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Shell buckling for programmable metafluids

Adel Djellouli1,5, Bert Van Raemdonck2,5, Yang Wang1,5, Yi Yang1, Anthony Caillaud1, 
David Weitz1, Shmuel Rubinstein1,3, Benjamin Gorissen1,4 ✉ & Katia Bertoldi1 ✉

The pursuit of materials with enhanced functionality has led to the emergence of 
metamaterials—artificially engineered materials whose properties are determined  
by their structure rather than composition. Traditionally, the building blocks of 
metamaterials are arranged in fixed positions within a lattice structure1–19. However, 
recent research has revealed the potential of mixing disconnected building blocks in  
a fluidic medium20–27. Inspired by these recent advances, here we show that by mixing 
highly deformable spherical capsules into an incompressible fluid, we can realize a 
‘metafluid’ with programmable compressibility, optical behaviour and viscosity. First, 
we experimentally and numerically demonstrate that the buckling of the shells endows 
the fluid with a highly nonlinear behaviour. Subsequently, we harness this behaviour to 
develop smart robotic systems, highly tunable logic gates and optical elements with 
switchable characteristics. Finally, we demonstrate that the collapse of the shells upon 
buckling leads to a large increase in the suspension viscosity in the laminar regime.  
As such, the proposed metafluid provides a promising platform for enhancing the 
functionality of existing fluidic devices by expanding the capabilities of the fluid itself.

Unlike solid metamaterials, metafluids have the unique ability to flow 
and adapt to the shape of their container without the need for a precise 
arrangement of their constituent elements. Our goal is to realize a 
metafluid that not only has these remarkable attributes but also pro-
vides a platform for programmable compressibility, optical properties 
and rheology. To achieve this, we focus on a suspension comprising 
elastomeric, highly deformable spherical capsules filled with air within 
an incompressible fluid. We begin by considering centimetre-scale 
capsules that are fabricated out of silicone rubber (Zhermack Elite 
Double 32 with initial shear modulus G = 0.35 MPa) using 3D-printed 
moulds28,29 (see Supplementary Fig. 1 and Supplementary Information 
for details). As shown in Fig. 1a, we place these capsules in a glass cylin-
drical container with volume Vtot and fill it completely with water. We 
then load the system by slowly introducing an additional volume ΔV of 
water via a syringe pump and measure the pressure inside the container 
with a differential pressure sensor (see also Supplementary Fig. 5).

We start by placing a single capsule with outer radius Ro = 10 mm and 
thickness t = 2 mm into a container with Vtot = 300 ml, leading to  
an initial capsule volume fraction of φ R N V= 4π /(3 ) ≈ 0.014o

3
tot  (N = 1 

denoting the number of capsules in the suspension). We record a  
pressure–volume curve that is very different from that of water, not 
only because the capsule makes the fluid more compressible (lowering 
the initial bulk modulus K0 to 31 MPa) but also because it introduces  
a sudden pressure drop at the critical pressure P P= = 120 kPacr

up  (Sup-
plementary Fig. 1b and Supplementary Video 1). This drop is caused 
by the snapping of the elastomeric shell and leads to the formation  
of a dimple, which becomes more accentuated as ΔV is increased  
(inset in Fig. 1b). When unloading the suspension by decreasing ΔV, 
the dimple progressively reduces in size and the capsule snaps back 
to a spherical shape when the pressure passes the critical pressure 
P P= = 50 kPacr

down , leading to a hysteretic response.

To better understand the dependence of the metafluid characteris-
tic on the properties of the capsules, we then consider a larger capsule 
with Ro = 30 mm and t = 6 mm in a container with Vtot = 2,850 ml, so that 
t/Ro = 0.2 remains unaltered and φ increases to 0.04. In this case, the 
system shows a lower initial bulk modulus (K0 = 18 MPa), but still shows 
a pressure drop at P = 120 kPacr

up  (red line in Fig. 1c), suggesting that K0 
and Pcr

up can be tuned independently by varying φ and t/Ro. Next, we 
investigate the effect of the number of capsules by placing N = 27 cap-
sules with Ro = 10 mm and t = 2 mm in the same container with 
Vtot = 2,850 ml. As both φ and t/Ro remain the same (that is, φ = 0.04 
and t/Ro = 0.2), the suspension shows the same initial bulk modulus 
(green line in Fig. 1c) and all capsules snap at P P≈ cr

up  (snapshots in  
Fig. 1c and Supplementary Video 2). However, in this case, the large 
snapping-induced pressure drop observed for N = 1 is replaced by  
27 small drops, where each drop corresponds to the collapse of a single 
capsule. These individual drops occur at roughly the same pressure 
such that a plateau emerges (see Supplementary Figs. 4–7 for additional 
experimental results).

The results in Fig. 1a–c are for a fluid containing centimetre-scale 
capsules, but most applications of fluids require the capability of flow-
ing through small openings. Therefore, we take advantage of micro-
capillarity30,31 to fabricate spherical capsules with Ro ≈ 250 μm and 
t ≈ 65 μm out of polydimethylsiloxane (PDMS; Fig. 1d and Supplemen-
tary Figs. 2 and 3). We characterize the pressure–volume curve of the 
resulting microcapsule suspension by placing it in a syringe with volume 
Vtot and slowly displacing the plunger to reduce the enclosed volume 
by ΔV, while keeping the tip closed and monitoring the pressure (see 
Supplementary Fig. 10 and Supplementary Information for more 
details). In Fig. 1e,f, we report the pressure–volume curves measured 
for a single microcapsule and for a suspension of many microcapsules 
with φ = 0.3, respectively (see also Supplementary Videos 1 and 2).  
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The curves show qualitatively similar nonlinear behaviours to their 
centimetre-scale counterparts, confirming that the response of our 
metafluids is independent of scale. Nevertheless, it is important to 
highlight that the metafluid incorporating microscale capsules does 
not show a clear plateau in the pressure–volume curve. This deviation 
can be attributed to geometric imperfections introduced during the 
fabrication process, resulting in polydispersity and a wide range of 
buckling pressures Pcr

up.

Modelling
To systematically explore the effect of the capsules on the response of 
the metafluid, we conduct finite-element analyses using the commer-
cial package ABAQUS 2020 Standard. In our simulations, we assume 
the deformation to be axisymmetric and use an incompressible Neo–
Hookean material model with initial shear modulus G to capture the 
response of the elastomeric material (see Supplementary Figs. 15–25, 
Supplementary Tables 1 and 2, and Supplementary Information for 
additional details). We first conduct implicit dynamic simulations to 
calculate the difference between the external and internal pressure 
of the shells, ΔPshell, while slowly decreasing and then increasing the 
volume of their internal cavity by ΔV (purple line in Fig. 2a). Then we 
use the ideal gas law to obtain the pressure of the gas enclosed in the 
shell cavity, Pint, as a function of ΔV (cyan line in Fig. 2a). Finally, we take 

advantage of the shell incompressibility to calculate the pressure on 
the external surface of the capsule, Pext, as

P P V P V= Δ (Δ ) + (Δ ). (1)ext shell int

The results reported in Fig. 2a indicate that, since Pint increases mono-
tonically with ΔV, the nonlinear response of the metafluid stems from 
ΔPshell. We also note that Pext does not scale with G, as Pint is independent 
of the shell material (Supplementary Fig. 19). Further, we point out that 
if the pressure is controlled during the tests, snapping triggers a jump 
in volume at Pcr (dotted lines in Fig. 2a). Finally, we test the relevance 
of our model by comparing its predictions with the experimental results 
reported in Fig. 1b as well as to the experimentally measured Pcr

up and 
Pcr

down for a variety of centimetre-scale capsules (Fig. 2b) and find excel-
lent agreement.

Having established a numerical model that accurately captures the 
response of the individual capsules, we use it to predict the response of 
suspensions comprising many capsules. Towards this end, we assume 
that the capsules are suspended in an incompressible fluid and that the 
pressure is uniform throughout this medium (thereby neglecting the 
effects of gravity and viscosity). Under these assumptions, the external 
pressure is the same for all N capsules

P V P V P V(Δ ) = (Δ ) = . . . = (Δ ), (2)N N
ext
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Fig. 1 | Metafluid comprising highly deformable capsules. a, Our centimetre- 
scale capsules are fabricated via a moulding approach and suspended in a fluid. 
The resulting metafluid is then pressurized. b, Pressure–volume curve of a 
single centimetre-scale capsule with t = 2 mm and Ro = 10 mm. Loading (dark 
purple) and unloading (light purple) curves are shown. The experimental  
data are depicted as average (dots) and standard deviation (shaded area) of 
five samples fabricated using the same mould and material. The solid line 
indicates finite-element results. Insets: experimental (bottom) and numerical 
(top) snapshots of the capsule. c, Experimental pressure–volume curves of 

metafluids comprising centimetre-scale capsules. Insets: snapshots of the 
metafluid at different level of compression. d, Our micrometre-scale capsules 
are fabricated from double emulsions using a co-axial flow focusing glass 
microfluidic device. e, Experimental pressure–volume curve of a single 
micrometre-scale capsule with t ≈ 65 μm and Ro = 250 μm. f, Experimental 
pressure–volume curves of metafluids comprising micrometre-scale capsules 
with a volume fraction φ ≈ 0.3 suspended in silicone oil. Insets: snapshots of  
the metafluid at different levels of compression.



Nature  |  www.nature.com  |  3

where ΔV (i) denotes the change in volume of the ith capsule in the pres-
surized state, which is subjected to the constraint

∑V VΔ = Δ . (3)
i

N
i

=1

( )

It is noted that equations (2) and (3) together with the P i
ext
( ) –ΔV (i) 

curves extracted from the finite-element simulations are analogous 
to the relations between force and displacement for chains of bista-
ble elements with trilinear characteristics32,33, with the only differ-
ence being that for the capsules the portion of the pressure–volume  
curve immediately after snapping is inherently unstable.

Operationally, we determine all of the equilibrium configurations 
of a metafluid comprising N capsules by first finding all stable ΔV (i) that 
result in a predefined set of pressure values for each capsule separately 
(Fig. 2c). Then for each value of pressure, we construct the possible 
equilibrium states of the metafluid by making all possible combinations 
of those volumes. As shown in Fig. 2d,e, for a suspension comprising 
N identical capsules, this process generates a pressure–volume char-
acteristic with N + 1 unique equilibrium branches. When the suspension 
is loaded by slowly introducing a volume ΔV of incompressible fluid, 
the first branch is initially followed until the critical buckling pressure 
of the capsules, Pcr

up, is reached. At that point, one capsule snaps and 
the pressure drops (at constant ΔV ) until it reaches the next branch. 
This process then repeats until all N capsules are collapsed, leading to 
a sawtooth pattern with N peaks at Pcr

up. As observed in our experiments, 
we find that the magnitude of the pressure drops that follow the buck-
ling events, ΔPdrop, decreases with N (Fig. 2f). This decrease is due to 
the fact that in a suspension with N capsules, the sudden reduction in 
volume experienced by one capsule upon snapping can be compen-
sated by a slight expansion of the remaining N − 1 capsules (see Sup-
plementary Information for more details). Therefore, for large N, ΔPdrop 
tends to zero and each capsule can be considered to experience pres-
sure control conditions even though the total volume of the metafluid 
is controlled.

