we consider a square of edges W with circles of
radius R ¼ 0.31W cut from the corners. When assuming
plane strain conditions, and applying an outward displace-
ment to the straight boundaries of the sample, we expect its
center to undergo a triaxial state of stress. To compare the
response of the cross-shaped sample with our analytical
predictions for a square [Fig. 1(b)], we monitor the evolution
of the two diagonals with initial length L ¼ ffiffiffi

2
p

W − 2R
located at the center of the sample, as shown in Fig. 1(c), and
introduce the stretches λ1 and λ2 to define their deformation.
Next, to determine the response of the cross-shaped

sample upon loading, we performed 2D implicit finite
element analysis under plane strain conditions using
Abaqus (Dassault Systèmes). We captured the material
response using a nearly incompressible Neo-Hookean
model characterized by a ratio between the bulk modulus
K and shear modulus μ of K=μ ¼ 20 [39]. The four straight
edges of the samples were loaded by a force F in their
normal direction, while allowing movement in the orthogo-
nal direction. Moreover, to break the symmetry of the
structure, we introduced a small imperfection by increasing
the radius of two diagonally placed holes by 0.2%.
The results of our simulations are shown in Fig. 1(c),

where we report the evolution of λ1 and λ2 as a function of
the normalized force F=ðμLDÞ. We find that an instability is
triggered at F=ðμLDÞ ≈ 2, resulting in a sudden flattening of
the central part of the sample similar to that predicted by the
analytical model. However, different from the analytical
results shown in Fig. 1(b), our results reveal that prior to the
instability the central domain slightly reduces in size (i.e.,
λ1 ¼ λ2 ≠ 1). This discrepancy arises because the deforma-
tion in the numerical model is not homogeneous, as assumed
in the analytical model [see distribution of the maximum in-
plane strain ϵmax in Fig. 1(c)].
Experimental result.—Having demonstrated numerically

that an elastic instability is triggered when a cross-shaped
sample under plane strain conditions is subjected to
biaxial tension, we fabricated a thick sample from a silicon
rubber (Ecoflex 0030, Smooth-On) with a shear modulus
μ ¼ 0.0216 MPa [Fig. 2(a) and Supplemental Material:
Experiments [34]]. To constrain the out-of-plane deforma-
tion we connected each side of the sample to a stiffer silicon
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elastomer (Elite Double 32, Zhermack) characterized by
μ ¼ 0.262 MPa [40]. Moreover, to approximate the plane
strain conditions assumed in our calculations, we took
D=W ≫ 1 (D ¼ 132 mm and W ¼ 14 mm). Finally, we
placed steel tubes inside the stiffer elastomer to connect it
through cables to a rigid frame that was used to stretch the
sample. Figure 2(b) shows the observed deformation at
u=W ¼ 2.9, u=2 being the displacement applied to each
straight edge. Since boundary effects prevented us from
clearly observing the instability (Fig. S6 in Supplemental
Material [34]), we acquired x-ray transmission images at
different levels of applied deformation [Fig. 2(c) herein and
Movie 1 in Supplemental Material [34] ]. We then manually
processed the images to obtain the stretches, λ1 and λ2, that
define the deformation of the diagonals of the central
domain, exactly as in our simulations. The results reported
in Fig. 2(d) indicate that at u=W ≈ 1 an instability is
triggered that breaks the symmetry and initiates a flattening
of the center of the sample. While the experimental results
agree relatively well with the 2D plane strain simulations,
we find that the instability is triggered for smaller defor-
mations. This discrepancy is likely due to imperfections
introduced during fabrication and loading, which tend to
smoothen the sudden transition arising from the instability
and result in an earlier flattening (Fig. S7 in Supplemental
Material [34]).
Wavy pattern along the depth.—From the experiments

we find that the instability not only results in the flattening
of the center of the sample as predicted by the plane strain

simulations, but also introduces waves on the surfaces
along the depth [Fig. 2(b)]. To better understand the
formation of this wavy pattern, we conducted 3D explicit
quasistatic finite element analysis and simulated the cross-
shaped sample as used in the experiments; i.e., we modeled
both the two elastomeric materials and steel tubes to exactly
mimic the experimental conditions [41].
As shown in Fig. 3(a) herein and Movie 2 in

