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Multistable inflatable origami structures at 
the metre scale

David Melancon1,7, Benjamin Gorissen1,7, Carlos J. García-Mora1,2, Chuck Hoberman3,4,5 ✉ & 
Katia Bertoldi1,3,6 ✉

From stadium covers to solar sails, we rely on deployability for the design of 
large-scale structures that can quickly compress to a fraction of their size1–4. 
Historically, two main strategies have been used to design deployable systems. The 
first and most frequently used approach involves mechanisms comprising 
interconnected bar elements, which can synchronously expand and retract5–7, 
occasionally locking in place through bistable elements8,9. The second strategy makes 
use of inflatable membranes that morph into target shapes by means of a single 
pressure input10–12. Neither strategy, however, can be readily used to provide an 
enclosed domain that is able to lock in place after deployment: the integration of a 
protective covering in linkage-based constructions is challenging and pneumatic 
systems require a constant applied pressure to keep their expanded shape13–15. Here 
we draw inspiration from origami—the Japanese art of paper folding—to design 
rigid-walled deployable structures that are multistable and inflatable. Guided by 
geometric analyses and experiments, we create a library of bistable origami shapes 
that can be deployed through a single fluidic pressure input. We then combine these 
units to build functional structures at the metre scale, such as arches and emergency 
shelters, providing a direct route for building large-scale inflatable systems that lock 
in place after deployment and offer a robust enclosure through their stiff faces.

Large, deployable structures should ideally (1) occupy the minimum 
possible volume when folded, (2) be autonomous when deploying, (3) 
lock in place after deployment, and (4) provide a structurally robust 
shell (if they are designed to define a closed environment). To satisfy 
all these requirements, here we present an approach with roots in 
the Japanese art of paper folding: origami. Extensively used in robot-
ics16–20, metamaterials21–25 and structures26–30, origami principles have 
the potential to lead to efficient large-scale deployable structures as 
they offer (1) a versatile crease-based approach to shape design31–33, 
(2) an easy actuation through inflation, if enclosed34–36, (3) self-locking 
capabilities when designed to support multiple energy wells37–44, and 
(4) the possibility to create a protective environment through their 
faces. While previous origami systems have explored inflatability and 
multistability separately34–44, here we show that these two properties 
can co-exist, unlocking an unprecedented design space of metre-scale 
inflatable structures that harness multistability to maintain their 
deployed shape without the need for continuous actuation (see sche-
matics in Fig. 1a).

Triangular facets as a platform for bistable and 
inflatable structures
To create inflatable and bistable origami structures, we start by con-
sidering a triangular building block ABC and denote with α and β the 

internal angles enclosed by the edges AB–AC and AB–BC, respectively 
(Fig. 1b). The triangle initially lies in the x–y plane and is subsequently 
deployed through a rotation around its edge BC. As shown in Fig. 1b, 
this deployment results in the displacement wA of vertex A along the z 
direction and a volume VABC under the triangle
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where ||AB|| indicates the length of AB. By focusing on the x–y plane, 
through simple geometrical considerations, one can see that if 
β α α∈ [π/4 − /2, π/2 − ], the projection of vertex A during the deploy-
ment intersects the circle circumscribed to the initial configuration 
(Fig. 1b) for a displacement wA

c  defined as
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It follows from the inscribed angle theorem45 that for w w=A A
c , the angle 

α is recovered on the x–y plane (see Supplementary Information sec-
tion 1 for details). As such, if triangles of this type are used as building 
blocks to form origami polyhedra, the assembled systems will have two  
distinct compatible configurations: one flat (identified by wA = 0) and 
one expanded (identified by w w=A A

c ). By contrast, any configuration 
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with w w0 < <A A

c  will be geometrically frustrated, with incompatibility, 
ΔABC, that can be estimated as

Δ α α= ||AC || sin( − ), (3)xy xyABC

where ACxy and αxy are the projection on the x–y plane of edge AC and 
angle α, respectively (note that αxy = α only for wA = 0 and wA

c ; see the 
inset in Fig. 1c).

Therefore, to accommodate geometric frustration and realize closed 
origami shapes (that is, shapes forming a closed inflatable cavity) capa-
ble of switching between two compatible configurations, we connect 
stiff triangular building blocks to stretchable hinges. Importantly, 
whereas polyhedra composed of rigid triangular faces connected 
by perfect rotational hinges are known to be either rigid46 or volume 
invariant during deployment47,48, we anticipate our closed origami 
with stiff facets and flexible hinges to be bistable. Indeed, for hinges 
with low enough bending stiffness, we expect the energy profile of 
the closed origami to show two local minima corresponding to the flat 
and expanded compatible states (where the energy in the system can 
only be attributed to hinge bending), separated by an energy barrier 
caused by the deformation of the facets and the hinges required to 
accommodate geometric incompatibility.

To gain more insights into the behaviour of our building blocks, we 
focus on the deployment of two triangles with (α(1), β(1)) = (30°, 50°) and 
(α(2), β(2)) = (30°, 33°). In Fig. 1d, we report the evolution of the incompat-
ibility, ΔABC, and the underlying volume, VABC, as a function of the deploy-
ment height, wA, for both triangles. We find that the triangle with 
β(1) = 50° is characterized by both larger wA

c  and maximum incom-
patibility, Δ Δ= max( )ABC

max
ABC . However, for this triangle, the expanded 

compatible state is located after the configuration corresponding to 
the maximum underlying volume (w w> V

A
c(1)

A
(1)ABC

max

) and, therefore, cannot 
be reached when VABC is controlled. As such, whereas we expect a closed 
origami structure realized using these triangles to have two stable 
states with very different internal volume, we cannot use inflation to 
switch between the two of them. By contrast, the triangle with β(2) = 33° 
exhibits much smaller ΔABC

max and wA
c , but can be deployed when control-

ling the volume as w w< V
A
c(2)

A
(2)ABC

max

. This suggests that closed origami 
realized using this triangle can be deployed using inflation, but have 
an expanded configuration very similar to the flat one. Further, we 
expect such structures to be only marginally bistable, as small pertur-
bations are enough to overcome the energy barrier associated with 
the small ΔABC

max(2).
Whereas in Fig. 1b–d we focus on two geometries, we next consider 

all deployable triangles (that is, triangles with π/4 − α/2 ≤ β ≤ π/2 − α) 
and look for those that can potentially lead to deployable structures 
that are simultaneously bistable and inflatable. Towards this end, we 
use wA

c  to estimate the change in shape between the compatible states 
and ΔABC

max to evaluate bistability (that is, to estimate the energy required 
to snap back from the expanded to the flat state). Furthermore, we 
introduce an inflation constraint

h
Γ

Γ
= , (4)

V

ABC c

ABC
max

where Γ V ABC
max

 and Γ c are the arc lengths measured on the ΔABC–VABC curve 
between the flat stable state and the state of maximum volume and 
between the flat and expanded stable configurations, respectively 
(Fig. 1e). It follows from equation (4) that only geometries with 
log hABC ≥ 0 can be deployed through fluidic actuation as those are the 
only ones for which the expanded compatible configuration is reached 
before the one with maximum volume during inflation (note that 
log hABC = −1.46 and log hABC = 0.322 for the two triangles considered in 
Fig. 1b, c).

In Fig. 1f–h, we report wA
c , ΔABC

max and hABC for all deployable triangles. 
We find that both wA

c  and ΔABC
max  are maximized in the region close  
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Fig. 1 | Triangular facets as building blocks for large-scale inflatable and 
bistable origami structures. a, Schematics illustrating the deployment via 
inflation of a large-scale origami structure comprising triangular facets.  
b, Deployment of two triangular building blocks ABC with angles (α(1), β(1)) and 
(α(2), β(2)). c, Projected view of the deployment showing the two intersection 
points with the circle centred in O. d, Evolution of incompatibility, ΔABC, and 
underlying volume, VABC, as a function of the deployment height, wA. e, 
Evolution of incompatibility, ΔABC, as a function of the underlying volume, VABC. 
f–h, Contour maps of the compatible deployment height, w A

c (f), maximum 
incompatibility, ΔABC

max (g) and inflation constraint, hABC (h).



Nature | Vol 592 | 22 April 2021 | 547

to the upper boundary of the domain (that is, when β → π/2 − α). By con-
trast, the triangles deployable through inflation (for which log hABC ≥ 0) 
are all close to the lower boundary of the domain (that is, when 
β → π/4 − α/2) and show small values of wA

c  and ΔABC
max. As such, these results 

indicate that we cannot realize closed origami structures that are at the 
same time bistable and inflatable using a single triangle building block.