Harnessing the nonlinear metafluid behaviour
Guided by our understanding of the metafluid response, we then har-
ness its highly nonlinear behaviour for functionality. First, we exploit 
the snapping-induced pressure plateau to realize a gripper that can 
grasp objects of very different size and compressive strength when 
actuated with the same input. More specifically, we consider a two-jaw 
parallel gripper actuated by pressurized fluid (Fig. 3a, top left) and focus 
on three distinct objects: a glass bottle of 60 mm in diameter and 160 g 
in weight, an egg of about 25 mm in diameter and about 16 g in weight, 
and a blueberry of about 10 mm in diameter and about 0.5 g in weight. 
For a successful grasp, the supplied volume, ΔV, must be large enough 
for the actuated jaw to reach the object and hold its weight, but not so 
large as to generate an excessive force that crushes it (Fig. 3a, top right). 
In particular, for the considered bottle, egg and blueberry, the sup-
plied volume required to reach them and the pressures needed to hold 
them and crush them are measured as ΔVreach ≈ 1.1 ml, ΔVreach ≈ 3.9 ml 
and ΔVreach ≈ 5.1 ml, Phold ≈ 110 kPa, Phold ≈ 12 kPa and Phold ≈ 1 kPa, and 
Pcrush ≈ 700 kPa, Pcrush ≈ 105 kPa and Pcrush ≈ 55 kPa, respectively. When 
using water or air as fluid to actuate the jaw, no ΔV can be identified 
that allows us to successfully grasp all three objects (see Supplementary 
Fig. 8, Supplementary Video 3 and Supplementary Information for more 
details). By contrast, when using our metafluid with K0 = 2 MPa and 
two plateaus at 45 kPa and 120 kPa (realized by filling a container with 
Vtot = 100 ml with water and six capsules with t = 2 mm and Ro = 10 mm, 
three made out of rubber with G = 60 kPa and three made out of rub-
ber with G = 350 kPa), we can successfully grasp all three objects by 
injecting ΔV = 6.7 ml (Fig. 3a, bottom, and Supplementary Video 3).

Although in Fig. 3a we use centimetre-scale capsules enclosed in a 
separate container to regulate the pressure of the fluid, such an inde-
pendent pressure reservoir is unnecessary when utilizing our micro-
suspension, as it can be directly placed in the functional components. 
To demonstrate this, we use the microsuspension of Fig. 1f to directly 
pressurize a flexible latex tube (shear modulus G ≈ 1 MPa) with outer 
diameter of 5.1 mm, thickness of 1.9 mm and length of 48 mm. Such a 
tube undergoes a ballooning instability at a pressure P ≈ 400 kPacr

tube , 
which upon inflation with glycerol is reached for ΔV ≈ 0.53 ml (red line 
in Fig. 3b and Supplementary Video 4). The compliance and pressure 
plateau of the microsuspension offset the ballooning instability to 
ΔV ≈ 0.94 ml (green line in Fig. 3b and Supplementary Video 4), show-
ing that the nonlinear behaviour of the capsules also provides an 
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c–e, Numerical pressure–volume curve for a metafluid containing N = 1 (c), 
N = 2 (d) and N = 10 (e) capsules with Ro = 10 mm, t = 2 mm and G = 350 kPa. 
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opportunity to tune the interactions of the metafluid with surrounding 
flexible structures.

Apart from the nonlinear pressure–volume curve, the substantial 
alterations in the shape of the capsule induced by instability also  
present opportunities for functionality. Inspired by the configuration- 
dependent interactions with light observed for droplets34, we investi-
gate the effect of the pronounced dimple caused by buckling on the 
optical properties of the metafluid. To this end, we conduct simulations 
in COMSOL using a ray-tracing algorithm (see Supplementary Informa-
tion for details). As shown in Fig. 3c, top left, the simulations show that 
spherical and collapsed capsules show distinct scattering behaviours 
(Supplementary Figs. 26 and 27). When we then measure the power of 
the transmitted light through a microsuspension with φ ≈ 0.4 and 
P ≈ 380 kPacr

up , we find that the transmittance T suddenly increases  
from T ≈ 8% to T ≈ 30% at P P≈ext cr

up (Fig. 3c, bottom left, and Supple-
mentary Fig. 11). This increase can be attributed to a combination of 
the lensing effect and the reduction in the coverage area of the capsules 
in the collapsed state (see Supplementary Figs. 26–28 and Supplementary 
Information for details). Such a large change in transmittance makes 
a Harvard logo, positioned beneath the metafluid, much clearer for 
P P>ext cr

up (Fig. 3c, top right, and Supplementary Video 5), as demon-
strated by the sharp increase in contrast when the capsules snap (Fig. 3c, 
bottom right).

The buckling-induced shape change of the capsules also modifies 
the way in which the metafluid flows. To demonstrate this point, we 
consider a microsuspension with φ ≈ 0.3 and P = 300 kPacr

up  and inves-
tigate its flow in an elliptical channel with major axis ach = 3 mm and 
minor axis bch = 750 μm. We fix the difference of pressure between the 
inlet and outlet at ΔP = Pin − Pout = 50 kPa and conduct experiments for 
Pin ∈ [50, 450] kPa (Fig. 4a, Supplementary Figs. 12 and 13, and Sup-
plementary Video 6). For each experiment, we monitor the position of 
the front once the flow is fully developed and then calculate its average 
velocity, vfront. As expected, we find that for 50 ≤ Pin ≤ 250 kPa, the velo
city of the front increases with the pressure at the inlet (Fig. 4b). For 

this range of Pin, the capsules retain their spherical shape and isotrop-
ically shrink as the pressure increases, leading to a decreasing effective 
capsule volume fraction and, in turn, to a faster flow35–37. However, when 
the pressure is high enough to snap the capsules, vfront largely decreases. 
The unexpected drop in flow velocity can be explained by the formation 
of a dimple upon buckling, which causes the capsules to adopt a concave 
shape. This concave shape significantly modifies the interactions 
between particles, resulting in the formation of clusters and aggregates 
that ultimately slow down the flow38 (Supplementary Video 6). Impor-
tantly, this transition is reversible and repeatable as the shape change 
of the capsules is driven by an elastic instability (Supplementary 
Video 6). The results in Fig. 4b suggest that the effective viscosity of 
the metafluids is higher when the capsules are collapsed. Nonetheless, 
it is important to note that in these experiments the metafluid is sheared 
at a rate ̇γ ≈ 1 s−1. To investigate how the effective viscosity of the meta
fluid is affected by the shear rate, we characterize its rheology using a 
parallel plate rheometer (see Supplementary Fig. 14 and Supplementary 
Information for details). The results reported in Fig. 4c indicate that 
the collapse of the particles have a profound effect on its rheology.  
In the presence of spherical capsules, the metafluid behaves as a  
Newtonian fluid with effective viscosity η ≈ 2.2η0 (η0 denoting the 
viscosity of the solvent). However, when the capsules are collapsed, 
the suspension transforms into a non-Newtonian shear-thinning fluid. 
In line with the results in Fig. 4a,b, the metafluid containing collapsed 
capsules shows high effective viscosity at low shear rates. Such behav-
iour is ascribed to the formation of clusters by the collapsed particles, 
as previously reported for blood containing sickle-shaped red blood 
cells39. As the shear rate increases, we observe an initial rapid decrease 
in effective viscosity, which we attribute to the gradual disruption of 
the clusters. Eventually, at ̇γ ≈ 10 s−1 the effective viscosity approaches 
a plateau at 1.3η0. This plateau can be attributed to the breakdown of 
particle clusters at such high strain rates. Finally, we note that at high 
shear rates, the effective viscosity of the metafluid containing col-
lapsed particles is lower than that of the metafluid containing 
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spherical ones, probably because of the decrease in particle volume 
fraction caused by buckling. Altogether, these experiments highlight 
that the metafluid shows rich rheology that can be tuned by control-
ling shape of the capsules through the level of the applied pressure.

Conclusion
In summary, we have successfully demonstrated the potential of utiliz-
ing reversible buckling of elastomeric shells to create a novel class of 
metafluids. These metafluids show programmable compressibility, 
switchable optical properties and adjustable viscosity. The versatility 
of these metafluids opens numerous opportunities for functionality, 
as demonstrated by the development of adaptable grippers and recon-
figurable logic gates (see Supplementary Fig. 9 and Supplementary 
Information for details). Moreover, we anticipate that the programma-
bility of these metafluids will have significant implications for acoustic 
and thermodynamic properties, enabling the enhancement of ther-
modynamic cycles and customizable sound propagation. All these 
applications would benefit from an inverse design platform capable 
of identifying shell mixtures that yield desired responses. For exam-
ple, inversely designed metafluids with complex nonlinear behaviour 
could be used to modify the functionality of soft actuators by simply 

changing the actuating fluid instead of redesigning the actuator itself 
for the new task. Furthermore, they could pave the way towards smart 
hydraulic shock absorbers with dissipation tailored to the profile of 
the shock. Finally, while this study primarily focused on situations 
involving slow loading, dynamic pressure drops across the metafluid 
could open opportunities for a spatial avalanche of snapping events 
and interesting wave propagation.
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Methods

The details of the fabrication methods are summarized in Supplemen-
tary Information section 1. The experimental procedure for all the 
experiments conducted for this study are described in Supplemen-
tary Information section 2. Finally, information about the modelling is  
provided in Supplementary Information section 3.
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Supporting Information Text11

S1. Fabrication12

This section describes the fabrication of the elastomeric capsules at both the centimeter- and micrometer-scale.13

S1.1. Fabrication of centimeter-scale capsules.14

The centimeter-scale capsules used in this study are made of nearly incompressible polyvinylsiloxane (PVS) elastomers. We use15

Elite Double 32 from Zhermack (with green color and initial shear modulus µ = 0.35MPa). The Zhermack polyvinylsiloxane16

elastomer is generated by mixing two parts of uncured liquid polymers. As the two parts are mixed, the liquid will polymerize17

into a solid phase. The shell consists of two halves that are cast using a two-part mold, which is designed using NX 12 (Siemens)18

and 3D printed with foamlab SLA 3D printer. Both halves are molded separately and combined afterward to form a full19

spherical shell that encloses compressible air. The following step-by-step process is followed (see Fig S1):20

• Step 1: we 3d print the molds, which comprise a convex part (light brown colored) and concave one (ivory colored).21

• Step 2: we fill the concave part with uncured polyvinylsiloxane (PVS) elastomer mixture.22

• Step 3: we close the molds with pressure clamps to ensure accurate layer thickness and place the samples at room23

temperature (25 Celsius) for 20 minutes.24

• Step 4: we remove each cured semi-spherical shell from the mold and carefully bond two semi-spherical shells into one25

single capsule with uncured PVS elastomer.26

• Step 5: we place every single capsule in two concave molds at room temperature for another 20 minutes for curing.27
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Fig. S1. Fabrication of centimeter-scale capsules. Snapshots of the 5 steps required to fabricate our centimeter-scale capsules.
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Fig. S2. Picture of the glass capillary device used in this study.