Supplemental Material [34], our 3D simulations confirm
the experimental observations. By monitoring the stretch of
the diagonals defining the center region of the sample
(along the depth), it becomes clear that the wavy pattern
emerges the moment the sample becomes unstable at
u=W ≈ 2 [Fig. 3(b)]. In fact, for u=W ≲ 2, λ1 and λ2 are
constant along the depth of the sample, while for u=W ≳ 2,
they oscillate periodically. Moreover, we also find that after
the instability has occurred, the sample not only deforms
nonuniformly in plane, but also in the out-of-plane direc-
tion. To highlight this point, in Fig. 3(c) we report the out-
of-plane stretch λ3 measured along the center line of the
sample at different levels of applied loading. The results
indicate that for u=W ≳ 2 there is an alternation between
regions experiencing out-of-plane extension and compres-
sion along the depth of the sample.
Informed by the numerical results of Figs. 3(a)–3(c),

we next extend our analytical model and assume that the
elastic block consists of two layers, a and b, which can
deform separately. We then impose generalized plane strain
conditions

FIG. 2. (a) Experimental setup to subject our thick cross-shaped sample to biaxial tension. (b) Top and bottom views of the deformed
sample at u=W ¼ 2.90. (c) Cross-sectional views of the sample at u=W ¼ 0, 0.72, 1.45, 2.17, and 2.90 obtained using a micro-CT
(computed tomography) x-ray imaging machine. (d) Relation between the normalized displacement u=W applied to the sample and the
stretches λ1 and λ2 of the diagonals located at the center of the sample. The results were obtained by manually processing the images and
averaging five individual measurements (the error bars indicate the standard deviation) (scale bars 10 mm).
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h̄λa;3 þ ð1 − h̄Þλb;3 ¼ 1; ð7Þ

where the stretches λa;3 and λb;3 are indicated in Fig. 3(d),
and h̄ ¼ Da=ðDa þDbÞ sets the ratio between the depth of
layer a and b in the undeformed configuration. If we further
assume that the four in-plane forces applied to each layer
depend on the initial size of the layer [i.e., Fa ¼ Fh̄ and
Fb ¼ Fð1 − h̄Þ, F being the total force applied to the two
blocks], the potential energy takes the form (Supplemental
Material: Analytical exploration [34])

Π ¼ h̄μL2D
2

�
λ2a;1 þ

1

λ2a;1λ
2
a;3

þ λ2a;3 − 3

�

þ μL2D
1 − h̄
2

�
λ2b;1 þ

ð1 − h̄Þ2
λ2b;1ð1 − h̄λa;3Þ2

þð1 − h̄λa;3Þ2
ð1 − h̄Þ2 − 3

�
− FaL

�
λa;1 þ

1

λa;1λa;3
− 2

�

− FbL

�
λb;1 þ

1 − h̄
λb;1ð1 − h̄λa;3Þ

− 2

�
; ð8Þ

where D ¼ Da þDb. Minimizing the energy results again
in two possible solutions:

λa;1 ¼ 1 with 0 ≤ h̄ ≤ 1; ð9Þ

F
μLD

¼ λa;1 þ
1

λ2a;1
with h̄ ¼ λ2a;1 − 1

λ3a;1 − 1
; ð10Þ

in which λa;3 ¼ λb;1 ¼ λb;2 ¼ λa;1 and λa;2 ¼ λb;3 ¼ λ−2a;1.
We find that the solutions defined by Eqs. (9) and (10) are
identical to those found for a cube subjected to equitriaxial
tension [Eqs. (1) and (2)], and that a bifurcation occurs at
F=ðμLDÞ ¼ 2. For F=ðμLDÞ < 2 the system does not
deform [as illustrated in Fig. 3(e) for F=ðμLDÞ ¼ 3=2],
while for F=ðμLDÞ > 2 one of the layers extends and the
other flattens in the out-of-plane direction [as illustrated
in Fig. 3(e) for F=ðμLDÞ ¼ 5=2], resulting in a wavy
pattern that resembles the deformation shown in Figs. 2(b)
and 3(a).
Outlook.—In this work, we experimentally showed that