Extending the design space to enable deployment via 
inflation
In an attempt to realize inflatable closed origami structures with stable 
flat and expanded configurations, we turn our focus to systems realized 
by assembling two different triangles with internal angles (α(1), β(1))  
and (α(2), β(2)). To begin with, we arrange 2n triangles of each type to 
form two identical layers with n-fold symmetry and connect them at 
their outer boundaries (Fig. 2a, c). The resulting star-like structures 
(reminiscent of an origami waterbomb base38,49) define an internal 
volume V n V V= 2 ( + )ABC

(1)
ABC
(2) , exhibit geometric incompatibility 

Δ n Δ Δ= 2 ( + )ABC
(1)

ABC
(2)  and are inflatable only if h Γ Γlog = log( / ) ≥ 0V cmax

, 
where Γ V max

 and Γ c are the arc lengths measured on the Δ–V curve 
between the states with V = 0 and V = Vmax = max(V) and between the 
two stable configurations, respectively. However, it is important to 
note that to realize these star-like structures, the pair of triangles 

cannot be arbitrarily chosen. This is because geometric compatibility 
is guaranteed only if the two triangles have (1) identical deployed com-
patible height (that is, w w=A

c(1)
A
c(2) ), (2) connecting deployed edges 

(either AB or AC) of equal length, and (3) angles that satisfy α(1) + α(2) = π/n.
As shown in Fig. 2a, we first connect the two triangles via their long-

est edge (||AB(1)|| = ||AB(2)||) and refer to these structures as Designs I. 
We identify all possible geometries by enforcing requirements 1–3 and 
find that designs deployable through inflation (for which log h ≥ 0) not 
only have a deployed shape almost indistinguishable from the initial 
flat one (see insets of structures in Fig. 2b) but also are made of two 
triangles with very low ΔABC

max (see area highlighted in magenta in Fig. 2b). 
As such, the inflatable Designs I exhibit very low maximum incompat-
ibility Δmax = max(Δ) (see magenta markers in Fig. 2i for 500,000 ran-
domly chosen geometries). To investigate the performance of these 
inflatable designs, we fabricate and test the geometry with log h ≥ 0 
and the highest Δmax (Design I-A with α β( , ) = (22 , 35 )I A

(1)
I A
(1)

‐ ‐
∘ ∘  and 

‐ ‐
∘ ∘α β( , ) = (68 , 14 )I A

(2)
I A
(2)  for which Δ /||AB|| = 2.67 × 10max −2 ; see magenta 

circular marker in Fig.  2i). A centimetre-scale prototype with 
||AB(1)||  =  ||AB(2)||  =  60  mm is constructed by connecting three- 
dimensional-printed stiff triangular facets with compliant hinges made 
of thin polyester sheets and an inflatable cavity is formed by coating 
it with a 0.5-mm-thick layer of silicone rubber (see insets in Fig. 2j, Sup-
plementary Information section 2, Supplementary Video 1 for details). 

I
(1)

I
(2)I

(1)

I
(2)

IVIV

IV

0 90

0 6040 50302010

45

Δ

Δ

Δ

x

y

xy z

I-A

90

0

102
a

c

e

b

d

f

h

i

j

g

Non-deployable
through in�ation

Δ

Δ

Designs I

ABC = 0.02

0.04
max

80°

40°
30°

20°

60°

50°

n = 10

IV = 70°*

Flat Deployed

Flat Deployed

Flat Deployed

Design I

Designs II

Designs III

Designs IV

Deployed 1
Deployed 2

90

0
90

0
A

ng
le

, 
 (°

)
A

ng
le

, 
 (°

)
A

ng
le

, 
 (°

)
A

ng
le

, 
i xy

 (°
)

90

0

Angle,  (°)

i
xy

0 90

Volume, V (ml)

45

n = 3

Designs II
Designs III
Designs IV

I-A II-B

III-C IV-D

Deployable
through in�ation

M
ax

im
um

 in
co

m
p

at
ib

ili
ty

,  
  m

ax
/||

A
B

||
Δ

10–4

In�ation constraint, log h
–0.5 0 0.5 1.0 1.5

I-A II-B

III-C IV-DP
re

ss
ur

e,
 p

 (k
P

a)

–4

4

0

2

–2

II-B

III-C

IV-DIV

i
xy

IV

IV

wc
A

wi
A

Angle, i
xy (°)

I
(1)
I

I
(1)
II

I
(2)
I

I
(2)
II

I
(2)
I

I
(2)
II

I
(1)
I

I
(1)
II

i
xy

Fig. 2 | Bistable and inflatable origami shapes. a–f, Examples of Designs I (a, b),  
Designs II (c, d) and Designs III (e, f) geometries in both the flat and deployed 
stable configurations (a, c, e) along with the regions in the α−β space leading to 
inflatable structures (b, d, f). The bright and dark shaded regions in the plots 
represent the triangles with angles (α(1), β(1)) and (α(2), β(2)), respectively. The 
contour lines represent the maximum incompatibility of the triangular 
building blocks, ΔABC

max, the dashed line separates the region with positive and 
negative hABC. The solid circles and triangles indicate the triangular building 

blocks used to make the designs shown in the insets. g, Deployment of a 
triangular building block that has been initially rotated around its edge BC to 
have a height w A

i . h, Contour map of angle β*
IV required to obtain Designs IV that 

are both inflatable and bistable. i, Maximum incompatibility, Δmax, versus the 
inflation constraint, h, for 500,000 random geometries of Designs I–IV.  
j, Pressure–volume curves recorded when testing our centimetre-scale 
prototypes. See Supplementary Information for the rationale behind geometry 
and material selection.
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The sample is then deployed by supplying water at a constant rate of 
10 ml min−1 with a syringe pump, while monitoring the pressure with a 
pressure sensor (see Supplementary Information section 3 for details). 
We find that the pressure, p, increases monotonically with V until the 
maximum volume for the cavity is reached (Fig. 2j, Supplementary 
Video 2). As such, our test reveals that the Δmax of this design is not large 
enough to make the fabricated structure bistable.

Next, with the goal of increasing the geometric incompatibility of 
the inflatable designs, we investigate the response of star-like structures 
in which the longest edge of one triangle, AB(1), is connected to the 
shortest edge of the other one, AC(2) (we refer to these designs as 
Designs II; Fig. 2c). Again, we impose requirements 1–3 to identify all 
possible geometries and find that those deployable through inflation 
comprise two very distinct triangles: a first one with low ΔABC

max  but 
hlog > 0ABC

(1)  (see area highlighted in dark red in Fig. 2d) and a second 
one with substantially larger ΔABC

max but hlog < 0ABC
(2)  (see area highlighted 

in bright red in Fig. 2d). Remarkably, we find that the combination of 
these different triangles results in inflatable designs with higher max-
imum incompatibility compared with Designs I (see red markers in 
Fig. 2i for 500,000 randomly chosen geometries). As a result, when we 
fabricate and test the inflatable geometry that maximizes Δmax (Design 
II-B with ‐ ‐

∘ ∘α β( , ) = (43.6 , 25.2 )II B
(1)

II B
(1)  and α β( , ) = (46.4 , 33.5 )II B

(2)
II B
(2)

‐ ‐
∘ ∘  for 

which Δ /||AB|| = 8.58 × 10max −2; see red marker in Fig. 2i), we observe a 
negative pressure region (see red curve in Fig. 2j, Supplementary 
Video 2). This confirms the presence of an expanded stable configura-
tion that can be reached through fluidic actuation (see Supplementary 
Fig. 23 for details) and indicates the existence of a threshold value of 
Δmax/||AB|| (dependent on materials and fabrication process) that marks 
the transition from monostable to bistable behaviour.

Whereas the connection of two different triangles side by side ena-
bles us to design inflatable and bistable structures, it limits us to 
star-like shapes. To expand the range of shapes, we next arrange the 
two triangles on top of each other in the flat configuration and mirror 
them twice to form an inflatable cavity (we refer to these structures as 
Designs III; Fig. 2e). This leads to geometries comprising eight triangles 
that are initially flat and transform into wedge-like shapes upon deploy-
ment. As for Designs I and Designs II, geometric compatibility for 
Designs III requires a pair of triangles with w w=A

c(1)
A
c(2)  and 

||AB || = ||AC ||(1) (2) , but the closure of the cavity is only possible if α α=III
(1)

III
(2). 

By imposing these constraints and log h ≥ 0, we find that inflatable 
Designs III can be realized by combining two triangles with log hABC < 0 
and, therefore, substantially larger Δmax

ABC (see areas highlighted in yellow 
in Fig. 2f). This is because the internal volume of Designs III is defined 
by the difference between V ABC

(1)  and V ABC
(2)  (that is, V V V= 4( − )ABC

(1)
ABC
(2) ) 

instead of their sum, as for Designs I and Designs II. Importantly, by 
plotting Δmax versus h for 500,000 randomly chosen Designs III,  
we find that these geometries are characterized by much larger maxi-
mum incompatibility in the inflatable domain. As a result, when  
we fabricate and test Design III-C with α β( , ) = (37.1 , 30.0 )III C

(1)
III C
(1)

‐ ‐
∘ ∘   

and ( ‐ ‐
∘ ∘α β, ) = (37.1 , 40.6 )III C

(2)
III C
(2) , (for which Δ /||AB|| = 9.93 × 10max −2 ), 

we record even larger values of negative pressure (that is, larger energy 
barrier preventing the snap back) compared with the previous bistable 
Design II-B (Fig. 2j, Supplementary Video 2).