S1.2. Fabrication of micrometer-scale capsules.28

29

The microcapsules considered in this study are produced from double emulsions using a co-axial flow focusing glass30

microfluidic device (1). More specifically, we used the capillary device shown in Fig. S2 that was assembled on a glass slide and31

comprises:32

• An injection capillary made out of a glass tube with inner and outer diameter 0.2 and 1.0 mm, respectively (Cat. No.33

1B100-6; World Precision Instruments, Inc.).34

• A collection capillary made out of a glass tube with inner and outer diameter of 0.58 and 1.00 mm, respectively (Cat. No.35

1B100-6; World Precision Instruments, Inc.).36

• A square capillary made out of glass with inner and outer edges of 1.05 mm and 1.5 mm, respectively (Cat. No. 810-9917;37

AIT Glass Inc.). Note that the injection and collection capillaries are connected to this square capillary from opposite38

directions.39

• A middle phase injection inlet which consists of a 20 gauge blunt tip dispensing needle.40

• An outer phase injection inlet which consists of a 20 gauge blunt tip dispensing needle.41

The tips of all capillaries were polished with sand paper to ensure smoothness. Further, the collection capillary was dipped42

inside 2-[Methoxy(Polyethylenoxy) propyl] trimethoxy silane) to make its inner surface hydrophilic. This capillary device was43

used to generate double emulsion droplets from the following phases44

• Inner phase: polyvinyl alcohol (PVA) solution with 1% concentration;45

• Middle phase: polydimethylsiloxane (PDMS- SYLGARD® 182) with a ratio between the base and the cure agent of 5 to46

1 for the middle phase;47

• Outer phase: polyvinyl alcohol (PVA) solution with 5% concentration.48

To fabricate our microcapsules the following step-by-step process was followed (see Fig. S3)49

• Step 1: double emulsion droplets were generated using the glass capillary devices shown in Fig. S2. The three phases50

were injected using syringe pumps (Harvard Apparatus, USA) connected to the injection capillaries through polyethylene51

tubes (BB31695-PE/4, Scientific37 Commodities Inc.) and the double emulsion droplets were collected in glass vials.52

Note that after collection the PVA concentration of the outer phase was decreased to 1% to balance osmotic pressure.53

• Step 2: to minimize eccentricity between the inner and middle phases (which lead to capsule with non-unifrom thickness),54

all droplets were rotated in an oven supplied with a rotator (Hybridization Ovens, VWR) at 50 rpm and room temperature55

for two days.56

• Step 3: all droplets were heated at 65 C for 8 hours to cure the PDMS (while rotating in the oven described in Step 2).57

Afterwards, the temperature was lowered to room temperature and the droplets sediment within 1 minute to the bottom58

of the vial. At this point, we removed the supernatant.59

• Step 4: The capsules were placed in a freezer at -80°C for 24 hours.60
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• Step 5: The frozen capsules were placed in a freeze dryer (FreeZone® Triad® Benchtop Freeze Dryer) for at least 4861

hours, under a 100 mtorr vacuum. This allowed the frozen inner core of the capsules to sublimate.62

• Step 6: the freeze-dried capsules were flushed by deionized water to eliminate the PVA polymer left on their outer63

surface.64

Note that to fabricate the PDMS microcapsules with outer radius of Ro ≈ 250µm considered in this study the flow rates of65

inner, middle and outer phases were kept at 1000, 1000 and 30000 µL/h. Differently, for the microcapsules with the outer66

radius of Ro ≈ 35µm that we used for the rheology experiments, the flow rates of inner, middle and outer phases were kept at67

240, 240 and 10000 µL/h.68

Inner phase (i)

Outer phase (iii)Middle phase (ii)

Step-1 Double emulsion Step-3 PDMS curingStep-2   Rotation
Eccentricity correction

8h at 65° C   

Step-4    Freezing

24h at -80° C   48h at 100mtorr   

Step-5    Sublimation

Air

Fig. S3. Fabrication of micrometer-scale capsules. Schematics of the 5 steps required to fabricate our micrometer-scale capsules.
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S2. Experiments69

In this section we describe the procedure used for all the tests conducted with the metafluid with centimeter- and micrometer-scale70

capsules.71

S2.1. Metafluid with centimeter-scale capsules.72

Pressure-volume curve. To characterize the pressure-volume characteristics of our metafluid with centimeter-scale capsules,73

we place it in a glass container. As shown in Fig. S5, we load the system by introducing a volume ∆V of water at a flow74

rate of 2.5 ml/min via a syringe pump (Harvard apparatus 33 DDS) and measure the pressure inside the container with a75

differential pressure sensor (60 PSI Ashcroft® GV Pressure Transducer). Note that the pressure sensor signal is recorded via a76

logic analyzer (Saleae Logic pro 8) which is synchronized with the syringe pump.77

In addition to the results presented in the main text, we also characterize the effect of both cyclic loading and the loading78

rate on the pressure-volume characteristics of the metafluid. In order to assess the effect of cyclic loading, we place a capsule79

with Ro = 10 mm and t = 2 mm in a container with volume Vtot = 60 ml and perform 110 loading/unloading cycles. As shown80

in Fig. S4, we find that pressure volume curves are mostly invariant, except for a small reduction in the critical snapping81

pressures which decrease by 5 kPa over more than 100 cycles. As such, these results indicate that cyclic loading has a minimal82

effect on the behavior of metafluids comprising centimeter scale capsules. Nevertheless, it is important to acknowledge that the83

long-term behavior of the capsules may be influenced by the diffusion of air through their walls, posing a potential source of84

alteration.85
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Fig. S4. Cycling loading of a centimeter scale capsule (A) Pressure-volume curve recorded over 100 loading/unloading cycles. (B) Evolution of the critical pressures over
the cycles.

To characterize the effect of the loading rate, we place three capsules with Ro = 10 mm and t = 2 mm in a glass syringe (5086

mL Gastight Syringe Model 1050 TLL, PTFE Luer Lock) filled with water. We connect a pressure sensor (60 PSI Ashcroft®87

GV Pressure Transducer) to the syringe to record the pressure during the experiment and connect the plunger of the syringe to88

an Instron machine through an acrylic plate. We then use the Instron to push the syringe’s plunger and, therefore, pressurize89

the fluid at displacement rates ranging from 0.01 mm/s to 10mm/s. The results shown in Fig. S6 show that, within the90

considered range, the effect of the loading rate on the response of the metafluid is negligible.91

Note that the testing setup presents a not negligible compliance. To characterize it, we filled the container with Vtot = 25092

mL of pure water (no shells) and measured the pressure while slowly introducing an additional volume of water ∆V . In Fig. S793
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Fig. S5. Pressure-volume curve of the metafluid with centimeter-scale capsules. Schematic of the test setup used to characterize the pressure-volume characteristics of
our metafluid with centimeter-scale capsules.
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Fig. S6. Effect of loading rate. Pressure-volume curve recorded for different loading rates ranging from 0.01 mm/s to 10mm/s.

we show the pressure-volume curve collected from these test, which we then used in simulations to mimic the experimental94

conditions (see details in Section S3.1).95

Gripper. As shown in Fig. S8A, the gripper used to obtain the results reported in Figure 3A of the main text consists of96

• a syringe that contains a volume of fluid ∆V large enough to hold a glass bottle;97

• a glass container with Vtot = 100 mL that we fill with either air, water or the metafluid;98

• a syringe connected to the glass container that acts as the moving arm of the gripper;99

• a load cell (Futek Miniature S-Beam Jr. Load Cell LSB200.FSH03875) connected to the static jaw that allows us to100

measure the force experienced by the objects that are grasped. Note that the load cell is connected to an amplifier (Futek101

Strain Gauge Analog Amplifier with Voltage Output IAA100.FSH03863), whose analog voltage signal is recorded via a102

logic analyzer (Saleae Logic pro 8).103

To demonstrate the concept, we focused on three objects and first measured for each of them the supplied volume required to104

reach them, ∆Vreach, and the pressures needed to hold them, Phold, and crush them, Pcrush (note that these pressures are105

obtained by diving the forces measured by the load cell by the cross sectional area of the syringe’s plunger). We found that106

• for a a glass bottle of 60 mm in diameter and 160 g in weight, ∆Vreach ≈ 1.1 mL, Phold ≈ 110 kPa and Pcrush ≈ 700 kPa;107

• for an an egg of ≈25 mm in diameter and ≈16 g in weight ∆Vreach ≈ 3.9 mL, Phold ≈ 12 kPa and Pcrush ≈ 105 kPa;108
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• for a blueberry of ≈10 mm in diameter and ≈0.5 g in weight ∆Vreach ≈ 5.1 mL, Phold ≈ and 1 kPa and Pcrush ≈ 55 kPa.109

Having determined ∆Vreach, Phold and Pcrush, the volume ∆V to be supplied to the system to successfully grasp an object110

can be easily identified by shifting horizontally by ∆Vreach the pressure-volume curve for the considered fluid and then111

identifying the volumes for which Phold ≤ Pext ≤ Pcrush (see Fig. S8B). We find that (i) for air 195 mL ≤ ∆V ≤ 308 mL,112

91 mL ≤ ∆V ≤ 190 mL and 68 mL ≤ ∆V ≤ 155 mL to successfully grasp the bottle, the egg and the blueberry, respectively;113

(ii) for water 0.5 mL ≤ ∆V ≤ 0.99 mL, 3.8 mL ≤ ∆V ≤ 4.2 mL and 4.8 mL ≤ ∆V ≤ 5.0 mL to successfully grasp the bottle,114

the egg and the blueberry, respectively; (iii) for the metafluid 6.6 mL ≤ ∆V ≤ 11.1 mL, 4.7 mL ≤ ∆V ≤ 10.7 mL and115

5.1 mL ≤ ∆V ≤ 8.4 mL to successfully grasp the bottle, the egg and the blueberry, respectively (these regions are highlighted116

in red, yellow and blue in Fig. S8B). These results clearly show that a different ∆V is required to successfully grasp all three117

objects when using water and air. Differently, if we use the metafluid and choose 6.6 mL ≤ ∆V ≤ 8.4 mL we can successfully118

grasp all three objects with the same ∆V . As shown in Fig. S8C, when we use air and supply ∆V = 218 mL, we can119

successfully grasp the bottle, but we crush the egg and the blueberry. Similarly, if we use water and supply ∆V = 0.5 mL, we120

can successfully grasp the bottle, but we don’t reach the egg and the blueberry. Differently, if we use the metafluid and supply121

∆V = 6.7 mL, we can successfully grasp all three objects.122

Logic gates. Reconfigurable logic elements can be realized by taking advantage of the sudden change in ∆V triggered at Pupcr123

under pressure controlled conditions. Towards this end, we first exploit the highly nonlinear response of our metafluid to124

design a tunable flow switch. Such switch is realized by connecting a syringe to a container with Vtot = 100 ml filled with our125

metafluid and attaching a blade to its plunger flange (Fig. S9C-(i)). We then connect an elastomeric tube to the syringe’s126

barrel flange and use a pressure controller (Fluigent Flow EZ™ 7bar) to apply Pin to the the external side of the syringe’s127

plunger. As Pin is increased, the plunger and blade move by ∆X until the blade flattens the soft tube and completely stops128

the flow through it (for ∆X = 28mm). It is important to note that the characteristics of this switch are determined by the129

properties of the metafluid in the container. To demonstrate this point, we consider three metafluids with: (M1) K0 = 0.9MPa130

and Pupcr = 45 kPa (realized by filling the with water and 12 shells with G = 60 kPa, t = 2mm and Ro = 10mm); (M2) K0 =131

18MPa and Pupcr = 120 kPa (realized by filling the container with water and one shell with G = 350 kPa, t = 2mm and Ro =132

10mm); and (M3) K0 = 140MPa and Pupcr = 590 kPa (realized by filling the container with water and one shell with G =133

350 kPa, t = 4.5mm and Ro = 10mm). As shown in Fig. S9C-(ii), the initial bulk modulus of metafluid M1 is low enough134

to make the switch close before Pin = P0 = 45 kPa (pink line), whereas that of metafluid M3 is large enough to keep it135

open both at P0 and Pin = P1 = 120 kPa (blue line). Differently, for metafluid M2 the snapping of the capsule triggers a136

large ∆X that suddenly stops the flow through the soft tube at P1 = 120 kPa (green line). Next, we combine switches based137

on these three metafluids to design reconfigurable logic gates. In particular, we consider two soft tubes both connected at138

their end to a balloon (which allows us to read the state of the gate) and to a pressure supply and distribute three switches139

along them (Figs. S9C-(iii) and S9C-(iv)). Note that two switches are actuated by the same input pressure PAin and the third140

one by PBin. If we define input logical states 0 and 1 as Pin = P0 and Pin = P1, respectively, we can realize a NOR gate by141

connecting the two switches arranged in series on one of the soft tubes to metafluid M2 and the other one to metafluid M1142
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(Fig. S9C-(iii)). Remarkably, the very same system becomes a logical NAND gate when we simply replace M1 with M2 and143

M2 connected to PAin with M3 (see snapshots in Fig. S9C-(iv)). It should be noted that, since both NAND and NOR gates are144

functionally complete, they can be combined to construct many other logic circuits whose function can be reprogrammed by145

simply changing the metafluid connected to the switches. These findings highlight a key benefit of employing metafluids in146

logic gates: the ease with which the fluid can be replaced, allowing for the reprogramming of circuit functionality.147