an instability can be triggered in a thick elastic body
subjected to in-plane tensile forces and generalized plane
strain conditions. While an instability was already analyti-
cally predicted in 1948 for a cube subjected to triaxial
tension [29], here we extended the analysis to a configu-
ration that can be tested experimentally, and found that the
modified conditions result in a wavy pattern, as portions of
the sample alternatively extend and flatten in the out-of-
plane direction.
It should be noted that tensile loading conditions can also

lead to cavitation in solids [28,42]. More specifically, for an
incompressible Neo-Hookean material subjected to equi-
triaxial tension, it can be analytically derived that cavitation
initiates at a pressure of pcav ¼ 5μ=2 [43]. As a result, for
the elastomeric cube of Fig. 1(a) subjected to triaxial
tension, cavitation initiates at Fcav ¼ 5μL2=2. Although
this critical value is 25% higher than that needed to flatten

FIG. 3. (a) Numerical snapshots of the sample, (b) stretches that
define the deformation of the diagonals of the central domain (λ1
and λ2) along the depth of the sample, and (c) out-of-plane stretch
of the center line (λ3) along the depth of the sample, at u=W ¼ 0,
0.96, 1.91, 2.90. (d) Schematic of the bilayer under generalized
plane strain conditions used in our analytical model. (e) Deformed
states of the analytical model at F=ðμLDÞ ¼ 3=2 and 5=2 for
D ¼ 2L.

FIG. 4. Deformation of a mechanical metamaterial comprising
a square array of circular pores subjected to equibiaxial tension.
Similar to the case of the cross-shaped sample shown in Fig. 1(c),
an instability is triggered at u=W ≈ 2 resulting in a checkerboard
pattern of pores with two different sizes. The contours represent
the maximum in-plane strain ϵmax.
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the cube, we expect our sample to experience such a value
of stress in the postbuckling regime. In fact, upon increas-
ing the stretch applied to the sample to u=W ¼ 3.26, we
immediately see some cavities forming, which slowly
increase in size when the applied deformation is maintained
for a few hours (Movie 3 in Supplemental Material [34]).
Finally, the cross-shaped samples used in our experi-

ments can be used to build a mechanical metamaterial by
arranging them on a square lattice as shown in Fig. 4. By
stretching the metamaterial biaxially (under plane strain
conditions), an instability is triggered at u=W ≈ 2 resulting
in a checkerboard pattern of pores with two different sizes,
as indicated by the evolution of the characteristic pore sizes
l1 and l2 shown in Fig. 4. While the formation of this
pattern has previously been observed in simulations of
similar periodic porous structures [44–46], with the current
work we have deciphered the underlying mechanism that
leads to the instability. As such, we expect our study to
open new avenues for the design of soft structures that
harness instabilities for improved functionality.
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Supplemental Material

ANALYTICAL EXPLORATION

To identify the key components in the design of an elastic body that undergoes an instability when subjected
to tensile forces, we analytically explore the equilibrium states of (i) an elastomeric cube subjected to equitriaxial
tension, (ii) an elastomeric square under plane stress conditions subjected to equibiaxial tension, (iii) an elastomeric
square under plane strain conditions subjected to equibiaxial tension and (iv) an elastomeric block under generalized
plane strain conditions subjected to equibiaxial tension.

In all our calculations, we assume the elastic body to be made of an incompressible Neo-Hookean material, whose
strain energy density function, W , is given by [1]

W =
µ

2

(
λ21 + λ22 + λ23 − 3

)
, (S1)

where µ is the initial shear modulus of the material and λi are the principal stretches, which are subjected to the
incompressibility constraint λ1λ2λ3 = 1.

Cube subjected to equitriaxial tension

Similar to previous studies [2–6], we consider a cube with sides of length L subjected to six orthogonal outward
pointing forces as indicated in Fig. 1(a). Assuming that the cube undergoes a homogeneous deformation, its internal
energy, U , equals

U = L3W =
µL3

2

(
λ21 + λ22 + λ23 − 3

)
, (S2)

and the work done by the external forces, V , is given by

V = FL (λ1 − 1) + FL (λ2 − 1) + FL (λ3 − 1)

= FL (λ1 + λ2 + λ3 − 3) . (S3)