So far, all identified designs (that is, Designs I–III) have been realized 
by assembling triangles that initially lie in the x–y plane and recover 
their angle α on such a plane for w w=A A

c . However, the triangle in the 
x–y plane can also be seen as the projection of a triangle with internal 
angles α and β that has been initially rotated around its edge BC to have 
a height wA

i  and projected angles α xy
i  and β xy

i  (Fig. 2g). In this case, if 
β α α∈ [π/4 − /2, π/2 − ]xy xy xy

i i i , the angle α xy
i  is preserved for two distinct 

deployment heights, wA
i  and wA

c  (see inset in Fig. 2g, Supplementary 
Information section 1 for details). As such, we can use these triangles 
as building blocks to realize star-like origami shapes with two expanded 
stable configurations corresponding to wA

i  and wA
c . An interesting fea-

ture of this family of structures (which we refer to as Designs IV) is that 
if we select α n= π/xy

i  (n = 3, 4, …) and

β β β≥ * = tan ( 2 tan ), (5)xyIV IV
−1 i

β*
IV denoting a critical threshold value, the resulting origami are  

bistable and inflatable, even if made out of a single triangular building 
block (see Supplementary Information section 1 for details). This is 
because, for β β≥ *

IV IV, VABC monotonically decreases when deploying 
the triangle from wA

i  to wA
c , so the compatible state corresponding to 

wA
c  can always be reached by deflation. To demonstrate the concept, 

in Fig. 2i, we consider 500,000 different geometries of Designs IV for 
which α = π/4xy

i , β α α∈ [π/4 − /2, π/2 − ]xy
i

IV IV   and β β∈ [ , π/2[xyIV
i , and 

find that all geometries with β β≥ *
IV IV are inflatable. Furthermore, as β*

IV 
is not affected by α xy

i  (see map of β*
IV in Fig. 2h), an inflatable origami 

structure can be realized by assembling highly incompatible triangles 
lying near the upper bound of their design space. This results in inflat-
able designs with a maximum incompatibility, Δmax, much higher than 
Designs I–III and with a flat stable state in the x–z plane (as for β = π/2 − α 
the compatible deployment height is such that the deployed triangle 
lies in the orthogonal x–z plane with w = ||AC||A

c ; see Supplementary 
Information section 1 for details). In full agreement with these findings, 
when we fabricate and test Design IV-D with ‐ ‐

∘ ∘α β( , ) = (29 , 56 )IV D IV D  and 
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∘ ∘α β( , ) = (45 , 33 )xy
i

xy
i  (for which Δ /||AB|| = 2.05 × 10max −1), we record the 

largest negative pressure and energy barrier in the deployed stable 
state (see green curve in Fig. 2j, Supplementary Video 2).

Metre-scale functional structures
As a next step, we use the simple geometries presented in Fig. 2 as a basis 
to design functional and easily deployable structures for real-world 
applications and build them at the metre scale.

First, we use the expanded wedge-like shapes of Designs III as build-
ing blocks to realize an inflatable archway. Focusing on Design III-C, 
we find that in the expanded stable state it has an opening angle 
θIII-C = 40° (Fig. 3a). To design a deployable arch, we couple this unit 
with a different geometry of the same design family (which we referred 
to as Design III-C′) that (1) is bistable and deployable through inflation, 
(2) has an edge AB of equal length, (3) has an opening angle θIII-C′ such 
that when we alternate m + 1 units of Design III-C′ with m units of Design 
III-C, we span an angle of 180° in the expanded configuration, and (4) 
has the larger triangle (referred to as triangle 1 in Fig. 2) identical to 
that of Design III-C but mirrored (that is, α β= ′III C

(1)
III C
(1)

‐ ‐  and ‐ ‐β α= ′III C
(1)

III C
(1) ; 

Fig. 3b) to ensure compactness in the flat state. By inspecting the data-
base of Fig. 2j, we find that for m = 6, all above requirements are satisfied 
when Design III-C′ is characterized by (α ′III C

(1)
‐ , β ′III C

(1)
‐ , α ′III C

(2)
‐ , β ′III C

(2)
‐ ) = (30°, 

37°, 30°, 51°). However, as the resulting archway comprises 13 inflat-
able cavities, multiple pressure inputs would be needed to inflate it. 
To simplify the deployment process, we modify the structure by cutting 
it through the x–z mirror plane, separating the two resulting parts by 
a distance t, and connecting them with rectangular facets (see insets 
in Fig. 3c). As this procedure does not affect the geometric deployment 
of the triangles, we expect the additional facets to have a negligible 
impact on the structure’s multistability, but to facilitate its inflatability 
by creating a single cavity. In Fig. 3d, we show a metre-scale version of 
this archway with ||AB|| = 30 cm and t = 10 cm constructed out of cor-
rugated plastic sheets (clear 8 ft × 4 ft, 4-mm-thick sheets). To build 
this structure, we use a digital cutting system to cut two parts (each 
comprising both triangular building blocks and rectangular facets; 
Supplementary Fig. 20) and pattern the hinges by scoring the sheets 
to locally reduce the thickness of the material. We then connect the 
two digitally cut parts using adhesive tape to form an airtight cavity 
(see Supplementary Information section 2 for details). In the folded 
configuration, the structure has a height of 20 cm and a width of 30 cm. 
Upon pressurization, it inflates into a 60-cm-tall and 150-cm-wide arch-
way that, because of its multistability, preserves its shape even when 
the pressure is suddenly released (Supplementary Video 3). Finally, it 
can be folded back to the initial flat state by applying vacuum to over-
come the energy barrier (Supplementary Video 3).

Another strategy to realize functional shapes is to merge components 
of different design families together to form a single cavity. As an exam-
ple, we can create an inflatable tent-like geometry by combining one 
layer of a Design I with another one of a Design IV (Fig. 4a). To ensure 
successful merging, the two layers must have (1) outer edges BC of 
equal length, and (2) the same x–y projection in the two compatible 
states (that is, α α α= = xyI

(1)
I
(2) i  and β β β= = xyI

(1)
I
(2) i ). Furthermore, to real-

ize structures with a fully flat compatible state, we choose the triangles 
to lie on the upper boundary of the deployable domain (that is, triangles 
with β α= π/2 −I

(1)
I
(1) and β α= π/2 −I

(2)
I
(2)). By imposing these constraints, 

we can design tent-like structures that can be folded flat and expanded 
via inflation (see Supplementary Fig. 24 for a centimetre-scale version), 
but their compactness is limited by the long AB edge of the Design IV. 
To further decrease the occupied volume in the compact state, we 
truncate the triangular building blocks of the Design IV layer into quad-
rilaterals and add additional layers of Design IV, some of which can be 
folded inwardly. As shown in Fig. 4b, these operations not only reduce 
the initial volume but also result in a more liveable sheltered space in 
the deployed state. To demonstrate this strategy, we fabricate the 
structure shown in Fig. 4b at the metre scale, applying the same con-
struction process used for the inflatable archway (see Supplemen-
tary Information section 2, Supplementary Video 4 for details). As 
shown in Fig. 4c, d, the structure can be folded completely flat (with 
the ceiling folded inward) to occupy a space of 1.0 × 2.0 × 0.25 m. When 
an input pressure is provided, the structure first expands to a stable 
configuration with the roof folded inward. Upon further pressurization, 
the roof snaps outwards and the final deployed shape of 2.5 × 2.6 × 2.6 m 
is reached. Importantly, because of the multistability, at this point the 

DeployedFlat

1 m

ΔVΔVΔV Open

a

Design IV

Design I b

c

Flat folding Flat folding

d

e

x

z

x

z

Fig. 4 | Metre-scale inflatable shelter. a, A tent-like design can be created by 
merging one layer of a Design I with another one of a Design IV. Note in that the 
initial, zero-volume configuration of the tent, both layers are in their 
compatible expanded state, whereas in the final inflated configuration of the 
tent, both layers are in their initial state (flat for Design I and initially rotated for 
Design IV). b, The initial volume can be further decreased by truncating the 
triangular facets into quadrilaterals and arranging successive layers of Design 
IV. c, Schematics illustrating the deployment process. d, The fabricated 
metre-scale inflatable shelter can be inflated from a compact state to a fully 
deployed state. Owing to multistability, the door can be opened, making the 
internal space accessible. e, Flat-folded and deployed state of the metre-scale 
inflatable shelter.
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door can be opened without impacting structural integrity, making 
the internal space accessible. Finally, using a vacuum, the shelter can 
be folded back to the flat configuration (Supplementary Video 3).

Conclusion
In summary, we have demonstrated how geometry can be efficiently 
exploited to realize pressure-deployable origami structures character-
ized by two stable configurations—one compact and one expanded. The 
design methodology presented in this work could be extended both 
to larger and smaller scales if properly accounting for loading condi-
tions and fabrication challenges4,10,11,20. As our functional structures are 
multistable, they can also be designed to achieve target deployment 
sequences (Supplementary Fig. 25). In addition, by introducing building 
blocks comprising more than two different facets, we expect to further 
expand the range of achievable shapes (Supplementary Fig. 26). To 
that end, complementary to our geometric model and experiments, a 
mechanical model capable of predicting the full energy landscape39,50 
could provide a useful tool to guide such exploration. Finally, building 
on our results, deployable structures able to switch between targeted 
stable states could be efficiently identified by generalizing our design 
rules to arbitrary origami polyhedra and, combining them with sto-
chastic optimization algorithms, solve the inverse design problem.
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Methods

The details of the design, materials and fabrication methods are sum-
marized in Supplementary Information sections 1, 2. The experimental 
procedure of the inflation with water to measure the pressure–volume 
curve is described in Supplementary Information section 3. Finally, 
additional information about extending our methodology to more 
complex designs is provided in Supplementary Information section 4.

Data availability
The datasets generated or analysed during the current study are avail-
able from the corresponding author on reasonable request.

Code availability
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Acknowledgements We thank E. Demaine, J. Ku, T. Tachi and Yunfang Yang for insightful 
discussions; S. Lindner-Liaw, M. Bhattacharya and M. Starkey for assistance in the fabrication 
of the centimetre-scale and large-scale structures; and A. E. Forte for his valuable comments 
and suggestions on the manuscript. This research was supported by NSF through the Harvard 
University Materials Research Science and Engineering Center grant number DMR-1420570 
and DMREF grant number DMR-1922321, as well as the Fund for Scientific Research-Flanders 
(FWO).