S2.2. Metafluid with micrometer-scale capsules.148

Pressure-volume curve of a single microcapsule. To measure the pressure-volume curve of a single micrometer-scale capsule (as
shown in Figure 1E of the main text), we place the capsule in a micro-liter glass syringe (Hamilton®25 µL Model 802) filled
with immersion oil (Cargille immersion oil type A). Note that, to reduce the distortion caused by the glass syringe and obtain a
clear image of the capsule with minimal optical errors, we submerge the syringe in a larger transparent container filled with the
same immersion oil. In our experiments, the volume inside the syringe is controlled by mechanically connecting the syringe’s
plunger to a high precision linear stage (PI®PLS-85, controlled via a motion controller - PI®SMC Hydra Motion Controller).
The deformation of the capsule is then visualized by using a high speed camera (Phantom/Ametek TMX 5010) connected to a
200 mm focal length tube lens (Thorlabs AC254-200-A-ML - f=200 mm) and a long working distance objective (10X Mitutoyo
Plan Apo Infinity Corrected Long WD Objective). To measure the pressure Pext, we inject an air bubble with a diameter of
≈370 µm in into the syringe and monitor the evolution of its volume when the syringe’s plunger moves. More specifically, we
extract the shape of the bubble from the recorded videos and fit it to a sphere. We then calculate the pressure as

Pext(t) = P0Vbubble(0)
Vbubble(t)

,

where P0 is the initial (atmospheric) pressure and Vbubble(t) is the volume of the air bubble at time t. Finally, we note that, to149

correct for the presence of the bubble, we subtract Vbubble from the volume change imposed by the syringe’s plunger.150

Pressure-volume curve of a microsuspension. The results presented in Figure 1F of the main text are for a micro suspension151

obtained by mixing microcapsules with external radius Ro = 250 µm and thickness t ≈ 65 µm together with glycerol (99%152

pure, Sigma Alrich). In our experiment, a 10 mL syringe is filled with a solution with initial capsule volume fraction ϕ = 0.3.153

The syringe’s plunger is slowly displaced to reduce the enclosed volume by ∆V , while keeping the tip closed with a 3-way valve154

(Luer-lok) and monitoring pressure with a pressure sensor (60 PSI Ashcroft® GV Pressure Transducer).155

Optical properties of the microsuspension. Two set of experiments were conducted to investigate the optical properties of the156

microsuspension: one to characterize its transmittance as function of the applied pressure and the other to qualitatively157

investigate the light scattering as function of the applied pressure. For both experiments, we used the microcapsules considered158

in Figure 1F of the main text suspended in a silicone oil (Polydimethylsiloxane, Trimethylsiloxy terminated, CAS No:159

9016-00-6/63148-62-9, GELEST Inc.) with ϕ ≈ 0.4.160

To characterize the transmittance, we loaded 1 mL of the microsuspension in a 3mL plastic syringe (Becton-Dickinson).161

For the experiments, which were conducted in a dark room, we positioned a fiber-coupled Helium-Neon laser with red light162
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(wavelength 633 nm, Newport N-LHR-121) in front of the syringe and a laser power meter (Thorlabs S170C) on its back (see163

Fig. S11).

Laser source

Metafluid

Pressure Photo-detector

Fig. S11. Optical transmittance of the metafluid. Schematic of the test setup used to characterize the optical properties of metafluid as function of pressure.

164

We used a collimator (Thorlabs TC12FC-633) to align the laser and measure the transmittance power with the power meter.165

Note that we used a pressure pump (Flow EZTM 7 bar, FLuigent Inc.) to apply a constant pressure to the microsuspension166

and performed 15 tests at different levels of Pext (we used Pext = 0, 500, 1000, 1500,..., 7000 mbar). For each Pext, we recorded167

ten instantaneous power readings. Further, we also measured the transmitted power when the syringe was filled with pure168

silicone oil and when the laser was off, both at atmospheric pressure. The transmitted power T of the metafluid relative to that169

of pure silicone oil was then computed as170

T (Pext) = Pmf (Pext)− Poff
Poil − Poff

[S1]171

where Pmf (Pext) is the measured power for the microsuspension at Pext, Poff is the recorded power with the laser off, and Poil172

is the transmitted power with pure silicone oil in the syringe. To quantify the uncertainty on the measurements, we calculated173

the standard deviation of the relative transmittance, σT , as174

σ2
T =

(
∂T

∂P

)2
σ2
Pmf +

(
∂T

∂Poff

)2

σ2
Poff +

(
∂T

∂Poil

)2
σ2
Poil , [S2]175

where σPmf , σPoff and σPoil denote the standard deviation of the power measured for the metafluid, when the laser was off
and for PDMS oil, respectively. Substitution of Eq. (S1) into Eq. (S2) yields

σ2
T =

(
1

Poil − Poff

)2

σ2
Pmf +

(
Pmf − Poil

(Poff − Poil)2

)2

σ2
Poff +

(
Poff − Pmf

(Poff − Poil)2

)2

σ2
Poil .

To characterize the scattering, we fabricated a 70×70×26.6 mm transparent pressure cell using a combination of laser176

cutting and milling. More specifically, we used two 0.5" acrylic plates (in which a groove for a 1.54" ID O-ring was added)177

separated by 1.2 mm acrylic plate that acts like a spacer and allows for the creation of a chamber. Small holes were made178

in the upper plate to host two 14 gauge blunt tip needles that were used to introduce the fluid and degas the pressure cell.179

We assembled the pressure cell with 8 screws and filled it with our microsuspension. We then used a pressure pump (Flow180

EZTM 7 bar, FLuigent Inc.) to control the pressure inside the cell and perform a pressure sweep from 0 to 7000 mbar. In our181

experiment, we placed a Harvard logo under the pressure cell and used a camera (Canon 90D) positioned above it to record to182

the logo as the pressure in the pressure cell was increased.183

A

A’

L = 600 mm

Section A-A’

Inner thickness = 750 μm

Flexible
tube

Spacer
Pressure controller

Inlet
Pressure controller

Outlet

Transparent 
acrylic plate

Fig. S12. Flow of the microsuspension. Schematic of the test setup used to characterize the flow of the metafluid.

Flow of the microsuspension. To characterize the flow of our metafluid, we built an experimental setup that consists of a flexible184

tube of inner and outer diameter of 3/32" and 5/32" and a length of 1.2 m that is squeezed between two acrylic plates spaced185

by 1/16". to account for the tube thickness plus 750 µm. This gives the tube an elliptical gross section with major axis ach =3186

mm and minor axis bch =750 µm. As shown in Fig. S12, the tube is connected on both ends to reservoirs, themselves connected187

to a pressure controller (Fluigent Flow EZ 7 bar pressure controller). For this set of experiments we used capsules with outer188

radius R0 = 250 µm and thickness t = 75 µm that snap at Pupcr ≈ 300± 20kPa. In particular, we tested two fluidic media:189
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• a solution of pure silicone oil with a kinematic viscosity ν = 100cSt (Polydimethylsiloxane, Trimethylsiloxy terminated,190

CAS No: 9016-00-6/63148-62-9, GELEST Inc.) which is the base solution (ϕ = 0%).191

• a suspension obtained by mixing pure silicone with microcapsules with external radius outer radius R0 = 250 µm and192

thickness t = 75 µm and buckling pressure Pupcr ≈ 300± 20kPa. Note that we considered two values of capsule volume193

fraction: ϕ = 0.1 and 0.3.194

In our experiments, we fixed the difference of pressure between the inlet and outlet to be ∆P = Pin − Pout = 50 kPa and195

considered Pin ∈ [50, 450] kPa. We monitored the flow front using a camera (Phantom TMX 5010 high speed camera) and then196

calculated its average velocity once the flow was fully developed, vfront. In Fig. S13, we show the extracted average velocity197

front (normalized by the average velocity front at Pin = 50 kPa) as a function of Pin for metafluids with ϕ =0 (pure fluid), 0.1198

and 0.3. Note that the shear rate experienced by the metafluid in all these tests can be estimated as199

γ̇ ≈ v̄front
0.5Dh

[S3]200

where v̄front is the measured front speed reported in Fig. S13. Further, Dh denotes the hydraulic diameter, which is given by201

Dh = 4A
Π , [S4]202

where A = πachbch = 1.77 mm2 is the cross sectional area of the channel and Π is its perimeter, which for an ellipse can be203

approximated as204

Π ≈ π
[
3(ach + bch)−

√
(3ach + bch)(ach + 3bch)

]
= 6.43mm [S5]205

By using v̄sphericalfront = 1.65 mm/s and v̄collapsedfront = 1.05 mm/s, we obtain γ̇ ≈ 1.5 s−1. and γ̇ ≈ 0.95 s−1 for the metafluid with206

spherical and collapsed capsules, respectively.207

To record the microscopic images reported in Fig. 4 of the main text, we relied on the same optical system presented in Fig.208
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Fig. S13. Measurements for pressure driven flow at constant ∆P = 50 kPa Average velocity front (normalized by the average velocity front at Pin = 50 kPa) as a
function of Pin for metafluids with ϕ =0 (pure fluid), 0.1 and 0.3.

Rheology of the microsuspension. To better understand the impact of capsule shape on the flow of metafluid, we characterize210

its rheology using a parallel plate rheometer (TA instruments Discovery HR 30) with two disks of 50mm diameter separated211

by a gap of 500 µm. In all our tests, at room temperature (20 ° °C) we applied a ramp of increasing shear rate γ̇ and swept it212

logarithmically from 1 s−1 to 100 s−1 with five points per decade and an averaging time of 30 s. We first performed the test213

with increasing shear rate and then repeated it in decreasing order to check the reproducibility of the measurements. Note that214

the reported results are the average of the two tests, the variability measured is typically of the order of 3% of the average215

value at a given shear rate. Since using this setup we were unable to control external pressure applied to the metafluid, we216

prepared two suspensions:217

• (i) a suspension with 30% volume fraction of spherical microcapsules (with Ro = 40 µm and t = 8µm) in silicone oil.218

Note that the miscrocapsules are fabricated following all steps shown in Fig. S3;219
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• (ii) a suspension with collapsed particles in silicone oil. To obtain the collapsed particles, we prepared the same volume220

of spherical capsules (with Ro = 40 µm and t = 8µm) as in (i) but this time we followed the process described in Fig. S3221

up to Step 3. After that, we dried the inner core by evaporation (instead of sublimation), causing them to collapse222

permanently. The collapsed shells where then re-suspended in silicone oil to match the volume fraction of the first solution223

after collapse (upon pressurization).224

In addition to these two suspensions, we also tested pure silicone oil (the solvent used for the two tested suspensions). The225

results are shown in Fig. S14A and indicate that the silicone oil behaves as a Newtonian fluid with viscosity η0 ≈ 0.1 Pa.s.226

Finally, we performed oscillation sweeps with frequency ω ∈ [0.1, 10] Hz at low strain amplitudes (3% to remain in the227

linear-viscoelastic region) to probe the viscoelastic behavior of the metafluid with spherical and collapsed particles. As shown228

in Fig. S14B, we find that the suspension with spherical microcapsules is dominated by viscous effects which are linear with ω.229

Differently, the suspension with collapsed microcapsules behaves like a viscoelastic solid at low frequencies (ω < 1Hz) where230

G′ dominates. For ω > 1Hz, the dominance of G′′ indicates that viscous effects prevail in the metafluid.231
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Fig. S14. Rheological measurements of the micro-suspensions. (A) Shear rate measurement of the outer phases used for the solutions comprising spherical and collapsed
micro-capsules. (B) Oscillation sweep in frequency for micro-suspensions comprising spherical and collapsed micro-capsules.
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S3. Modeling232

In this Section, we first describe the simulations conducted to characterize the response of individual capsules and then explain233

how we model the interactions between them.234

S3.1. FE simulations of individual capsules. To model the behavior of single capsules under hydrostatic pressure loading, we235

first conduct a finite element (FE) simulation in Abaqus (Abaqus/CAE 2020, Dassault Systèmes) and then account for the236

contribution of the compressible gas inside the capsule.237

Geometric model. The geometry of our spherical capsules is fully defined by two parameters: the outer radius Ro and the238

thickness t. Following the framework of thin shell theory, we can then express these in terms of the midline radius R and the239

dimensionless thickness η (Fig. S15A) as240

Ro = R
(

1 + η

2

)
, t = ηR. [S6]241

Note that η is the ratio between the thickness of the shell and R and always lies in the interval ]0, 2[, since for η = 0 the shell242

has no thickness and for η ≥ 2 the shell has no inner surface.243

For the capsules analyzed in this study, R ranges from 10−2 m for the centimeter scale capsules to 10−5 m for the micrometer244

scale capsules in which the smallest feature size is below 10−6 m. Since in Abaqus the smallest length scale supported by the245

geometry engine is 10−6 (2), the dimensions of the capsule can not be expressed in SI units in the software. Therefore, we scale246

the simulation geometry uniformly to R = 1 and represent all other geometric parameters as dimensionless fractions of R. The247

dimensionless simulation results are then transformed back to SI units in a post-processing step.248

Fig. S15. Shell simulation geometry. Cross-sections of a spherical capsule before (A) and after (B) applying a polar dimple imperfections.