It follows that the potential energy for the system, Π = U − V , is given by

Π =
µL3

2

(
λ21 + λ22 +

1

λ21λ
2
2

− 3

)
− FL

(
λ1 + λ2 +

1

λ1λ2
− 3

)
, (S4)

where we have used the fact that λ3 = 1/(λ1λ2) due to incompressibility of the material. The equilibrium solutions
can then be found by minimizing Π with respect to λ1 and λ2,

∂Π

∂λ1
= µL3

(
λ1 −

1

λ31λ
2
2

)
− FL

(
1− 1

λ21λ2

)
= 0, (S5)

∂Π

∂λ2
= µL3

(
λ2 −

1

λ21λ
3
2

)
− FL

(
1− 1

λ1λ22

)
= 0. (S6)

Interestingly, there are two distinct solutions that satisfy Eqs. (S5) and (S6),

λ1 = λ2 = λ3 = 1, (S7)

and

F

µL2
= λ1 +

1

λ21
, λ2 = λ1, λ3 = λ−2

1 . (S8)

Moreover, note that the two solutions defined by Eqs. (S7)-(S8) are stable when the Hessian of the potential energy,
H, is positive definite. This requires that

∂2Π

∂λ21
> 0, and

∂2Π

∂λ21

∂2Π

∂λ22
− ∂2Π

∂λ1∂λ2

∂2Π

∂λ2∂λ1
> 0, (S9)
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in which

∂2Π

∂λ21
=µL3

(
1 +

3

λ41λ
2
2

)
− FL

(
2

λ31λ2

)
(S10)

∂2Π

∂λ1∂λ2
=

∂2Π

∂λ2∂λ1
=

2µL3

λ31λ
3
2

− FL

λ21λ
2
2

(S11)

∂2Π

∂λ22
=µL3

(
1 +

3

λ21λ
4
2

)
− FL

(
1

λ1λ32

)
. (S12)

As a result, when the applied force F is gradually increased, the block maintains its undeformed configuration
(λi = 1) until F = 2µL2. At this point, the solution bifurcates, the initial branch (Eq. (S7)) becomes unstable and
the cube snaps to the second branch (Eq. (S8)) and therefore suddenly flattens (see Fig. 1(a)).

Square under plane stress conditions subjected to equibiaxial tension

We next show that no instability occurs when an elastomeric square under plane stress conditions is subjected to
equibiaxial tension. Since in this case no work is done in the out-of-plane direction, the work done by the applied
forces reduces to

V = FL (λ1 + λ2 − 2) , (S13)

so that the potential energy for the system becomes

Π =
µL2D

2

(
λ21 + λ22 +

1

λ21λ
2
2

− 3

)
− FL (λ1 + λ2 − 2) , (S14)

where D is the depth of the sample, and we have used the incompressibility condition (i.e. λ1λ2λ3 = 1). Equilibrium
requires that

∂Π

∂λ1
= µL2D

(
λ1 −

1

λ31λ
2
2

)
− FL = 0, (S15)

∂Π

∂λ2
= µL2D

(
λ2 −

1

λ21λ
3
2

)
− FL = 0, (S16)

that are only satisfied for

F

µLD
=

(
λ1 −

1

λ51

)
, λ2 = λ1, λ3 = λ−2

1 . (S17)

Note that this solution is always stable.

Square under plane strain conditions subjected to equibiaxial tension

Differently from the plane stress case, an instability can be observed when an elastomeric square under plane strain
conditions is subjected to equibiaxial tension. Since for plane strain λ3 = 1, the incompressibility constraint reduces
to λ1 = λ−1

2 . It follows that the potential energy for the system is given by

Π =
µL2D

2

(
λ21 +

1

λ21
− 2

)
− FL

(
λ1 +

1

λ1
− 2

)
, (S18)

so that the equilibrium configurations are found by setting

dΠ

dλ1
= µL2D

(
λ1 −

1

λ31

)
− FL

(
1− 1

λ21

)
= 0. (S19)

Interestingly, there are two distinct solutions that satisfy Eq. (S19),

λ1 = λ2 = λ3 = 1, (S20)
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FIG. S1: Incremental solution obtained with the fmincon function in Matlab for the general plane strain case. (a) Relation
between the normalized force F/(µLD) and the potential energy Π/(µL2D). (b) Relation between the normalized force
F/(µLD) and the characteristic stretches λa,1, λa,3 and λb,1.