Author contributions D.M., B.G., C.H. and K.B. proposed and developed the research idea. D.M. 
conducted the numerical calculations. D.M., B.G. and C.J.G.-M. designed and fabricated the 
centimetre-scale and metre-scale structures. D.M. performed the experiments. D.M., B.G. and 
K.B. wrote the paper. K.B. supervised the research.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-03407-4.
Correspondence and requests for materials should be addressed to C.H. or K.B.
Peer review information Nature thanks Larry Howell, Glaucio Paulino and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer 
reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-021-03407-4
http://www.nature.com/reprints


Multistable inflatable origami structures at 
the metre scale

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-03407-4



Supplementary Materials1

Multistable inflatable origami structures at the meter-scale2

David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi3

E-mail: bertoldi@seas.harvard.edu4

This PDF file includes:5

Figs. S1 to S306

Captions for Videos S1 to S47

Other supplementary materials for this manuscript include the following:8

Videos S1 to S49

David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi 1 of 31



S1. Design10

Our origami-inspired deployable structures are made out of stiff triangular facets connected by compliant hinges. In this11

Section, we first show that the inscribed angle theorem can be utilized to design triangular building blocks with two compatible12

states. Next, we demonstrate that assembling these building blocks in rational ways leads to a library of inflatable and bistable13

origami shapes.14

Deployment of an initially flat triangular building block. We start by considering a triangular building block ABC with internal15

angle α ≡ ∠BAC and β ≡ ∠ABC. The triangle is initially flat (i.e. it lies in the xy-plane) and is deployed through a rotation16

about its edge BC, which leads to a displacement wA of vertex A along the z-direction and a volume under the triangle, VABC ,17

that can be calculated as18

VABC = 1
6AB · (AC ×AAxy) = wA||AB||2

6
sinα

sin (α+ β)

√
sin2 β −

w2
A

||AB||2 , [1]19

where AAxy is the segment formed by connecting vertex A to its projection on the xy-plane, ||AB|| is the length of edge AB,20

and wA = ||AAxy|| (see Fig. S1a). Focusing on the xy-plane (see Figs. S1b–c), we see that, if21

α ∈ ]αmin, αmax[ =
]
0, π2

[
, and β ∈ [βmin, βmax] =

[
π

4 −
α

2 ,
π

2 − α
]
, [2]22

the projection of the triangle intersects a circle circumscribed to the initial configuration at a displacement, wcA, and volume,23

V cABC . The displacement wcA can be obtained as24

wcA =
√
||AC||2 − ||ACcxy||2 = ||AB||

√
1− cos2 β

sin2(α+ β) , [3]25

where ||AC|| is the length of edge AC and ACcxy is the edge AC projected on the xy-plane at the intersection with the circle,26

whose length is given by27

||ACcxy|| = ||AB|| cot(α+ β). [4]28

Further, by substituting Eq. (3) in Eq. (1), we get29

V cABC = ||AB||
3

6 sinα sin β cosβ csc(α+ β) cot(α+ β)
√

1− cot2 β cot2(α+ β). [5]30
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Fig. S1. Deployment of an initially flat triangular building block. (a-b). Isometric and projected views of a triangular building block ABC that recovers its projected angle
α during deployment leading to two distinct compatible states. (c). Initially flat triangular building block ABC in the limit cases where β = βmin and β = βmax. (d).
According to the inscribed angle theorem, the angle ∠BAC is half the central angle ∠BOC. (e). Moving the vertex A on the circle below the edge BC does not change the
angle ∠BAC.

It follows from the inscribed angle theorem (which states that, since the angle α inscribed in a circle is half of the central angle31

that subtends the same arc, α does not change as its vertex is moved on the circle—see Figs. S1d-e) that for wA = wcA and32

VABC = V cABC , the angle α is recovered on the projected plane. As such, the triangle ABC possesses two states—one flat33

and one deployed—for which α = αxy separated by states for which αxy 6= α (see gray triangle is Figs. S1a-b). Using simple34

geometry, we can determine αxy as a function of wA as35

αxy = arccos
(

ABxy ·ACxy
||ABxy|| · ||ACxy||

)
= arccos

 1− 2 w2
A

||AB||2 −
sin(α−β)
sin(α+β)

2
√

1− w2
A

||AB||2

√(
sin β

sin(α+β)

)2
− w2

A
||AB||2

 , [6]36
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where ABxy and ACxy are the edges AB and AC projected on the xy-plane, which have length37

||ABxy|| =
√

1− w2
A

||AB||2 , [7]38

and39

||ACxy|| = ||AB||
√

sin2 β

sin2(α+ β) −
w2
A

||AB||2 . [8]40

In Fig. S2a, we show the evolution of the projected angle variation, i.e. ∆α ≡ αxy − α, as a function of wA for a triangular41

building block with α = 45◦ and β = 32◦. We find a highly non-linear relation characterized by a local maximum42

∆αmax ≡ max(∆α) = arccos

(
2 cot(α+ β) sin 2β√

csc4(α+ β) sin 2β sin(2(α+ β)) sin2(α+ 2β)

)
, [9]43

at a deployment height44

w∆αmax
A = ||AB|| sin β

√
1− cotβ cot(α+ β). [10]45

and two points (wA = 0 and wA = wcA) at which ∆α = 0.46
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Fig. S2. Evolution of ∆α and ∆ABC during deployment. (a-b). Evolution of ∆α and ∆ABC as a function of the deployment of vertexA,wA, for a triangle with α = 45◦
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Further, the difference between αxy and α can also be quantified by introducing the distance47

∆ABC = ||ACxy|| · sin ∆α = ||ACxy|| · sin(αxy − α), [11]48

that we will later use to characterize the geometric incompatibility of the resulting origami structures for 0 < wA < wcA and,49

therefore, estimate the energy required for them to snap back from the expanded to the flat state. In Fig. S2b, we show the50

evolution of ∆ABC as a function of wA for a triangle with α = 45◦ and β = 32◦. As expected, we find a similar behavior to51

that reported in Fig. S2a for ∆α, with a local maximum ∆max
ABC ≡ max(∆ABC) at a deployed height w∆maxABC

A and two points52

(wA = 0 and wcA) at which ∆ABC = 0.53

Next, in Fig. S3 we show the effect of α and β on ∆ABC . First, in Fig. S3a we investigate how β affects the ∆ABC vs. wA54

curve when choosing α = 45◦. We find that55

• for β → βmin = π/4− α/256

wcA → 0, and ∆max
ABC = max (∆ABC)→ 0. [12]57

• for β → βmax = π/2− α, ∆max
ABC largely increases and58

wcA → w
∆maxABC
A . [13]59

As shown in Fig. S3b, similar trends are found when increasing the angle α for a fixed value of β (here we choose β = 45◦). It60

is also interesting to note that for α = 60◦ ∆ABC monotonically increases and the triangle does not have a deployed compatible61

state. This is because for α = 60◦ , β = 45◦ > βmax = π/2− α.62
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Fig. S3. Effect of α and β on the ∆ABC -wA curve. (a). Effect of varying β for triangles with α = 45◦. (b). Effect of varying α for triangles with β = 45◦.

To identify triangles that can potentially lead to deployable structures that are inflatable, we then plot the evolution of63

∆ABC as a function of VABC . In Fig. S4a we report such curves for triangles with α = 45◦ and β ∈ [22.5◦, 45◦] and highlight64

two important volume configurations: the volume at the deployed compatible state , V cABC (white circular marker), and the65

maximum volume, V maxABC (green circular marker), that can be expressed as66

V maxABC = ||AB||
3

12
sinα sin2 β

sin(α+ β) . [14]67

We find that for low values of β the deployed compatible state with corresponding volume, V cABC , is reached before the state of68

maximum volume, V maxABC , enabling actuation through inflation (see inset on the lower left corner of Fig. S4a). Differently, for69

large values of β the configuration of maximum volume is reached before the deployed compatible state and, therefore, that70

state cannot be reached through inflation (see inset on the upper left corner of Fig. S4a). Note that these trends are also found71

when considering a triangle with β = 27◦ and α ∈ [36◦, 60◦] (see Fig. S4b). Guided by these results, we then introduce the72

inflation constraint73

hABC = ΓVmaxABC

Γc , [15]74

where ΓVmaxABC and Γc are the arc lengths measured on the ∆ABC-VABC curve between the flat compatible state and the state75

of maximum volume and between the flat and expanded compatible configurations, respectively (see Fig. S4a). It follows from76

Eq. (15) that only triangles with log hABC ≥ 0 can be deployed through fluidic actuation as those are the only ones for which77

the expanded compatible configuration is reached before the one with maximum volume during inflation.78

Finally, in Fig. S5 we summarize the results derived here by reporting contour maps of the compatible deployment height, wcA,79

the compatible deployment volume, V cABC , the maximum volume, V maxABC , the maximum geometric incompatibility, ∆max
ABC , and80

the inflation constraint, log hABC .81
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Deployment of an initially rotated triangular building block. So far, we have focused on triangular building blocks defined by82

internal angles α and β that initially lie in the xy-plane and recover their projected angle α in a deployed state on such plane83

for wA = wcA and VABC = V cABC . However, the triangle in the xy-plane can also be seen as the projection of a triangle with84

internal angles α and β that has been initially rotated around its edge BC to have a deployment height wiA, volume under85

the triangle V iABC , and projected angles αixy and βixy (see Fig. S6). Note that such initially rotated building block is fully86

defined by the projected angles αixy and βixy and the internal angle β and that its other geometric parameters, α and wiA, can87

be derived from simple geometric considerations as88

α = π − arccos


√

2
(

cos 2β − sin(αixy+2 βixy)
sinαixy

)
√
−

cos 2αixy+cos(2αixy+4 βixy)−2

sinαixy
+4 cos 2 β sin(αixy+2 βixy)

sinαixy

 , [16]89

and90

wiA =
√
||AC||2 − ||ACixy||2 = ||AB|| sin β

√
1− tan2 βixy

tan2 β
, [17]91

where ACixy is the edge AC projected on the xy-plane at the first intersection with the circle, whose length is given by92

||ACixy|| = ||AB||
cosβ tan βixy

sin(αixy + βixy) . [18]93

βxyi

x
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αxyi

αxyi

αxy
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Axyi
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Axy
c

γi

wcA
wA
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a
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b

Fig. S6. Deployment of an initially rotated triangular building block. (a-b). Isometric and projected views of a triangular building block ABC that recovers its projected
angle αixy during deployment leading to two distinct compatible states.