When using a perfect sphere, the FE simulations can only produce spherically symmetric deformations. In physical spherical249

capsules, however, the deformation in response to a uniform pressure loading is only spherically symmetric up to the critical250

pressure. At that pressure small imperfections in the geometry destabilize the uniform deformation and a dimple forms251

that breaks the spherical symmetry. To reproduce this behavior reliably in our simulations, the stress-free base geometry is252

perturbed by a small dimple, as shown in Fig. S15B. More specifically, this dimple is generated by radially displacing every253

point throughout the shell with the field (3)254

~δdimple
R

= −δe−(φ/β)2
~r, [S7]255

where the dimensionless numbers δ and β describe the dimple depth and width, respectively, ~r is the vector pointing from the256

center of the sphere to the point on the shell and φ is the angle between r and an axis going through the center of the shell.257

This localizes the formation of a dimple at φ = 0. The point at this angle that lies on the outer surface of the shell is called the258

pole, while the point on the outer surface at φ = π is called the antipole. Note that for all numerical results presented in the259

main text we use β = 30° and δ = 0.005η. When running the same simulations with a larger imperfection of δ = 0.02η, the260

critical pressure Pupcr decreases by at most 10% for all shells with η < 1. As such, we can conclude that δ = 0.005η is large261

enough to prevent numerical artefacts due to the perfect spherical symmetry but small enough to minimize the distortion of262

the pressure-volume characteristic.263

In our simulations we assume the deformation to be axisymmetric and discretize the models using using four-node bilinear264

axisymmetric solid elements (element type CAX4H in Abaqus) for shells with η ≥ 0.05 and two-node axisymmetric shell265

elements (element type SAX1 in Abaqus) for shells with η < 0.05. The axisymmetric simplification is consistent with the266

observed deformation of the manufactured capsules in this study. However, it is important to point out that it is only valid for267

shells that are sufficiently thick. For thin shells, the instability on loading that leads to the formation of a circular dimple at the268

pole can be followed by a secondary instability in which the edge of the dimple becomes polygonal. This symmetry-breaking269

secondary instability occurs at a critical volume of approximately (4)270

∆V upcr,2
V0

= 3706 η2

12(1− ν2) , [S8]271

where V0 = (4πR3)/3. Since silicone rubbers can be considered as incompressible, ν ≈ 0.5, if follows that ∆V upcr,2/V0 > 1 for272

η > 0.05. This means that for all shells that are of practical relevance in this research the secondary buckling transition does273

not occur before the shell is fully compressed so that the volume of the internal cavity vanishes (i.e. ∆V = V0). Therefore, the274
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assumption of axisymmetric deformation does not introduce an additional modelling error. This is confirmed by the results275

reported in Fig. S16A, where we compare the pressure-volume response from an axisymmetric and a fully three dimensional276

simulation for a shell with η = 0.22. We find that the two responses are indistinguishable for ∆V/V0 < 0.8. Discrepancies277

occur if the shell is compressed further and the inner surface makes self-contact (cross-section in the inset of Fig. S16A), but278

for most practical applications this level of compression is not reached, so axisymmetric simulations are sufficiently accurate279

and used for this study.280

We note that the the computational time could be reduced by using shell elements also for models with η > 0.05. As shown281

in Fig. S16B, simulations with shell and solid elements yield identical results for thin shells with η < 0.3. However, for shells282

with η ≥ 0.3 the results obtained using shells elements diverge from those obtained using solid elements in the collapsed regime.283

One reason for this divergence is that the model for the SAX1 elements assumes that the strain in the thickness direction varies284

weakly over the surface of the shell (5) - an assumption that is violated for thick shells. For example, for the deformation of the285

shell with η = 0.3 depicted in the inset in Fig. S16B, the large localized curvature at the inner surface results in thickness286

variations in the range of 20% over the entire shell. Moreover, shell elements do not accurately model the spherical regime for287

η > 0.5 since the SAX1 shell element formulation also assumes that the strain in the thickness direction is uniform throughout288

the thickness of the shell (5) - an assumption that is again violated for thick shells. All these results motivasted our decision to289

use four-node bilinear axisymmetric solid elements (element type CAX4H in Abaqus) for shells with η ≥ 0.05 and two-node290

axisymmetric shell elements (element type SAX1 in Abaqus) for shells with η < 0.05.291

As for the size of the mesh, we conduct the following mesh size studies to determine the number of elements along the radial292

direction of the shell, Nr, and the number of elements along the tangential direction, Nt:293

Solid elements: We consider a shell with η = 0.22 and investigate the effect of Nr on its pressure-volume response. Note294

that we mesh the model with square elements, so that Nt = Rπ/(Rη/Nr) = Nrπ/η. As shown in Fig. S17A, we find that the295

critical pressure is captured accurately for Nr = 5, as the critical pressure changes by only 1.5× 10−4 % when Nr is further296

increased. Further, we investigate the effect of changing Nt independently from Nr over a large range. This is only possible for297

a mesh of shell elements, so the second study concerns a spherical shell with η = 0.22 meshed with Nt SAX1 shell elements298

(Fig. S17B). We find that the critical pressure varies by less than 0.1% for Nt > 40. Since the largest curvature occurs at299

the inner surface of the shell with radius Ri = (1 − η/2)R, in all simulations with solid elements the mesh size is at most300

πR(1− η/2)/40, unless the requirement on Nr that limits the maximum element size to ηR/5 is more strict.301

Shell elements: We consider a spherical shell with η = 0.016 meshed with SAX1 shell elements and systematically vary Nt302

(Fig. S17C). We find that for small values of Nt the collapsed branch of the pressure-volume characteristic develops ripples with303

amplitude that decreases with Nt and frequency directly proportional to Nt. These ripples are caused by the high curvature of304

the rim. As the dimple expands, elements traverse this region of high curvature and the angle between these elements and305

neighboring elements changes. If Nt is too small, this change in angle is drastic so the total bending energy increases whenever306

an element traverses the rim. Therefore, the equilibrium pressure increases significantly with a frequency proportional to Nt.307

As Nt increases beyond Nt = 50, the relative amplitude of the ripples decreases below 0.6% and a more physically accurate308

characteristic is obtained. Therefore, in all simulations carried out with shell elements, the element size is set to at least309

πR(1− η/2)/100.310

A B

Fig. S16. Shell simulation order reduction. A, Pressure-volume characteristics of a spherical shell with η = 0.22 modeled using full three-dimensional and axisymmetric
continuum elements. The inset shows the top view and the cross-sectional side view of the shell in the fully collapsed state with the color indicating the maximum principal
strain. B, Pressure-volume characteristics for spherical shells with varying thickness η simulated with axisymmetric solid and shell elements. For the shell with η = 1, the
simulation failed to converge past the critical volume. The insets show the cross-sectional side view of the shell in the fully collapsed state with the color indicating the maximum
principal strain.

Material model. To determine hyperelastic material models capable of adequately capturing the response of the silicone rubber311

used to make the capsules, we perform uniaxial tensile tests on dogbone samples made out of PVS (Green silicone rubber)312
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A B C

Fig. S17. Mesh size study. A-B, Simulated pressure-volume characteristics for a shell with η = 0.22 with varying mesh sizes where Nr is the number of solid elements in
the radial direction and Nt is the number of shell elements in the tangential direction. The insets show the dependence of the simulated critical pressure ∆Pupcr on the number
of elements in either direction. C, Simulated pressure-volume characteristics for a shell with η = 0.016 meshed with Nt shell elements. The inset shows the region of the
pressure-volume characteristics on loading indicated by the rectangle, zooming in along the pressure axis.

and PDMS. The dobgone samples are fabricated following the ASTM D638 standard tensile testing approach and are loaded313

by an Instron 5696 at a strain rate of 0.2mm/s. For the PVS material we find an almost linear relation between true stress314

and true strain which is accurately captured by fitting a Neo-Hookean model to the data (Fig. S18A). Differently, for PDMS315

the Neo-Hookean model fails to capture its stress-strain response, but models with two parameters such as the first order316

Mooney-Rivlin and Ogden models closely follow the data (Fig. S18B). The coefficients that produce the optimal fits for these317

models are shown in table S1, where λ = 1 + ε represents the stretch. Note that all models assume that the material is318

incompressible. Even though for PDMS the different models produce different estimates for the initial shear modulus of the319

material G, the pressure-volume characteristics of a PDMS capsule align well when the pressure is normalized by the shear320

modulus (Fig. S18C). The reason is that for small strains each of the stress-strain relations in table S1 reduces to the linear321

form σ = 3Gε and that the deformed shape of a shell is independent of ∆P/G (6). This result is consistent with the fact that322

analytical calculations using different material model formulations yield similar values for the critical buckling pressure of323

spherical shells (7). Since the assumption that pressure scales with the initial shear modulus suffices for practical purposes, we324

use a Neo-Hookean model with G = 1 in all simulations and report all pressures as the dimensionless group ∆P/G.325

Material Model Stress-strain relation Parameters Shear modulus

PVS Neo-Hookean σ = 2C10
(
λ2 − 1

λ

)
C10 = 215 kPa G = 430 kPa

PDMS Neo-Hookean σ = 2C10
(
λ2 − 1

λ

)
C10 = 306 kPa G = 612 kPa

PDMS Mooney-Rivlin σ = 2
(
C10 + C01

λ

)(
λ2 − 1

λ

)
C10 = 685 kPa, C01 = −499 kPa G = 371 kPa

PDMS Ogden σ = 2µ
α

(
λα − 1

λα/2

)
µ = 453 kPa, α = 4.55 G = 453 kPa

Table S1. Material parameters for both PVS (green rubber) and PDMS.
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Fig. S18. Material model. (A)-(B) Experimentally measured (markers) and numerically predicted (solid lines) true stress-strain curve for a dogbone sample of (A) PVS and (B)
PDMS under uniaxial tension. (C) Simulated pressure-volume characteristics for a shell with η = 0.22 with the fitted material models for PDMS.