and

F

µLD
= λ1 +

1

λ1
, λ2 = λ−1

1 , λ3 = 1. (S21)

Furthermore, stability requires

∂2Π

∂λ21
= µL2D

(
1 +

3

λ41

)
− FL

(
2

λ31

)
> 0. (S22)

It should be noted that the solutions defined by Eqs. (S20)-(S21) are similar to those found for the triaxial case (Eqs.
(S7)-(S8)) and still show a bifurcation point at F = 2µLD. Differently, for the plane strain case no snap-through
instability is observed since the force monotonically increases, as indicated in Fig. 1(b).

Block under generalized plane strain conditions subjected to equibiaxial tension

Our experimental and 3D numerical results indicate that the instability not only results in the flattening of the
center of the sample as predicted by the plane strain simulations, but also introduces waves on the surfaces along
the depth. Informed by these results, we extend our analytical model and assume that the elastic block consists of
two layers, a and b, which deform separately and homogeneously (Fig. 3(d)). The deformation of the system is then
fully described by six stretches, λa,i for layer a and λb,i for layer b (i = 1, 2, 3), subjected to the incompressibility
constraints

λa,1λa,2λa,3 = 1, (S23)

λb,1λb,2λb,3 = 1. (S24)

Next, we impose generalized plane strain conditions, so that

Daλa,3 +Dbλb,3 = Da +Db = D, (S25)

which can be rewritten as

h̄λa,3 +
(
1− h̄

)
λb,3 = 1, (S26)

where h̄ = Da/(Da +Db) sets the ratio between the depth of layer a and b in the undeformed configuration.
Furthermore, given the dimensions and forces indicated in Fig. 3(d), the potential energy for layers a and b is given

by

Ua =
µL2Da

2

(
λ2a,1 + λ2a,2 + λ2a,3 − 3

)
, (S27)

Ub =
µL2Db

2

(
λ2b,1 + λ2b,2 + λ2b,3 − 3

)
, (S28)
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while the work done by the applied forces equals

Va =FaL (λa,1 + λa,2 − 2) , (S29)

Vb =FbL (λb,1 + λb,2 − 2) . (S30)

By further assuming that the four in-plane forces applied to each layer depend on the initial size of the layer (i.e.
Fa = Fh̄ and Fb = F (1 − h̄), F being the total force applied to the two blocks) and using the conditions from
Eqs. (S23)-(S26), Eqs. (S27)-(S30) can be rewritten as

Ua =
µh̄DL2

2

(
λ2a,1 +

1

λ2a,1λ
2
a,3

+ λ2a,3 − 3

)
, (S31)

Ub =
µ
(
1− h̄

)
DL2

2

(
λ2b,1 +

(
1− h̄

)2
λ2b,1

(
1− h̄λa,3

)2 +

(
1− h̄λa,3

)2(
1− h̄

)2 − 3

)
, (S32)

Va =Fh̄L

(
λa,1 +

1

λa,1λa,3
− 2

)
, (S33)

Vb =F
(
1− h̄

)
L

(
λb,1 +

1− h̄
λb,1

(
1− h̄λa,3

) − 2

)
, (S34)

in which the independent variables have been reduced to λa,1, λa,3, λb,1 and h̄ . Finally, the potential energy for the
system can be obtained as

Π = Ua + Ub − Va − Vb. (S35)

and the stable equilibrium solutions can be determined by minimizing the potential energy Π,

∂Π

∂λa,1
= 0,

∂Π

∂λa,3
= 0,

∂Π

∂λb,1
= 0,

∂Π

∂h̄
= 0, (S36)

where

∂Π

∂λa,1
=

1

2
Dh̄L2µ

(
2λa,1 −

2

λ3a,1λ
2
a,3

)
− h̄LF

(
1− 1

λ2a,1λa,3

)
, (S37)

∂Π

∂λa,3
=

1

2
Dh̄L2µ

(
2λa,3 −

2

λ2a,1λ
3
a,3

)
+

1

2
D(1− h̄)L2µ

(
2(1− h̄)2h̄

λ2b,1(1− h̄λa,3)3
− 2h̄(1− h̄λa,3)