Further, by substituting Eq. (17) into Eq. (1), we find that the volume initially under the triangle is94

V iABC = ||AB||
3

6
cos2 β sinαixy sin β tan βixy

sin (αixy + βixy) cosβixy

√
1− tan2 βixy

tan2 β
. [19]95

Focusing on the xy-plane (see Fig. S6b), we see that, if96

αixy ∈
](
αixy
)
min

,
(
αixy
)
max

[
=
]
0, π2

[
,

βixy ∈
[(
βixy
)
min

,
(
βixy
)
max

]
=
[
π

4 −
αixy
2 ,

π

2 − α
i
xy

]
,

β ∈ [βmin, βmax[=
[
βixy,

π

2

[
,

[20]97

upon further rotation the projection of the triangle intersects a circle circumscribed to the initial configuration also at a98

displacement, wcA, and volume, V cABC . The displacement wcA can be obtained as99
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wcA =
√
||AC||2 − ||ACcxy||2 = ||AB|| sin β

√
1− cot2(αixy + βixy) cot2 β, [21]100

where ACcxy is the edge AC projected on the xy-plane at the second intersection with the circle, whose length is given by101

||ACcxy|| = ||AB||
cosβ cot

(
αixy + βixy

)
cosβixy

. [22]102

Further, by substituting Eq. (21) in Eq. (1), we get103

V cABC = ||AB||
3

6
cos2 β sin(αixy) sin β

sin (αixy + βixy) tan (αixy + βixy) cos (βixy)
√

1− cot2 (αixy + βixy) cot2 β [23]104

It follows from the inscribed angle theorem that for wA = wcA and VABC = V cABC , the projected angle αixy is recovered on the105

projected plane. As such, the triangle ABC possesses two states – identified by wiA and wcA – for which αixy = αxy separated by106

states for which αixy 6= αxy, where αxy is still given by Eq. (6).107

In Fig. S7a we show the evolution of the projected angle variation, ∆α ≡ αxy − αixy, as a function of wA for a triangular108

building block with β = 45◦, αixy = 45◦, and βixy = 32◦ (for which α = 36.8◦ according to Eq. (16)). We find a non-linear109

relationship similar to that obtained for the initially flat building blocks, characterized by a local maximum110

∆αmax ≡ max(∆α) = arccos

(
2 cot(αixy + βixy) sin 2βixy√

csc4(αixy + βixy) sin 2βixy sin(2(αixy + βixy)) sin2(αixy + 2βixy)

)
, [24]111

at112

w∆αmax
A = ||AB|| sin β

√
1− tan βixy cot2 β cot(αixy + βixy). [25]113

and two points (wA = wiA and wA = wcA) at which ∆α = 0.114
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As for the initially flat building blocks, also in this case we can quantify the difference between αxy and αixy by introducing the115

distance116

∆ABC = ||ACxy|| · sin(αxy − αixy), [26]117

where ||ACxy|| is given in Eq. (8). In Fig. S7b we show the evolution of ∆ABC as a function of wA for a triangular building118

block with β = 45◦, αixy = 45◦, and βixy = 32◦. Again, we find a behavior similar to that observed for the initially flat building119

blocks, with a local maximum ∆max
ABC ≡ max(∆ABC) at w∆maxABC

A and two points (wA = wiA and wcA) at which ∆ABC = 0.120

Next, in Fig. S8 we explore the effect of αixy, βixy, and β on ∆ABC . First, in Fig. S8a we investigate how βixy affects the121

∆ABC vs. wA curve when choosing αixy = 45◦ and β = 45◦. We find that122

• for βixy →
(
βixy
)
min

= π/4− αixy/2123

wiA → wcA, and ∆max
ABC = max (∆ABC)→ 0. [27]124
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• for βixy →
(
βixy
)
max

= π/2− αixy, ∆max
ABC largely increases and125

wiA → 0, and wcA → w
∆maxABC
A . [28]126

As shown in Fig. S8b, we find similar trends when increasing the angle αxy, while keeping βixy = 32◦ and β = 45◦. However, as127

expected from Eq. (17), in this case the initial deployment height, wiA, is constant and not affected by αixy. Finally, in Fig. S8c128

we investigate how β affects the ∆ABC vs. wA curve for triangles with αixy = 45◦ and βixy = 45◦. By varying β over the range129

[βixy, π/2[, we find that130

• for β → βixy we recover the case of the initially flat triangular building block and131

wiA → 0 [29]132

• for β → π/2, ∆max
ABC slightly decreases and133

wiA → wcA. [30]134
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To identify triangles that can potentially lead to deployable structures that are inflatable, we then plot the evolution of135

∆ABC as a function of VABC . In Fig. S9a we report such curves for triangles with αixy = 45◦, β = 45◦ and βixy ∈ [22.5◦, 45◦]136

and highlight two important volume configurations: the volume at the deployed compatible state , V cABC (white circular137

marker), and the maximum volume, V maxABC (green circular marker), that can be calculated from Eq. (14). We find that for low138

values of βixy, both deployed compatible state with corresponding volumes, V iABC and V cABC are reached before the state of139

maximum volume V maxABC , enabling actuation through inflation (see green dashed line in Fig. S9a). Differently, for large values140

of β the configuration of maximum volume is reached before the deployed compatible state with corresponding volume V iABC141

and, therefore, that state cannot be reached through inflation (see green solid line in Fig. S9a). Note that similar trends are142

also found when considering a triangle with βixy = 32◦ and β = 45◦ and αixy ∈ [36◦, 60◦] (see Fig. S9b), although the effect of143

increasing αixy is substantially smaller than βxy on inflatability.144
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To identify initially rotated triangles that can deployed through fluidic actuation, we then use the inflation constraint defined145

in Eq. (15). An interesting feature of the initially rotated building block is that for any combination of αixy and βixy (within the146

bounds defined in Eq. (20)), we can always select β such that log hABC ≥ 0. This is because we can set β = β∗, where β∗ is147

the angle resulting in an initial rotated state defined by the deployment wiA that maximizes the volume under the triangle, i.e.148

V iABC = V maxABC (see Fig. S9c where for β = β∗ the black and green markers coincide). To determine β∗, we first determine the149

deployment angle, γi, by finding the dihedral angle (see Fig. S6a) between the planes of the flat and deployed triangles ABC150

γi = arccos

(
n0 · nwi

A

||n0|| · ||nwi
A
||

)
= arccos

(√(
1− w2

A

||AB||2 sin2 β

))
, [31]151

where n0 and nwA are the normals of the planes defined by the flat and deployed triangles. Noting that a triangle maximizes152

its volume when the deployment angle is γi = π/4 and replacing wA in Eq. (31) by the expression of wiA in Eq. (17), we find153
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β∗ = tan−1 (√2 tan βixy
)
. [32]154

Importantly, we expect an origami structure made out of initially rotated triangles with β ≥ β∗ to be bistable and inflatable155

even if made out of a single building block.156

Finally, in Fig. S10 we summarize the results derived here by reporting contour maps of the maximum geometric157

incompatibility, ∆max
ABC , the inflation constraint, log hABC , the compatible deployment heights, wiA and wcA, the compatible158

deployment volumes, V iABC and V cABC , and the maximum volume, V maxABC for three different values of β, i.e. β = 30◦, 45◦, and159

60◦.160
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Fig. S10. Deployment of an initially rotated triangular building block: summary of derived results. (a-c). Contour maps of the maximum geometric incompatibility,
∆max
ABC , the inflation constraint, loghABC , the compatible deployment heights, wiA and wcA, the compatible deployment volumes, V iABC and V cABC , and the maximum

volume, VmaxABC for three different values of β, i.e. (a) β = 30◦, (b) 45◦, and (c) 60◦.
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Inflatable and bistable origami shapes. To realize inflatable origami structures with multiple stable states, we assemble the161

triangular building blocks discussed above. In this work, we present four different ways of connecting the building blocks to162

obtain a library of origami shapes. For three of them (which will be referred to as Designs I, Designs II, and Designs III) we163

utilize initially flat building blocks, whereas for the fourth one (which will be referred to as Design IV) we utilize initially164

rotated building blocks.165

Designs I. To realize Designs I, we arrange 2n initially flat triangles with angles (α(1), β(1)) with 2n initially flat triangles with166

angles (α(2), β(2)) to form two identical layers with n-fold symmetry and connect them at their outer boundaries (see Fig. S11).167

The resulting star-like structures define an internal volume168

V = 2n(V (1)
ABC + V

(2)
ABC), [33]169

exhibit geometric incompatibility170

∆ = 2n(∆(1)
ABC + ∆(2)

ABC) [34]171

and are inflatable only if172

log h = log
(

ΓVmax

Γc

)
≥ 0, [35]173

where ΓVmax and Γc are the arc lengths measured on the ∆-V curve between the states with V = 0 and V = V max = max(V )174

and between the two stable configurations, respectively. Note that to ensure structural integrity, the two triangular building175

blocks must have176

(i) identical compatible deployment heights, i.e. wc(1)
A = w

c(2)
A ;177

(ii) connecting deployed edges AB of equal length, i.e ||AB(1)|| = ||AB(2)||;178

(iii) angles that satisfy α(1) + α(2) = π/n.179

Therefore, to realize a Design I structure, we first select the number of symmetric folds, n, and the angles of the first triangular180

building blocks α(1) and β(1). It follows from requirements (i-iii) that the second triangular building block must have its181

internal angles equal to182

α(2) = π/n− α(1),

β(2) = arctan
(

sin(α(1) + β(1))
cosβ(1) cosα(2) − tanα(2)

)
.