Since the goal of the simulations is to quantify the quasi-static rather than the dynamic behavior of the shells, material326

properties related to damping and inertia are not based on physical measurements but only serve to stabilize the simulation.327

Therefore, damping is modeled with the Rayleigh coefficients α = 0.002 s−1 and β = 0.002 s. These values are sufficient to328

stabilize the snapping transitions in the simulations and small enough not to distort the quasi-static characteristic. The inertia329
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of the material is determined by its density ρ which is in the range of 1000 kgm−3 for silicone rubber. To preserve the relative330

contributions of stiffness and inertia to the shell deformation in the simulations with R = 1 and G = 1, this density needs to be331

scaled with R2/G. With a reference value of R = 10mm and G = 500 kPa, this leads to a dimensionless density of 2× 10−7.332

Because the reference case is a shell on the centimeter scale, this overestimates the contribution of inertia in the micrometer333

scale shells. However, for a simulation of a shell with η = 0.22, R = 1 and G = 1, the peak in kinetic energy during buckling is334

17× 10−6 J which is negligible compared to the peak in energy dissipation through the Rayleigh damping of 0.42 J, so inertia335

has a negligible influence.336

Boundary conditions. In all our simulations we fix the vertical coordinate of the bottom node on the axis of revolution and the337

horizontal displacement and all rotations of the nodes located on the axis of revolution. Further, we include a self-contact338

interaction to prevent the inner surface of the shell to self-intersect after buckling. This constraint becomes relevant when339

∆V/V0 approaches zero because at that point both poles touch (see inset in Fig. S16). The normal contact behavior is captured340

by an exponential closure model. In this model, the contact pressure is zero until the gap between two surface elements341

decreases below 1% of the thickness. For smaller gaps, the contact pressure increases exponentially until it reaches 2G when342

the gap becomes zero. For a sphere with η = 0.22, this model is sufficient to prevent self-intersection and produces a minimal343

gap of 0.75% relative to the shell thickness. The tangential contact behavior is modeled as static friction with a coefficient of344

1.15 This coefficient is an estimation but it already limits the tangential slip to 0.01% of the shell radius so we conclude that345

the precise value for the friction coefficient does not have a significant influence on the quasi-static pressure-volume curve.346

Loading. To simulate the pressurization and depressurization of the shells, we use implicit dynamic analysis with two steps347

- one for the loading and one for the unloading. In the simulations we control the volume rather by defining a fluid cavity348

interaction on the inner surface and applying a load of the type fluid flux on this interaction.349

A B

Fig. S19. Finite element model loading. A, Simulated pressure-volume characteristics for a spherical shell with η = 0.22 for dynamic volume-controlled loading, dynamic
pressure-controlled loading and static loading using the Riks method for arc length continuation. The dotted vertical line indicates the change in volume above which the inner
surface of the shell makes self contact. The inset shows an enlarged section of the characteristics around the critical point on loading. B, Difference in pressure between the
dynamic and the static simulation on loading (right pointing arrowhead) and unloading (left pointing arrowhead). This difference is only plotted for the quasi-static segments of
the simulation in which the normalized pole velocity 1/R · dy/dt < 1 s−1.

In the loading step the cavity is deflated until less than 5% of the original volume remains and in the unloading step the350

direction of the flux is inverted until the initial volume of the cavity is restored. The flux magnitude is constant throughout351

each step, except for the first and last 0.01 s when it changes linearly from or to zero to avoid excessive accelerations. The352

dynamic snapping transitions are stabilized numerically by applying Rayleigh damping (as described in section "Material353

model") and setting the type of the step to moderate dissipation. With a step time of 5 s for both steps, these measures suffice354

to ensure convergence. As a final measure to facilitate convergence, a variable time stepping scheme is used. To ensure that the355

onset of buckling is captured with sufficient resolution in time, the maximum time increment size is limited to 0.03 s.356

Note that the highly nonlinear response of the shells could be also captured using arc length continuation in a static357

simulation step (8) (Fig. S19A). However, simulations using this methods do not converge reliably for thicker shells. Remarkably,358

when comparing the results of static and dynamic simulations, we find an error for the critical pressure that is less than 1%359

(Fig. S19), which confirms that the simulation approximates quasi-static loading conditions well. The only exception to this360

is the region around the critical point on loading, where the dynamic simulation overestimates both the pressure and the361

volume by approximately 5%. However, since in practical loading scenarios dynamic effects are also present, the results for362

the dynamic simulation are more accurate than for the static simulation, which is confirmed by the good match between363

experiments and the numerical model.364

Effect of the internal gas. The contribution of the internal pressure caused by the compression of the gas inside the capsule365

Pint(∆V ) is calculated by a post-processing algorithm operating on the simulation results as366

Pint(∆V ) = P0

(
1

1− ∆V
V0

− 1

)
[S9]367
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with P0 atmospheric pressure (101.325 kPa) and V0 the internal volume of the capsule when it is exposed to atmospheric368

pressure at the outside. Both contributions are then added to obtain the relation between the external pressure on the capsule369

and the change in volume as370

Pext(∆V ) = ∆Pshell(∆V ) + Pint(∆V ) [S10]371

This approach allows to examine the influence of a large number of parameters on the deformation of spherical capsules with a372

minimal number of simulations. It also shows that, in contrast to structures that are inflated from the inside and of which373

the outside is exposed to atmosphere, the effective pressure Pext to obtain a certain deformation does not scale linearly with374

the shear modulus of the capsule wall G (Fig. S20). The reason is that even though ∆Pshell(∆V ) scales linearly with G as375

demonstrated in the previous paragraph on the material model, Pint only depends on the properties of the gas inside the376

capsule which are independent of G. Therefore, we do not normalize the pressure axis when reporting Pext. Instead, it is377

possible to convert the pressure Pext for a capsule with a given shear modulus G and a given change in volume ∆V to the378

pressure P ∗ext of a capsule with the same geometry and ∆V but a different shear modulus G∗ using the equation379

P ∗ext(∆V ) = G∗

G
Pext(∆V )−

(
1− G∗

G

)
Pint(∆V ) [S11]380

where Pint(∆V ) can be obtained from Eq. (S9).381

Fig. S20. Dependency of the total pressure on the shear modulus. Pressure-volume curves for capsules with t/R = 0.22 and G = 60 and 350 kPa where the
pressure-axis is normalized by G and the volume axis by the initial external volume of the capsule V0 = 4πR3/3.

Data processing. After calculating the total external pressure due to the shell stiffness and the internal gas pressure, we extract382

the portions of the pressure-volume characteristic of the capsules that are statically stable in the spherical and collapsed383

configuration. Since the spherical branch becomes unstable due to a bifurcation in the energy landscape at (∆V upcr , Pupcr ), this384

point appears as a local maximum in pressure in the dynamic volume-controlled simulation. Therefore, the first branch contains385

the data from all time increments in the loading step of the simulation up to the point where Pext starts decreasing. The386

collapsed branch, on the contrary, loses stability because of a limit point in volume at ∆V downcr , as shown on the pressure-volume387

characteristic obtained from the static Riks simulation in Fig. S19A. Since this point does not coincide with a local extremum388

in pressure, we identify it based on the velocity of the pole in the axial direction d∆y/dt. This velocity increases significantly389

at the unstability because elastic energy is released and converted into kinetic energy. Therefore, the end of the collapsed390

branch is as the increment at which d∆y/dt becomes larger than ten times the typical velocity in the quasi-static region of the391

simulation. This typical velocity is calculated as the average of d∆y/dt over the time interval starting at the increment where392

the two poles break contact and ending at the increment where the cavity volume exceeds ∆V upcr because in this region the393

pole is always in motion and the simulation is always stable.394

After this procedure, the pressure and volume of the critical points on loading and unloading under volume control and395

loading under pressure control are known. Next, the critical point on unloading under pressure control is found as the local396

minimum P downcr on the collapsed branch. Due to numerical artefacts caused by the self-contact interaction, multiple local397

minima in pressure exist that do not correspond with a physical instability threshold. This numerical noise has a high frequency398

and mostly occur when the shell is nearly in the fully collapsed state. Therefore, we identify P downcr as the point on the399

quasi-static collapsed branch with the lowest ∆V that has the lowest pressure of the eight points on the branch that lie closest400

to it in volume and that has a lower pressure than at least half of the data points on the collapsed branch. This algorithm401

also finds P downcr in case it occurs at the same time increment as ∆V downcr , which is the case when the shear modulus G is low402

compared to the initial gas pressure Pint,0.403

Model validation. To validate the results of the FE simulations, in Fig. 1B of the main text we compare the numerically404

predicted and experimentally measured pressure-volume curve of an individual capsule. As described in Section S2.1, in our405

experiment a capsule is inserted into a container containing a fluid and then a known volume of fluid ∆V is injected into the406

container while the pressure Pext is monitored. Since our testing setup presents a not negligible compliance407

∆V (Pext) = ∆Vcap(Pext) + ∆Vcorr(Pext) [S12]408
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where ∆Vcap is the change in external volume of the capsule and ∆Vcorr is the change in volume of all other parts of the409

system at Pext, assuming that the pressure is uniform. ∆Vcorr is experimentally characterized (see Fig. S7), whereas our FE410

simulations provide ∆Vcap(Pext). We then use Eq. (S12) to obtain the numerically predicted pressure-volume curve to compare411

to experiments. As shown by Fig. 1B, after this correction the numerical results align closely with the measurements.412

As an additional validation of the numerical model, we compare the results of the numerical model to numerically measured413

values for Pupcr and P downcr . To this end, we manufacture centimeter-scale capsules following the procedure of section S1.1 with414

Ro = 10mm and with different values for their thickness t following the values of table S2. For each value of t, we manufacture415

N capsules from the same material. We then measure the critical pressures Pupcr and P downcr for all N shells with the same416

geometry and take their average to produce the values in table S2 and Fig. 2B featured in the main text. Next, we use our417

model to estimate the values for Pupcr and P downcr numerically for the same values of t and Ro. In all these simulations, we418

keep the material shear modulus G = 350 kPa and the imperfection magnitude δ = 0.025 constant to avoid overfitting the419

simulation data to the experimental results. Therefore, the good match between the numerical and experimental data for Pupcr420

and P downcr reported in table S2 and Fig. 2B demonstrates the predictive power of our numerical model.421

Parameters Average experimental results Numerical results
Ro (mm) t (mm) N Pupcr (kPa) Pdowncr (kPa) Pupcr (kPa) Pdowncr (kPa)

10 1.0 4 28.1 15.7 21.8 12.4
10 2.0 4 123.0 57.6 97.5 56.7
10 2.3 8 159.9 76.9 137.1 78.4
10 2.5 8 174.8 83.2 166.8 96.4
10 3.0 8 289.9 150.5 260.1 152.5
10 4.0 6 524.8 343.2 498.9 336.7
10 4.5 4 598.0 473.2 649.1 474.1
10 5.0 6 800.9 632.1 796.8 615.7

Table S2. Comparison between numerical and experimental values for the critical pressures

Effect of bulk modulus. It is well known that elastomers are nearly incompressible. Consequently, they are characterized by ν422

approaching 0.5 and high values of K/G (where ν, K and G represent the initial Poisson’s ratio, bulk modulus colorred and423

bulk modulus, respectively). The classical buckling pressure of elastic thin spherical shells is given by (3)424

∆Pupcr = 2E√
3(1− ν2)

η2. [S13]425

By introducing426

E = 9KG
3K +G

and ν = 3K − 2G
2(3K +G) [S14]427

Eq. (S13) can be rewritten in terms of K/G as428

∆Pupcr
G

= 4
K
G√(

K
G

)2 + 4
3
K
G

η2. [S15]429

As such, we anticipate that as K becomes larger, the value of ∆Pupcr will increase asymptotically. To verify this point, we430

perform a number of FE simulations on a shell with η = 0.22 where we systematically vary the normalized bulk modulus K/G431

from 101 to 109 (note that K/G ≈ 5× 103 for PDMS mixed in a base polymer to curing agent ratio of 10:1 (9) and K/G ≈432

3× 103 when the ratio is 5:1 as in our micrometer scale capsules (10)). The results of Fig. S21 show that for K/G > 1× 103
433

the change in ∆Pupcr is less than 0.1% as the K is varied from 103 to 109 Further, in Fig. S21B we compare the evolution434

of ∆Pupcr as a function of K as predicted by Eq. (S15) with the data extracted from our FE simulations. Again, we find435

that the dependence of ∆Pupcr on K is weak. Finally, in Fig. S21C we show the evolution of the critical volumes on volume436

controlled loading and unloading as a function of K and again find a weak dependence. Since approximating the material437

as incompressible introduces a negligible error (0.7 ‰ assuming K/G = 1× 103 and using Eq. (S15)), we use a perfectly438

incompressible material model in the simulations.439

Scaling laws. We start by noting that analytical formulas are well established to describe the initial behavior of spherical440

shells subject to uniform external pressure (3, 11, 12). These formulas are derived using thin shell theory and therefore their441

accuracy is limited for capsules with η ≈ 0.3 such as the microcapsules produced in this work. However, they can be still used442

to explain the general trends observed in the data.443

Critical points:444

It is well known that for a thin spherical shell subjected to a pressure loading the difference between the external and445

internal pressure of the shells and volume at which buckling is triggered is given by (13)446

∆Pupcr = 2E√
3(1− ν2)

(
t

R

)2
. [S16]447
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Fig. S21. Influence of the material bulk modulus. A, Simulated pressure-volume characteristics for a shell with η = 0.22 made out of a Neo-Hookean material for different
values of the normalized bulk modulus K/G. B, Relation between the normalized bulk modulus K/G and the normalized shell critical pressure ∆Pupcr /G. The dashed
line represents the analytical scaling law given by Eq. (S15). C, Relation between the normalized bulk modulus K/G and the change in volume at which the instabilities on
volume-controlled loading (∆V upcr ) and unloading (∆V downcr ) occur for the curves plotted in A.