(1− h̄)2

)

+
h̄LF

λa,1λ2a,3
− h̄(1− h̄)2LF

λb,1(1− h̄λa,3)2
, (S38)

∂Π

∂λb,1
=

1

2
D(1− h̄)L2µ

(
2λb,1 −

2(1− h̄)2

λ3b,1(1− h̄λa,3)2

)
− (1− h̄)LF

(
1− 1− h̄

λ2b,1(1− h̄λa,3)

)
, (S39)

∂Π

∂¯̄h
=− 1

2
DL2µ

(
(1− h̄)2

λ2b,1(1− h̄λa,3)2
+

(1− h̄λa,3)2

(1− h̄)2
+ λ2b,1 − 3

)

+
1

2
D(1− h̄)L2µ

(
2(1− h̄)2λa,3
λ2b,1(1− h̄λa,3)3

− 2(1− h̄)

λ2b,1(1− h̄λa,3)2
+

2(1− h̄λa,3)2

(1− h̄)3
− 2λa,3(1− h̄λa,3)

(1− h̄)2

)

+
1

2
DL2µ

(
1

λ2a,1λ
2
a,3

+ λ2a,1 + λ2a,3 − 3

)
+ LF

(
1− h̄

λb,1(1− h̄λa,3)
+ λb,1 − 2

)
− (1− h̄)LF

(
(1− h̄)λa,3

λb,1(1− h̄λa,3)2
− 1

λb,1(1− h̄λa,3)

)
− LF

(
1

λa,1λa,3
+ λa,1 − 2

)
. (S40)

Since we could not solve Eq. (S36) analytically, we used the fmincon function in Matlab (Mathworks) to find
the lowest energy states. More specifically, we started from the undeformed configuration for which F = 0 and
λa,i = λb,i = 1 (i = 1, 2, 3) and set h̄ = 0.5. We then incrementally increased F by ∆F = µLD/100 to find the



5

FIG. S2: Effect of material compressibility. (a) Relation between the applied force F and the stretches of the diagonals λ1 and
λ2 as a function of K/µ for a cross-shape sample under plane strain conditions subjected to equibiaxial tension. (b) Relation
between the applied force F and the stretches of the diagonals λ1 and λ2 as a function of K/µ for a square under plane strain
conditions subjected to equibiaxial tension. (c) Evolution of the critical stretch as a function of K/µ for a square under plane
strain conditions subjected to equibiaxial tension.

equilibrium path (note that we used ∆F = µLD/10000 around the instability). The minimal energy path predicted
by our numerical calculations is shown in Fig. S1(a). Upon loading, the system does not deform until F/ (µLD) = 2
as shown in Fig. S1(b), and as such the internal energy U of the block remains zero. However, at F/ (µLD) = 2
a snap-through instability occurs instantly lowering the potential energy Π (see inset in Fig. S1(a)). Interestingly,
for F/ (µLD) > 2 both layers flatten and deform into two flat plates rotated 90 degrees with respect to each other.
Moreover, we find that for F/ (µLD) > 2, λa,1 = λa,3 = λb,1 as shown in Fig. S1(b).

Next, guided by our numerical results, we turn back to Eqs. (S35)-(S40) and assume that λa,3 = λa,1, and λb,1 = λa,1.
The terms from Eqs. (S37)-(S40) then simplify, such that

∂Π

∂λa,1
=µL2Dh̄

(
λa,1 −

1

λ5a,1

)
− FLh̄

(
1− 1

λ3a,1

)
= 0, (S41)

∂Π

∂λb,1
=µL2D(1− h̄)

(
λa,1 −

(1− h̄)2

λ3a,1(1− h̄λa,1)2

)
− FL(1− h̄)

(
1− 1− h̄

λ2a,1(1− h̄λa,1)

)
= 0, (S42)

while ∂Π/∂λa,3 = 0 and ∂Π/∂h̄ = 0 are automatically satisfied when Eqs. (S41)-(S42) are satisfied. Interestingly,
there are two distinct solutions to Eqs. (S41)-(S42)

λa,1 = 1 with 0 ≤ h̄ ≤ 1, (S43)