[36]183

In Figs. S11a-c, we show an example of a Design I geometry (referred to as Design I-A), with (α(1)
I-A, β

(1)
I-A) = (22◦, 35◦) and184

(α(2)
I-A, β

(2)
I-A) = (68◦, 14◦) for which ∆max/||AB|| = 2.67× 10−2 and log h = 0. Finally, in Fig. S11d, we plot the evolution of the185

maximum incompatibility, ∆max ≡ max(∆), as a function of the inflation constraint, log h, for 500, 000 different geometries186

with n ∈ [2, 5], α ∈]0, π/n[, and β ∈ [π/4− α/2, π/2− α] (note that the increase in brightness of the data points in Fig. S11d187

indicates an increase in number of symmetry folds, n, of the origami geometry).188

Designs II. With the goal of increasing the geometric incompatibility of the inflatable designs, we investigate the response of189

star-like structures in which the longest edge of one triangle, AB(1), is connected to the shortest edge of the other one, AC(2).190

These geometries must satisfy the same requirements (i-iii) as Design I, except that we impose ||AB(1)|| = ||AC(2)|| instead191

of ||AB(1)|| = ||AB(2)||. Also in this case, to realize a Design II structure, we first select the number of symmetric folds, n,192

and the angles of the first triangular building block α(1) and β(1). It then follows from requirements (i-iii) that the second193

triangular building block must have its internal angles equal to194

α(2) = π/n− α(1),

β(2) = arctan
(

sin β(1)

cos(α(1) + β(1)) cosα(2) − tanα(2)
)
.

[37]195

In Figs. S12a-c, we show an example of a Design II geometry (referred to as Design II-B), with (α(1)
II-B, β

(1)
II-B) = (43.6◦, 25.2◦)196

and (α(2)
II-B, β

(2)
II-B) = (46.4◦, 33.5◦) for which ∆max/||AB|| = 8.58 × 10−2 and log h = 0. Finally, in Fig. S12d, we plot the197

evolution of the maximum incompatibility, ∆max, as a function of the inflation constraint, log h, for 500, 000 different geometries198

with n ∈ [2, 5], α ∈]0, π/n[, and β ∈ [π/4− α/2, π/2− α].199
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Designs III. Whereas the connection of two different initially flat triangles side by side enables us to design inflatable and bistable200

structures, it limits us to star-like shapes. To expand the range of shapes, we next arrange the two triangles on top of each201

other in the flat configuration and mirror them twice to form an inflatable cavity (see Fig. S13). This leads to geometries202

comprising eight triangles that are initially flat and transformed into wedge-like shapes upon deployment. These geometries203

define an internal volume204

V = 4
(
V

(1)
ABC − V

(2)
ABC

)
, [38]205

exhibit geometric incompatibility206

∆ = 4
(

∆(1)
ABC + ∆(2)

ABC

)
[39]207

and are inflatable only if the constraint given in Eq. (35) is satisfied. Note that to ensure structural integrity, the two triangular208

building blocks must have209

(i) identical compatible deployment heights, i.e. wc(1)
A = w

c(2)
A ;210

(ii) connecting deployed edges of equal length, i.e ||AB(1)|| = ||AC(2)||;211

(iii) angles that satisfy α(1) = α(2).212

Therefore, to realize a Design III structure, we first select the angle of the first triangular building block α(1) and β(1). It then213

follows from requirements (i-iii) that the second triangular building blocks must have its internal angles equal to214

α(2) = α(1),

β(2) = arctan
(

sin β(1)

cos(α(1) + β(1)) cosα(2) − tanα(2)
)
.

[40]215

In Figs. S13a-c, we show an example of a Design III geometry (referred to as Design III-C), with (α(1)
III-C, β

(1)
III-C) =216

(37.1◦, 30.0◦) and (α(2)
III-C, β

(2)
III-C) = (37.1◦, 40.6◦) for which ∆max/||AB|| = 9.93 × 10−2 and log h = 0.544. Finally, in Fig.217

S13d, we plot the evolution of the maximum incompatibility, ∆max, as a function of the inflation constraint, log h, for 500, 000218

different geometries with α ∈]0, π/2[, and β ∈ [π/4− α/2, π/2− α].219
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Fig. S13. Designs III. (a-b). Isometric and projected views of the two building blocks used to create Design III-C. (c). Evolution of the incompatibility, ∆, as a function of the
internal volume, V , for Design III-C. (d). Maximum incompatibility, ∆max vs. inflation constraint, logh for 500, 000 different Designs III geometries.

Designs IV. To realize Designs IV, we arrange 4n initially deployed triangles with angles α and β to form two identical layers220

with n-fold symmetry and connect them at their outer boundaries (see Fig. S14). Note that in this case, since we can choose221

β > β∗, we can use only one triangular building block to make bistable and inflatable structures. The resulting star-like222

structures define an internal volume223

V = 4nVABC , [41]224
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exhibit geometric incompatibility225

∆ = 4n∆ABC , [42]226

and are inflatable only if227

log h = log
(

ΓVmax

Γc

)
≥ 0, [43]228

where ΓVmax and Γc are the arc lengths measured on the ∆-V curve between the states with V = 4nV iABC and V = V max =229

max(V ) and between the two stable configurations, respectively. Note that to ensure structural integrity, the triangular building230

blocks must have231

(i) projected angle αixy = π/n;232

(ii) projected angle βixy ∈ [π/4− αixy/2, π/2− αixy];233

(iii) interior angle β ∈ [βixy, π/2[.234

Therefore, to realize a Design IV structure, we first select the number of symmetric folds, n, the projected angle βixy and the235

interior angle β. Then, we use Eq. (16) to determine α. Note that to make the structure deployable through inflation (i.e.236

log h ≥ 0) we have to select β ≥ β∗.237

In Figs. S14a-c, we show an example of a Design IV geometry (referred to as Design IV-D), with (αIV-D, βIV-D) = (29◦, 56◦)238

and (αixy, βixy) = (45◦, 33◦) for which ∆max/||AB|| = 2.05 × 10−1 and log h = 0.508. Finally, in Fig. S14d, we plot the239

evolution of the maximum incompatibility, ∆max, as a function of the inflation constraint, log h, for 500, 000 different geometries240

with n ∈ [3, 5], βixy ∈ [π/4− α/2, π/2− α], and β ∈ [βixy, π/2[.241
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S2. Fabrication242

In this study, we fabricate both centimeter-scale and meter-scale origami structures. This section gives details of the fabrication243

methodology used for the two considered scales.244

A. Geometry and material selection. The main structures built in this study include four simple centimeter-scale origami245

designs, i.e. Designs I-A, II-B, III-C, and III-D, as well as two meter-scale functional designs, i.e. the archway and the shelter.246

Designs I-A and II-B are both chosen because they maximize the geometric incompatibility of their respective class while still247

being inflatable to their expanded stable state, i.e. log h = 0. Design III-C is chosen with incompatibility higher than that of248

Design II-B—to ensure bistability—and geometry suitable for the realization of the inflatable archway (Design III-C is one of249

the units of our arch—see Fig.3a of the main text). Finally, we select Design IV-D to have incompatibility higher than that250

of Design II-B (as well as that of Design III-C) and to have two non-zero volume stable states (a property that cannot be251

achieved with Designs I-III).252

To provide a robust and protective environment as well as to accommodate geometric frustration during deployment and253

minimize bending energy in the hinges, we build our origami structures out of stiff faces and compliant hinges. To realize254

centimeter-scale structures, inspired by recent works [24, 25], we use two different methods based on cardboard and 3D-printed255

faces. In the first method, we connect laser-cut cardboard faces with a double-sided adhesive sheet to form the hinges. The256

cardboard structures can be fabricated quickly and inexpensively to validate the compatible shapes coming from our design257

methodology. However, they do not provide an airtight cavity to perform experimental testing. To realize inflatable prototypes,258

in the second method, we assemble centimeter-scale structures by connecting faces 3D-printed out of a standard rigid material259

(polyactic acid) with flexible polyester laser-cut sheets to form the hinges. For the meter-scale model, we use corrugated plastic260

sheets for the faces as they are available in large format (8 ft × 4 ft, 4-mm thick) and have high bending stiffness to weight261

ratio because of the corrugation. To form the compliant hinges, we reduce the thickness of the material locally by scoring the262

plastic sheet (see archway pattern in Fig. S20). In the case of the shelter, we also engrave the sheets (reducing the thickness on263

an area rather than a single line) to further increase the compliance compliance to the hinges to allow geometric frustration264

during the deployment (see shelter pattern in Fig. S20). Details on each fabrication technique are provided below.265