For an incompressible material with ν = 0.5, E = 2G(1 + ν) = 3G and Eq. (S16) reduces to448

∆Pupcr = 6G
1.5η

2 = 4Gη2, [S17]449

where η = t/R. Further, the change in internal volume at which buckling is triggered can be expressed as (13)450

∆V upcr = ηV mid0 , [S18]451

where V mid0 = 4πR3/3 is the initial volume enclosed by the midsurface of the shell. Using Eq. (S6), V mid0 can be rewritten as452

V mid0 = V0

(1− η/2)3 , [S19]453

where V0 = 4πR3
i /3 is initial volume of the gas-filled cavity (Ri denoting the inner radius of the shell). Taking a Taylor series,454

Eq. (S19) can be approximated with second order accuracy as455

V mid0 ≈ V0

(
1 + 3η

2

)
. [S20]456

Finally, substitution of Eq. (S20) into Eq. (S18) yields457

∆V upcr ≈ η
(

1 + 3η
2

)
V0, [S21]458

As shown in Figs. S22A and B, Eqs. (S17) and (S21) closely match the numerically obtained values for ∆Pupcr and ∆V upcr for459

small η. For η > 0.15, the accuracy of the equation becomes limited since the shells can no longer be assumed to be thin, but460

qualitatively the trends line up well.461

Next, we use these formulas to predict the total external pressure at the critical point, Pupcr462

Pupcr = ∆Pupcr + Pint,cr, [S22]463

where Pint,cr denoted the critical internal pressure caused by the compression of the gas inside the capsule. Using Eq. (S9),464

Pint,cr can be expressed as465

Pint,cr = P0

(
1

1− ∆V upcr
V 0

− 1

)
= P0

(
1

1− η(1 + 3η/2) − 1
)
, [S23]466

where P0 is the atmospheric pressure. Substitution of Eqs. (S17) and (S23) into Eq. (S22) yields467

Pupcr
P0

= 4 G
P0
η2 + 1

1− η(1 + 3η/2) − 1. [S24]468

In Fig. S22C we compare the predictions of this equation to numerically obtained data and find that it accurately predicts the469

trend, especially for low values of η.470

Change in volume upon collapse: Next, we derive a scaling law for the change in volume of the capsule as it suddenly471

collapses at Pupcr when under pressure controlled conditions, ∆V upplat. Note that ∆V upplat is proportional to the width of the472

plateau in the pressure-volume characteristic of a metafluid consisting out of many identical capsules under both pressure and473

volume control conditions (see Section S3.2).474
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Fig. S22. Scaling of critical pressures and volumes with shell thickness and modulus. A, Evolution of the differential shell pressure at the critical point on loading ∆Pupcr
in function of the dimensionless shell thickness η. Square markers indicate data points obtained with the FE model while the dotted line corresponds to Eq. (S16). B, Evolution
of the volume at the critical point upon loading, ∆V upcr , as function of η. The dotted line corresponds to Eq. (S20). C, Evolution of the total pressure at the critical point upon
loading, Pupcr , as a function of η for different values of the dimensionless shear modulus G/P0. The square markers correspond to numerical FE results and the dotted lines to
Eq. (S24). D, Evolution of the change in volume during the instability on pressure-controlled loading, ∆V up

plat
, as function of η for different values of G/P0. The square

markers correspond to FE resutls and the dotted lines correspond to results from Eq. (S27). The line colors correspond to the same values of G/P0 as indicated in the legend
of panel C.

We start by noting that475

∆V upplat = ∆V upcr,col −∆V upcr , [S25]476

where ∆V upcr,col is the volume of the collapsed capsule after the instability and ∆V upcr is given by Eq. (S21). After collapse the477

capsule is highly deformed and its behavior is no longer captured accurately by analytical models. However, our FE simulations478

show that in the collapsed state ∆Pshell(∆V upcr,col)� Pint(∆V upcr,col), so that the influence of the shell stiffness can be neglected.479

As such, ∆V upcr,col can be estimated from Eq. (S9) as:480

∆V upcr,col
V0

= 1− 1
P
up
cr
P0

+ 1
[S26]481

Substitution of Eq. (S24) into Eq. (S26) yields482

∆V upplat
V0

= 1− 1
4 G
P0
η2 + 1

1−η(1+3η/2)
− η
(

1 + 3
2η
)
. [S27]483

Eq. (S27) predicts that ∆V upplat/V0 reaches a maximum for intermediate values of η. This trend is confirmed by the numerical484

data shown in Fig. S22D. However, Eq. (S27) starts to largely underestimate the numerical data for η past this maximum485

largely due to the overestimation of ∆V upcr .486

Influence of shear flow. When a metafluid flows, every point in the fluid experiences a shear stress τext proportional to the487

viscosity of the fluid, η0, and the spatial velocity gradient. If this shear load is sufficiently large, the relation between the488

hydrostatic pressure applied to a capsule and the resulting volume is modified. The reason is that the shear load deforms489

the sphere approximately into an oblate ellipsoid with the major axis rotated at 45° to the flow lines and that such a shape490

has a lower buckling pressure than a sphere (14). The change in shape of the capsule due to a simple shear stress τext can491

be estimated analytically for a thin spherical shell made of an incompressible material and surrounded by an incompressible492

fluid (15). According to this model, the Taylor parameter D is given by493

D = L−B
L+B

= 25
12

τext
Gη0

, [S28]494
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where L and B are the major and minor radii of the ellipsoid, respectively. Since it has been shown that the critical buckling495

pressure ∆Pupcr of oblate ellipsoids scales with the square of their aspect ratio B/L (16), it follows that496

∆Pupcr
G

∝

1− 25
12

τext
Gη0

1 + 25
12

τext
Gη0


2

. [S29]497

Fig. S23. Influence of a shear load on the pressure-volume characteristic. A, Illustration of the simulation procedure: (i) initial spherical shape of the capsule, (ii) a shear
load τext is applied on the outer surface, (iii) a uniform normal pressure ∆P is applied on top of τext. B, Simulated pressure-volume characteristics for a shell with η = 0.22
subjected to a constant external shear load τext. C, Relation between the normalized shear load τext/G and the critical shell pressure ∆Pupcr /G for a spherical capsule with
η = 0.22. The dashed line represents the analytical scaling law provided by Eq. ( S29). D, Relation between the normalized shear load τext/G and the change in volume at
which the instabilities under volume-controlled conditions are triggered upon loading (∆V upcr ) and unloading (∆V downcr ).

To validate the predictions of Eq. (S29), we perform a series of FE simulations in which we apply to the outer surface of the498

models a distributed load consistent with a uniform shear stress in the surrounding medium τext prior to loading the capsule499

hydrostatically (Fig. S23A). Note that the models used for these simulations comprise three dimensional elements rather than500

axisymmetric ones. In Fig. Fig. S23B we report results for a spherical capsule with η = 0.22. These results indicate that Eq.501

(S29) accurately captures the drop in ∆Pupcr as τext/G is increased (Fig. S23C). They also show that the critical volumes on502

loading ∆V upcr follows a similar trend, while ∆V downcr is less sensitive to the shear load (Fig. S23D).503

For η = 0.3 and G = 400 kPa, which are typical values for the produced microcapsules, the total critical pressures Pupcr and504

P downcr change by less than 2% if τext remains below 620Pa. Below this limit, these capsules can be considered to be unaffected505

by the flow field such that all modeling techniques presented in this paper for individual capsules and metafluids yield accurate506

results even though they assume hydrostatic loading.507

S3.2. Modeling interactions between capsules.508

S3.2.1. Systems with finite number of capsules. In our experiments we impose a change in the volume of the metafluid ∆V and509

measure the resulting pressure in the metafluid Pext. As such, the change in volume of the i-th capsule in the pressurized state,510

∆V (i), is subjected to the constraint511

∆V =
N∑
i=1

∆V (i), [S30]512

since we assume that the fluid is incompressible. Further, we assume that all spherical capsules in the fluid are subjected513

approximately to the same pressure Pext,514

Pext = P
(1)
ext

(
∆V (1)) = P

(2)
ext

(
∆V (2)) = .... = P

(N)
ext

(
∆V (N)) , [S31]515

where P (i)
ext denotes the pressure to which the i-th capsule is subjected. Note that this assumption is valid if the piston is small516

enough such that pressure fluctuations propagate quickly throughout the entire fluid and the hydrostatic pressure difference517

over the height of the fluid is small compared to the typical pressure in the system. With an upper estimate for the density of518

the fluid at 1000 kg/m3, the hydrostatic pressure drop for a container with a height of 30 cm is approximately 3 kPa. A lower519

estimate for the speed of sound in the fluid is the speed of sound in air which is approximately 330m/s. For a container with520

as typical size 30 cm, this means that dynamic pressure differences throughout the fluid remain below 3 kPa as long as the521

speed with which the pressure changes is below 3300 kPa/s.522

Since in our system the pressure is approximately equal for all components in the system and the volumes add up to produce523

the global ∆V , the capsules and the fluidic medium are said to be loaded in series. This means that the pressure-volume524
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characteristic of a system can be obtained by evaluating the pressure-volume characteristics of the different constituents at a525

given pressure and adding up all the resulting volumes. Operationally, to determine all of the equilibrium configurations of a526

metafluid comprising N capsules, we first find for each capsule all stable volumes that result in a predefined set of pressure527

values. Then, for each value of pressure, we determine the equilibrium states by making all possible combinations of those528

volumes. As shown in Fig. S24A, for a suspension comprising N identical capsules through this process we identify N + 1529

equilibrium branches. When the suspension is loaded by controlling ∆V , the first branch is initially followed until the critical530

buckling pressure of the capsules, Pupcr , is reached. At that point, a capsule snaps and the pressure drops (at constant ∆V )531

until it reaches the next branch. This process then repeats until all N capsules are collapsed, leading to a saw-tooth pattern532

with N peaks at Pupcr . Note that if ∆V is divided by N , the branch for which all capsules are in the spherical configuration as533

well as that for which all capsules are in the collapsed configuration collapse on each other for all N (Fig. S24B) The other534

N − 1 branches are uniformly interpolated between these two branches (17).535

A B

Fig. S24. Interaction between many identical spherical capsules. A, Quasi-static pressure-volume characteristics for a system of N = 1, 5 and 15 identical spherical
capsules (R = 10 mm, t = 2 mm, G = 600 kPa) suspended in an incompressible medium. The color of the branches indicates the ratio of capsules in the collapsed
configuration. B, Dynamic pressure-volume characteristics of the same systems under volume controlled inflation and deflation. The volume axis is normalized by the total
initial internal volume of the capsules NV0 such that the fully spherical and fully collapsed branches are coincide for all N . As indicated on the figure for the system with
N = 5, ∆P (n)

drop
is the drop in pressure caused by the collapse of the n-th capsule. As N increases, the pressure drop for every capsule in the system decreases and the

characteristics for volume control converge to the pressure control case.