F

µLD
= λa,1 +

1

λ2a,1
with h̄ =

λ2a,1 − 1

λ3a,1 − 1
. (S44)

Finally, by combining Eqs. (S23)-(S24) and (S43)-(S44), all the stretches in the two layers can be determined

λa,3 = λb,1 = λb,2 = λa,1, (S45)

λa,2 = λb,3 = λ−2
a,1. (S46)

Importantly, we find that the solutions defined by Eqs. (S43)-(S44) are identical to those found for a cube subjected
to equitriaxial tension (Eqs. (S7)-(S8)), and that a bifurcation occurs at F/ (µLD) = 2. For F/ (µLD) < 2 the system
does not deform (as illustrated in Fig. 3(e) for F/ (µLD) = 3/2), while for F/ (µLD) > 2 one of the layer extends
and the other flattens in the out-of-plane direction (as illustrated in Fig. 3(e) for F/ (µLD) = 5/2), resulting in a
wavy pattern that closely resembles the deformation shown in Figs. 2(b) and 3(a).

EFFECT OF MATERIAL COMPRESSIBILITY

In our simulations, the choice of K/µ = 20 (resulting in a Poisson’s ratio of 0.475) was dictated by numerical
considerations. Note that the stable time increment for our 3D explicit analyses is given by

∆t =
L

c
, (S47)
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where L is a characteristic length of the elements and c is the wave speed in a 3D-medium,

c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
, (S48)

ν being the Poisson’s ratio. From Equation (S48) it becomes clear that when the materials approaches incompressibility
(i.e ν → 1/2 and K/µ → ∞), ∆t becomes very small, resulting in significantly longer simulation time (note that
Abaqus only allows for K/µ ≤ 100, corresponding to a Poisson’s ratio of ν = 0.495). To find a compromise between
simulation time and accuracy (as we wanted to preserve a nearly incompressible behavior in our analysis), we simulated
the response of a cross-shaped sample under plane strain conditions subjected to equibiaxial tension for different values
of K/µ. First, the results reported in Fig. S2(a) indicate that the instability is triggered for all the considered values
of K/µ. However, as K/µ decreases, smaller forces are needed to trigger the bifurcation. Second, we find that the
response of the sample characterized by K/µ = 20 and K/µ = 80 are very close to each other, so we choose K/µ = 20
as it provides a good balance between accuracy and simulation speed.

Note that we can also study analytically the effect of the ratio K/µ by determining the response of a compressible
square under plane strain conditions. To this end, we use the strain energy of a nearly incompressible Neo Hookean
material [1, 7]

W =
µ

2

(
λ21 + λ22 + λ23 − 3

)
+
K

2
(λ1λ2λ3 − 1)2 − µ log(λ1λ2λ3). (S49)

The total energy for the square under biaxial tension is then given by

Π =
µL2D

2

(
λ21 + λ22 − 2

)
+
KL2D

2
(λ1λ2 − 1)2 − µL2D log(λ1λ2)− FL(λ1 + λ2 − 2), (S50)

where we have used the fact that λ3 = 1 due to plane strain conditions. The equilibrium solutions are found by
minimizing Π with respect to λ1 and λ2,

∂Π

∂λ1
= µL2Dλ1 +KL2D(λ1λ2 − 1)λ2 −

µL2D

λ1
− FL = 0, (S51)

∂Π

∂λ2
= µL2Dλ2 +KL2D(λ1λ2 − 1)λ1 −

µL2D

λ2
− FL = 0, (S52)

which are only satisfied when

F

µLD
=

(
λ21 − 1

) (
K
µ λ

2
1 + 1

)
λ1

with λ2 = λ1, (S53)

or

F

µLD
=

√
K2

µ2 + 6Kµ + 1 + 2Kµ λ
2
1 + K

µ + 1

2Kµ λ1
with λ2 =

√
K2

µ2 + 6Kµ + 1 + K
µ + 1

2Kµ λ1
. (S54)

These two equilibrium solutions are shown in Figure S2(b) for various ratios of K/µ. Similarly to the numerical results
reported in Figure S2(a) for the cross-shaped sample, the analysis indicates that the instability still occurs even if the
material is compressible. Moreover, by comparing Equations (S53) and (S54) we can determine the stretch, λcr, at
which the solutions become unstable