B. Centimeter-scale structures.266

Structures with cardboard faces. In the first method, we assemble laser-cut cardboard facets with double-sided adhesive tape to267

form the hinges (see Fig. S15). Below are the eight steps needed to fabricate a cardboard sample (see Fig. S16 and Video S1):268

• Step 1: we cut the different components of the origami structure out of 0.25-mm thick cardboard sheets (Bristol pad269

from Blick) with a 150 W laser-cutter (PLS6.150D from Universal Laser Systems), using both lasers at 30% power, 30%270

speed, and 1000 pulses per inch (Step 1a). Step 1b: we obtain a first sheet with trapezoidal shapes cut out to later271

accommodate for connection tabs (see Step 3). Step 1c: we obtain another sheet with trapezoidal shapes both cut out272

and patterned to later accommodate for connection pockets and tabs (see Step 3). Note that the circular holes are for273

alignment purposes (see Steps 2 and 3).274

• Step 2: we insert the cut sheet obtained in Step 1b on an alignment platform and place double-sided adhesive tape275

(0.05-mm thick sheet from Graphix) on the origami parts.276

• Step 3: we overlay the sheet obtained in Step 1c on top of the sheet with adhesive to create two layers of triangular facets277

connected by adhesive tape to form the hinges. Note the tabs and pockets now have exposed adhesive for connection.278

• Step 4: we place the two assembled sheets in the laser cutter at the same location using the alignment circular holes.279

• Step 5: we cut out the perimeter of the origami patterns on the sheets with the laser-cutter and obtain two hinged280

triangular facet layers with tabs and pockets for connection.281

• Step 6: we align the two layers and fold the tabs on the corresponding pockets to create a closed origami structure.282

• Step 7: we insert inlets (for fluidic supply) on two of the faces (designed with an additional hole to accommodate it).283

• Step 8: we deploy the origami structure from the flat stable state to the expanded stable state.284
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screwdriver 

carboard facets 

connection tabs

connection pockets

double sided adhesive

fluid inlet

bolts and nuts

Fig. S15. Toolkit of the centimeter-scale origami structures with cardboard facets. The tools required to build the centimeter-scale origami structures out of cardboard
facets and double-sided adhesive tape hinges.
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step 1a step 1b

step 1c step 2

step 3 step 4

step 5 step 6

step 7 step 8

Fig. S16. Centimeter-scale fabrication with cardboard facets. Snapshots of the eight steps required to fabricate the centimeter-scale origami structures with cardboard
facets.
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Structures with 3D-printed faces. To realize inflatable prototypes, we assemble centimeter-scale structures by connecting 3D-printed285

faces with flexible laser-cut sheets to form the hinges (see Fig. S17).286

bolts and nuts

pliers

laser-cut sheets

pin building blocks

socket building blocks

screwdriver 

fluid inlet

Fig. S17. Toolkit of the centimeter-scale origami structures with 3D-printed facets. The tools required to build the centimeter-scale origami structures with 3D-printed
facets.

For each face of the structure, we 3D-print two 0.5-mm thick layers (3D Universe 2.85 mm white PLA filament bundle) using287

an Ultimaker 3 with a 0.25 mm print core with slight modifications to the fine default settings (travel acceleration lowered to288

2000 mm/s2). Note that to facilitate assembly one layer has a set of pins printed on one of its surfaces, whereas the other has289

sockets. The polyester sheets (0.002-in thick polyester film from McMaster-Carr) are cut with a 150 W laser-cutter (PLS6.150D290

from Universal Laser Systems), using both lasers at 8% power, 30 % speed, and 1000 pulses per inch. To connect faces together291

and form a complete origami structure, we snap the pin and socket connections on the 3D-printed parts together using pliers.292

Note that to obtain optimal bonding between the faces we use pins with height and diameter equal to 1.5 mm and 2.65 mm,293

respectively, and ring sockets with height, internal, and external diameters equal to 0.5 mm, 2.8 mm, 4.3 mm, respectively.294

Finally, to seal the origami structure, we coat it in the deployed state with a 0.5 mm-thick layer of silicone rubber (Ecoflex295

00-30 from Smooth-On). Below are the eight steps needed to fabricate a sample (see Fig. S18):296

• Step 1: we 3D-print 0.5-mm thick faces with pins and sockets out of polyactic acid (3D Universe 2.85 mm white PLA297

filament bundle) using a Ultimaker 3.298

• Step 2: we laser-cut 0.002-in thick polyester sheets with a 150 W laser-cutter (PLS6.150D from Universal Laser Systems).299

Note that holes to allow for the pin-socket connections are embedded into the sheets.300

• Step 3: we insert an inlet (for fluidic supply) on one of the faces (designed with an additional socket to accommodate it)301

and snap the corresponding face with pins, while lying the laser-cut sheet in the middle.302

David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi 19 of 31



• Step 4: we arrange on the two laser-cut sheets half of the faces (all oriented in the same direction as the face with the303

inlet in Step 3) and snap them together.304

• Step 5: we insert another inlet (for pressure measurement) on a face designed with an additional socket to accommodate305

it. Note that this face is symmetric to the previous ones already snapped.306

• Step 6: we arrange on the two laser-cut sheets the remaining half of the faces (all oriented in the same direction as the307

face with the inlet in Step 5) and snap them together to form the closed origami structure in the flat stable state.308

• Step 7: we manually deploy the origami to its expanded stable state.309

• Step 8: we coat the origami structure with a thin layer of silicone rubber (Ecoflex 00-30 from Smooth-On), hang it, and310

let it cure for three hours at room temperature. Note that we repeat the coating process twice and apply two layers.311

In Section 1, we demonstrated that we can design bistable and inflatable origami shapes with flat and expanded stable states.312

However, our prototypes have a non-zero rest angle in the initial stable state due to bending energy introduced in the hinges313

during fabrication. This rotation of the faces in the initial state is largely determined by the manufacturing technique used to314

realize the samples. To emphasize this point, in Fig. S19, we report the initial and expanded stable configurations for Design315

II-B (characterized by (α(1)
II-B, β

(1)
II-B) = (43.6◦, 25.2◦) and (α(2)

II-B, β
(2)
II-B) = (46.4◦, 33.5◦)) with cardboard and 3D-printed faces.316

While both samples show identical deployed stable configurations, their initial state is quite different. The cardboard structure317

is initially almost flat, but is not airtight (and therefore not inflatable). Differently, the silicone rubber layer that makes the318

sample with 3D-printed faces airtight (and therefore inflatable) leads to a more pronounced rotation of the faces in the initial319

state.320

C. Meter-scale structures. All meter-scale structures tested in this study are made out of corrugated plastic sheets (clear 8321

ft × 4 ft, 4-mm thick corrugated plastic sheets from Corrugated Plastics). The origami patterns are formed on the sheets322

using a digital cutting system (G3 cutter from Zünd). Note that for the inflatable arch we use a scoring operation (cutting323

through 75% of the material along a single line) to create compliant hinges that allow for the geometric incompatibility during324

deployment. However, to account for the larger amount of incompatibility in the shelter design, in addition to scoring, we325

engrave the sheets (removing 75% of the material on a localized zone with an engraver) to create hinges with extra compliance.326

The cutting patterns for the inflatable archway and emergency shelter are shown in Fig. S20.327
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step 1

step 3

step 5

step 7

step 2

step 4

step 6

step 8

Fig. S18. Centimeter-scale fabrication with the 3D-printed facets. Snapshots of the eight steps required to fabricate the centimeter-scale origami structures with the
3D-printed facets.

Once the sheets are cut, we assemble them using adhesive tape (transparent duct tape from 3M) to form an airtight cavity. As328

an example, our meter-scale origami shelter is fabricated using the following 20 steps (see Fig. S21 and Video S4):329

• Step 1: we cut and score the corrugated plastic sheet using a digital cutting system (G3 cutter from Zünd).330

• Step 2: we lay down the eight main panels of the meter-scale shelter assembled out of the cutting patterns in Figs.331

S20c-g.332

• Step 3: we apply adhesive tape to the scored hinges to seal the main panels.333

• Step 4: we assemble the sheets together to form the eight main panels of the meter-scale shelter.334

• Step 5: we combine two of the main panels together by applying adhesive tape in the flat position.335
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d

a

b

1 cm

Fig. S19. Initial state for our sample. One of the stable states of our origami shapes can be designed to be geometrically flat. However, the fabricated structures exhibit a
rest angle in the flat state due to the bending energy introduced in the hinges during fabrication as well as the finite thickness of the facets. Here, we show the stable flat state
and deployed state of Design II-B (characterized by (α(1)

II-B, β
(1)
II-B) = (43.6◦, 25.2◦) and (α(2)

II-B, β
(2)
II-B) = (46.4◦, 33.5◦)) fabricated with cardboard (a) and 3D-printed

facets (b). While both samples show identical deployed stable configurations, their initial state is quite different. The cardboard structure is initially almost flat, but is not airtight
(and therefore not inflatable). Differently, the Ecoflex layer that makes the sample with 3D-printed faces airtight (and therefore inflatable) leads to a more pronounced rotation of
the faces in the initial state.

4 ft

8 ft

Archway

Cut Score Engrave
x2 x2 x2 x2 x3 x3 x3

a
Emergency shelter

b c d e f g

Fig. S20. Digital cutting patterns of the meter-scale archway and emergency shelter. (a). The archway is fabricated out of two identical cutting patterns where the
red and green lines represent through cuts to release the parts and scoring operations to make the hinges, respectively. (b-g). The emergency shelter is assembled from
six different cutting patterns that make the roof, walls, and floor of the structure. Here the red, green, and blue lines represent cutting, scoring, and engraving operations,
respectively. Note that the latter give additional compliance to the hinges to allow geometric frustration during the deployment.