Next, we investigate the effect of N on the magnitude of the pressure drops in the saw-tooth pattern. To this end, we note536

that, when the n-th capsule starts to collapse,537

Pext = Pupcr , [S32]538

and the corresponding ∆V is given by Eq. (S30). Since all capsules are identical, at this point their change in volume is539

∆V upcr,col for the n− 1 capsules that are already collapsed and ∆V upcr,sph for the other N − (n− 1) capsules (including the capsule540

that is about to collapse) that are in the spherical state (Fig. S25A). It follows that the total change in volume of the capsules541

when the n-th capsule starts to collapse, ∆V start,(n)
drop , is given by542

∆V start,(n)
drop = (N − n+ 1)∆V upcr,sph + (n− 1)∆V upcr,col. [S33]543

Since the volume is controlled during the tests, the change in volume of the capsules after the collapse of the n-th capsule has544

ended, ∆V end,(n)
drop , is identical to ∆V start,(n)

drop ,545

∆V start,(n)
drop = ∆V end,(n)

drop . [S34]546

Even though the total change in volume of the capsules remains constant, the volume of the individual capsules has changed547

because of the snapping of the n-th capsule. We estimate this change in volume by approximating the pressure-volume curve of548

capsules in the spherical and collapsed state with a first order Taylor series around Pupcr and express ∆V end,(n)
drop as549

∆V end,(n)
drop ≈ (N − n)

(
∆V upcr,sph −∆P (n)

drop

d∆V
dP

∣∣∣∣up
cr,sph

)
+ n

(
∆V upcr,col −∆P (n)

drop

d∆V
dP

∣∣∣∣up
cr,col

)
, [S35]550

where ∆P (n)
drop denotes the drop in pressure caused by the collapse of the n-th capsule (Fig. S25A). Substitution of Eqs. (S33)551

and (S35) into Eq. (S34) yields552

∆P (n)
drop ≈

∆V upcr,col −∆V upcr,sph
(N − n) d∆V

dP

∣∣up
cr,sph

+ n d∆V
dP

∣∣up
cr,col

. [S36]553

In this equation, the numerator represents the change in volume of an individual capsule when it collapses at Pupcr under554

pressure controlled conditions. This value only depends on the geometry of the capsules and it does not vary with the number555

of capsules N . on the other hand, the denominator represents the inverse of the slope near Pupcr of the branch of the suspension556

pressure-volume curve on which n capsules are in the collapsed state. This slope scales with the number of capsules N , so557
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∆P (n)
drop decreases as N increases (i.e. ∆P (n)

drop ∝ N
−1). We also note that, since the derivatives of ∆Vsph and ∆Vcol are generally558

not identical, ∆Pndrop is different for every capsule (i.e. it varies with n) (17, 18). In particular, for the first and last capsule to559

collapse, ∆Pdrop is given by560

∆P (1)
drop ≈

∆V upcr,col −∆V upcr,sph
N

dPsph
d∆V

∣∣∣
P=Pupcr

and ∆P (N)
drop ≈

∆V upcr,col −∆V upcr,sph
N

dPcol
d∆V

∣∣∣
P=Pupcr

, [S37]561

respectively. For all other capsules, ∆Pdrop lies between these two values which means that ∆Pdrop varies proportionally with562

N−1 for all capsules. The decreased magnitude of the pressure drops with N is due to the fact that the sudden reduction in563

volume experienced by a capsule upon snapping can be compensated by a slight expansion of the surrounding N1 capsules. To564

verify this scaling, we numerically evaluate the pressure-volume characteristic of systems with N identical capsules. We then565

extract from each simulation the N values for ∆P (n)
drop and plot them as points in Fig. S25B. We find that for large values of566

N all numerical data points lie between the approximate bounds provided by Eq. (S37), confirming the scaling of ∆Pdrop567

with N−1. Finally, Eq. (S36) also shows that, for large N , ∆Pdrop tends to zero, so that the saw-tooth pattern converges to a568

horizontal plateau at the pressure Pupcr for loading.569

Fig. S25. Scaling of the pressure drop with the number of capsules. A, Pressure-volume curve for a spherical capsules with R = 10 mm, t = 2 mm and G = 600 kPa)
upon inflation and deflation. B, Drop in pressure caused by the collapse of a capsule ∆Pdrop as a function of the number of capsules fluid with N for a suspension of shells all
identical to that considered in c A. Dots denote ∆Pdrop recorded in numerical simulations upon collapse of each capsule. The colored area is their envelope. Dashed lines
correspond to the analytical approximations for ∆Pdrop of the first and last capsule to collapse (Eq. (S37)).

S3.3. Ray tracing simulations. We performed 3D ray tracing simulations using the geometric optics module in COMSOL v6.1.570

Individual capsules. We started by focusing on two individual capsules:571

• a capsule in its initial spherical state whose geometry was generated using basic geometry tool in COMSOL;572

• a capsule in its collapse state. Note that collapsed shape is extracted from our FE simulations. More specifically, we573

used the shape of the inner cavity of the capsule, since we assume that the PDMS shell and the PDMS oil have a close574

refractive index and that any effect would be dominated by the contrast in refractive index between the PDMS oil and575

the air which are nPDMS ≈ 1.5 and nair ≈ 1. We neglected any change that might occur to the refractive index of the576

air under variable pressure conditions.577

In our simulations rays arranged on a hexapolar pattern with a power of 1 W and a radius of Rbeam = 95µm are initiated578

500µm away from the capsules. The analysis is stopped when the rays have travelled for 5 mm, taking into account reflections579

on the surface of the capsules. As shown in Fig. 4A of the main text, we find that spherical and collapsed capsules exhibit580

distinct scattering behaviors when interacting with incident rays. To check for the robustness of these results, we conducted581

simulations for different orientations of the incoming rays. Snapshots extracted from these simulations are shown in Fig. S26.582

Further, we systematically quantified both the transmittance and focusing efficiency for incident angles θ ∈ [0, 180]583

(Fig. S27A). To measure the transmittance, we placed a power sensor at the focal length of the capsule, f (estimated from584

measurements of the spot diagram) for angles θ <= 90 and at a distance −f for θ > 90 (to make sure to measure transmitted585

rays). The transmittance T was then obtained by integrating the power density recorded on the power sensor and dividing it586

by the power of the incident ray (fixed at 1 W),587

T = Powertransmitted
Powerincident

. [S38]588

To obtain the focusing efficiency, we integrated the power density recorded on the portion of the power sensor where it is above589

the half maximum, PowerFWHM , and divided it by the transmitted power (19, 20)590

F = PowerFWHM

Powertransmitted
. [S39]591
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0°

180°

45°

90°

Fig. S26. Ray tracing simulations. Results for different orientation of the incident rays. Color map corresponds to time during ray propagation.

As shown in Fig. S27B, we find that the average transmittance over all angles is ≈70%, with a maximum of 99% for592

θ = 180°(concave side facing the incident rays). We also find that the average focusing efficiency is above 40% for a wide range593

of angles, with a maximum of ≈60% for θ = 20°.
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Fig. S27. Effect of incident angle. A Schematics of the simulations. B Transmittance and focusing efficiency as function of the incident angle θ. Dashed lines denote the
average values across all angles.

594

Array of capsules. We also considered a dense cluster of capsules (with outer radius Ro = 250µm) arranged on a 8×8×8 FCC595

lattice with a volume fraction of 0.6 (resulting to a center-to-center distance of 2.06Ro between neighboring spheres). We596

explored three scenarios: (1) an array of spherical capsules, (2) an array of randomly oriented collapsed capsules all with the597

convex side facing the rays, and (3) an array of randomly oriented collapsed capsules. Note that we chose all collapsed capsules598

to have the same projected area as the spherical ones. In the simulations rays arranged on a hexapolar pattern with a power599

of 1 W and a radius Rbeam = 500µm are initiated 5 mm away from the array of capsules. To quantify this light scattering600

behavior of the three considered arrays of capsules, we monitored the light reflected onto a square screen with an edge length601

of 15 mm positioned at a distance of 15 mm from the arrays (Fig. S28A).602

In Fig. S28B we show the power density collected on the screen for the three considered arrays of capsules. We find that the603

transmitted power is much larger for the two arrays of collapsed capsules. Furthermore, we observe that the randomly oriented604

array of collapsed particles proves more effective in light transmission. To quantify this effect, we calculate the transmission, T ,605

as defined in Eq. (S38). The results reported in Figure S28C show that the transmission for the array of ordered collapsed606

capsules is ≈100% larger that that of the array of spherical microcapsules - an increase that can be attributed to the lensing607
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capability of the collapsed particles. Finally, when we compare the arrays of collapsed ordered and randomly oriented capsules,608

we find that the transmission is ≈60% higher for the latter. Such increase can be attributed to the decreased projected area of609

the randomly oriented capsules in the plane perpendicular to the incoming rays. Indeed when we measure the coverage area610

for the arrays of ordered and randomly oriented collapsed capsules, we find that the latter is reduced by 58%. This decrease611

in coverage area is clearly visible in Fig. S28D, where we show cross sections of the three considered arrays. The snapshots612

clearly indicate that the light rays can penetrate more deeeply the array of randomly oriented collapsed capsules without613

being deviated by the shells. As such, these results suggest that the experimentally observed tunable optical behavior of our614

metafluid can be ascribed to a combination of the lensing effect (Fig. S27) and the reduced capsule coverage area within the615

randomly oriented array of collapsed capsules (Fig. S28D).616
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Fig. S28. Ray tracing simulations for a cluster of capsules. A Schematics of the simulation setup. B Heat map plots of the transmitted power density in the three different
scenarios considered: cluster of spheres (left), cluster of collapsed capsules with their convex side facing the incident beam (middle) and cluster of randomly oriented collapsed
capsules (right). C Transmitted power measured for the three different scenarios divided by the input power. D Numerical snapshots showing the propagation of the light rays
across the three considered arrays.
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Video S1. Pressure-volume curve of a single capsule. Centimeter-scale capsule: To characterize the pressure-volume characteristics617

of a single centimeter-scale capsule, we place it in a glass container. We then load the system by introducing a volume ∆V of618

water via a syringe pump and measure the pressure inside the container with a differential pressure sensor. Micrometer-scale619

capsule: To measure the pressure-volume curve of a single micrometer-scale capsule, we place it in a micro-liter glass syringe620

with immersion oil. In our experiments, the volume inside the syringe is controlled by mechanically connecting the syringe’s621

plunger to a high precision linear stage. To measure the pressure Pext, we inject an air bubble into the syringe and monitor the622

evolution of its volume when the syringe’s plunger moves. Finite Element simulations: To model the behavior of single capsules623

under hydrostatic pressure loading, we conduct a finite element (FE) simulation in Abaqus (Abaqus/CAE 2020, Dassault624

Systèmes) and then account for the contribution of the compressible gas inside the capsule.625

Video S2. Pressure-volume curve of the metafluid. Metafluid with centimeter-scale capsules: To characterize the pressure-volume626

characteristics of a metafluid with centimeter-scale capsules, we place it in a glass container. We then load the system by627

introducing a volume ∆V of water via a syringe pump and measure the pressure inside the container with a differential pressure628

sensor. Metafluid with micro-scale capsules: To measure the pressure-volume curve of the metafluid with micrometer-scale629

capsule, we place it in a syringe. The syringe’s plunger is slowly displaced to reduce the enclosed volume by ∆V , while keeping630

the tip closed and monitoring pressure with a pressure sensor.631

Video S3. Smart gripper. We exploit the snapping-induced pressure plateau to realize a gripper that can grasp a glass bottle,632

an egg and a blueberry upon application of the same input. When using water or air as fluid to actuate the jaw, no ∆ can be633

identified that allows us to successfully grasp all three objects. By contrast, when using a metafluid, we can successfully grasp634

all three objects by injecting ∆V = 6.7 ml.635

Video S4. Interactions with flexible structures. We inflate a flexible tube. Upon inflation with glycerol the ballooning instability636

is triggered for ∆V ≈ 0.53 ml. The compliance and pressure plateau of the metafluid offset the instability to ∆V ≈ = 0.94 ml.637

Video S5. Tunable optical properties. A Harvard logo displayed below the metafluid becomes much clearer for Pext > Pupcr .638

Video S6. Pressure-driven flow. We investigate the flow of a microsuspension in a elliptical channel where we fix the difference639

of pressure between the inlet and outlet at ∆P = PinPout = 50 kPa. For Pin = 50 kPa (top) the capsules are all spherical and640

the flow is much faster than for Pin = 350 kPa (bottom).641
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