λcr =

√√√√√1

2
+

√√√√ µ2

4K2

(
2 + 6

K

µ
+
K2

µ2
+ 2

√
1 + 6

K

µ
+
K2

µ2

)
, (S55)

In Figure S2(c) we report the evolution of λcr as a function of K/µ. The results clearly indicate that the critical
stretch for K/µ = 20 is very close to that found for the incompressible case.
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FIG. S3: Fabrication of the sample. (a) The 3D printed mold and the steel tubes prior to assembly. (b) Assembled mold. (c)
Casting of the Ecoflex 0030. (d)-(e) After two hours some inner parts are removed to make room for the second casting step.
(f) Casting of the Elite Double 32. (g) After approximately one day, the sample is fully cured and can be removed from the
mold.

EXPERIMENTS

Fabrication

The samples were fabricated using a molding process (Fig. S3)). To cast a multi-material sample, and to allow
for easy removal after curing, the mold was assembled from several 3D printed parts (Stratasys Connex500) and
steel tubes (Fig. S3(a)). Casting the sample consisted of several steps. We first assembled the mold as shown in
Fig. S3(b). Second, a silicone-based rubber Ecoflex 0030 (Smooth-On, Inc.) was cast in the center of the mold as
shown in Fig. S3(c). Before casting, we degassed the Ecoflex for 1 minute to remove any air bubbles still present after
mixing of the two components. After letting the Ecoflex cure for 2 hours at room temperature, part of the mold was
removed to prepare for the second casting step (Figs. S3(d)-(e)). Next, another silicone-based rubber Elite Double 32
(Zhermack) was cast around the four metal tubes already present in the mold (Fig. S3(f)). Note that at this point
the Ecoflex was not yet fully cured, but was able to support itself. This improved the bonding between the Ecoflex
0030 and the Elite Double 32 in the final samples. We tested different curing durations, but found that curing the
Ecoflex for 2 hours in the first step provided the best bonding. Finally, the sample was removed from the mold after
approximately 1 day (Fig. S3(g)).

The cured Ecoflex 0030 was tested under uniaxial tension using a single-axis Instron (model 5544A; Instron, Inc.)
with a 1000-N load cell. The material behavior up to a stretch of 300% is reported in Fig. S4. We used a least squares
method to fit an incompressible Neo-Hookean model (Eq. (S1)) to the measured data, and found that the material
response is best capture with an initial shear modulus µ = 0.0216 MPa.

Testing

The samples were stretched equibiaxially using a custom made setup consisting of an aluminium frame to which
the sample was connected by four steel cables (Fig. S5). Four screws were manually tightened to stretch the sample.
Since boundary effects prevented us to clearly observe the instability upon stretching (Movie 1), we acquired x-ray
transmission images (HMXST225, X-Tek) after each time we turned the screws a full turn. Note that a full turn of
the screws results in an applied displacement u/W = 0.18. The results are shown in Fig. 2 and Movie 1.
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FIG. S4: Nominal stress versus stretch for the cured Ecoflex 0030 obtained from a uniaxial tension test. The experiments were
fitted using a Neo-Hookean material model with initial shear modulus µ = 0.0216 MPa.

FIG. S5: (a) Test-setup used to biaxially stretch the sample. (b) Close-up view of the undeformed sample suspended in the
test-setup.
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ADDITIONAL FIGURES

FIG. S6: (a) Front view of the sample at u/W = 2.90 obtained using a digital camera (D90 SLR, Nikon). (b) Cross-sectional
view of the sample at u/W = 2.90 obtained using a micro-CT X-ray imaging machine (HMXST225, X-Tek).

FIG. S7: 2D finite element simulations highlighting the effect of imperfections. Each simulation consists of a square with edges
of length W and circles of radius R1 = 0.31W and R2 = ξ 0.31W = ξR1 cut from its opposite corners, so that the the two
diagonals located at the center of the sample are given by L1 =

√
2W − 2R and L2 =

√
2W − 2ξR. An outward displacement

is applied to the straight boundaries of the sample, and we monitored the evolution of the two diagonals with length λ1L1 and
λ2L2 in the stretched configuration. The simulations are performed assuming both plane stress (a-c) and plane strain (d-f)
conditions.
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