• Step 6: we deploy these two main panels to finish assembling them.336

• Step 7: we repeat Steps 5 and 6 on the next two panels.337

• Step 8: we assemble the first four panels to form half of the structure.338

• Step 9: we repeat Steps 5-8 to form the second half of the structure339

• Step 10: we combine the two halves.340

• Step 11: we apply adhesive tape to the scored hinges to seal the two panels forming the roof of the structure (assembled341

out of the cutting pattern in Fig. S21b).342

• Step 12: we attach the roof to the rest of the structure with adhesive tape to form the complete closed shelter.343

22 of 31 David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi



• Step 13: we cut through one of the main panels using a guide to create the door of the shelter.344

• Step 14: we cut a hole in the bottom part of the shelter and fix a plastic tube for fluid supply.345

• Step 15: we connect the shelter to a vacuum pump.346

• Step 16: we deflate the shelter to the flat stable state.347

• Step 17: we fold the shelter flat.348

• Step 18: we bring the shelter back up and connect it to a pressure pump.349

• Step 19: we inflate the shelter to the deployed stable state.350

• Step 20: we disconnect the pressure supply and the shelter remains deployed.351

step 2 step 3 step 4

step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12

step 16step 15step 14

step 17 step 18 step 19 step 20

step 13

step 1

Fig. S21. Meter-scale fabrication. Snapshots of the 20 steps required to fabricate the meter-scale origami shelter.

David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi 23 of 31



S3. Testing352

To characterize the response of the fabricated centimeter-scale origami structures, we inflate them with water— to eliminate353

the influence of air compressibility— and measure their pressure-volume relation. As shown in Fig. S22, we use a syringe pump354

(Pump 33DS, Harvard Apparatus) to displace water into the origami structure at 10 mL/min and measure the pressure using a355

pressure sensor (MPXV7002DP with a measurement range of ±2 kPa and MPXV7025DP with a measurement range of ±25356

kPa, both by NXP USA). Note that we submerge the entire structure in a water tank to eliminate the influence of gravity while357

eliminating air from all supply tubes and calibrating the pressure to atmospheric pressure before each measurement cycle.358

1

2

3

4

Fig. S22. Experimental setup of the inflation with water. Schematic of the test setup used to characterize the pressure-volume curve of the origami structures with (1)
syringe pump, (2) pressure sensor, (3) water tank, and (4) origami structure.

In Fig. S23, we report the experimentally measured pressure-volume curves for Designs I-A, II-B, III-C, and IV-D. To validate359

repeatability, we test for each design three specimens and report the mean (solid lines) and standard deviation (shaded region).360

In addition to the pressure-volume curves, we also report the energy-landscape of each structure (dashed lines), obtained by361

integrating numerically the pressure-volume curves as362

E =
∫
p̄dV̄ , [44]363

where p̄ and V̄ are the average pressure and volume measured during our tests. We find that for Design I-A (Fig. S23a), the364

energy landscape is convex with a single minimum at V = 0 (identifying a monostasble structure). All other three designs are365

bistable as they exhibit brief period of negative pressure and an energy landscape with two local minima. Note that the energy366

profile of bistable structures is characterized by two energy barriers: the first one describes the energy cost for a structure to367

reach the stable expanded configuration and the second one the energy cost to snap back to its initial state.368
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Fig. S23. Experimental pressure-volume curves of our origami structures. (a-d). Measured pressure vs. volume relationships and numerically integrated energy vs.
volume curves for Designs I-A, II-B, III-C, and IV-D. We test for each design three specimens and report the mean pressure-volume curve (solid lines) with its standard deviation
(shaded region) as well as the energy-volume curve (dashed lines) numerically integrated from the mean pressure-volume curve. Note that the initial non-zero pressure peak of
Design II-B is coming from noise filtering of the pressure signal.
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S4. Additional results369

Design I

Design IV

5 cma b c

d e

Fig. S24. Inflatable tent-like design. (a). By combining one layer of a Design I with (α(1)
I , β

(1)
I ) = (45◦, 45◦) and (α(2)

I , β
(2)
I ) = (45◦, 45◦) with another one of a

Design IV with (α(1)
IV , β

(1)
IV ) = (10◦, 80◦) and (αixy, β

i
xy) = (45◦, 45◦), we can create an inflatable tent-like cavity. (b). Centimeter-scale prototype with near zero volume

in the initial stable state. Note that due to the finite thickness of the material, the initial state is not completely flat foldable. (c). We connect the prototype to a pressure supply.
(d). Upon inflation, the tent-like design snaps into the deployed position. (e). Even after releasing the pressure, because of its bistability, the tent-like design remains in the
deployed position.

a Stable #1 Stable #2 Stable #3 Stable #4b c d

e f g h1 cm

Fig. S25. Multistable origami shapes. Our design methodology can be used to realize origami shapes with more than two stable states. (a-d). By merging a layer of
a Design IV unit with (α(1)

IV , β
(1)
IV ) = (29◦, 56◦) and (αixy, β

i
xy) = (45◦, 35◦) with another one of a different Design IV unit with (α(1)

IV , β
(1)
IV ) = (40◦, 42◦) and

(αixy, β
i
xy) = (45◦, 35◦), we can obtain an origami shape with four stable states. (e-h). The four stable states of a fabricated centimeter-scale prototype.
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1 cm

Flat Deployeda b

c d

Fig. S26. Closed origami structure comprising eight different triangles. We can further increase our design space by connecting more than two different triangles.
(a-b). Flat and deployed compatible states of an origami design comprising eight different triangles with (α(k), β(k)) = (55◦, 30◦), (21◦, 40◦), (48◦, 24◦), (68◦, 17◦),
(64◦, 21◦), (57◦, 22◦), (57◦, 22◦), (15◦, 52◦), and (32◦, 49◦) for k = 1, . . . , 8. (c-d). Flat and deployed stable states of a fabricated centimeter-scale prototype.

d

a b3 cm c

e f30 cm

Fig. S27. Deployment of centimeter and meter-scale arches. The deployment of centimeter-scale (a-c) and meter-scale (d-f) arches is qualitatively similar.
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e f g h

5 cm

50 cm

Fig. S28. Deployment of centimeter and meter-scale shelters. The deployment of centimeter-scale (a-d) and meter-scale (e-h) shelters is qualitatively similar.

28 of 31 David Melancon, Benjamin Gorissen, Carlos J. García-Mora, Chuck Hoberman, and Katia Bertoldi



a bFlat Deployed

c d5 cm

Fig. S29. A deployable pagoda-like structure. By assembling four identical Design III units, we can obtain a deployable pagoda-like structure. (a-b) Flat and deployed states
of an origami design comprising four identical Design III units with (α(1)

III
, β

(1)
III

) = (37◦, 30◦) and (α(2)
III

, β
(2)
III

) = (37◦, 40◦). Note that the grey panels in (a-b) are
added both for aesthetic reasons and to provide additional support. (c-d). Flat and deployed stable states of a fabricated centimeter-scale prototype.
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a Flat

Flat Deployedc

Deployed

Design III-C'

b

5 cm

5 cm

d

Fig. S30. Deployable booms. (a-b). By stacking Design I units, we can obtain a deployable boom. (a). Flat and deployed states of an origami boom design realized by
connecting two Design I units with (α(1)

I
, β

(1)
I

) = (α(2)
I
, β

(2)
I

) = (45◦, 32◦). Note that to avoid single point contact during assembly, we cut the units at 25 % of their
deployed height and connect them with the tabs and pockets system described in Section 2A. (b). Flat and deployed stable states of a fabricated centimeter-scale prototype.
(c-d). By assembling Design III units, we can obtain a bistable and inflatable boom. (c). Flat and deployed states of an origami boom comprising 15 identical Design III units
with parameters (α(1)

III-C′ , β
(1)
III-C′ , α

(2)
III-C′ , β

(2)
III-C′ ) = (30◦, 37◦, 30◦, and 51◦). (d). Flat and deployed stable states of a fabricated centimeter-scale prototype.
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Video S1. Fabrication of centimeter-scale structures. To realize centimeter-scale structures, we use two different370

methods based on cardboard and 3D-printed faces. In the first method, we assemble laser-cut cardboard facets with double-371

sided adhesive tape to form the hinges. In the second approach, we connect 3D-printed faces with flexible laser-cut sheets to372

form the hinges and coat the structures with a thin layer of silicone rubber to create an airtight cavity.373

Video S2. Inflatable and bistable origami shapes. In an attempt to design inflatable origami structures with flat and374

expanded stable configurations, we create a library of shapes realized by assembling two different triangles.375

Video S3. Multistable inflatable origami structures at the meter-scale. By combining our library of bistable origami376

shapes, we build meter-scale structures that (i) transform from a compact shape to an expanded one; (ii) deploy and retract377

through a single pressure input; (iii) harness multistability to lock in place after deployment; and (iv) provide a robust enclosure378

through their stiff faces.379

Video S4. Fabrication of the meter-scale shelter. The meter-scale shelter is fabricated out of 8 ft X 4 ft, 4-mm thick,380

corrugated plastic sheets. We use a digital cutting system to cut the different parts of the shelter and pattern the hinges by381

scoring the sheets to reduce the thickness locally. To create an inflatable cavity, we connect the cut parts with adhesive tape.382
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