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Universally bistable shells with nonzero Gaussian
curvature for two-way transition waves
Nikolaos Vasios1, Bolei Deng1, Benjamin Gorissen 1 & Katia Bertoldi 1✉

Multi-welled energy landscapes arising in shells with nonzero Gaussian curvature typically

fade away as their thickness becomes larger because of the increased bending energy

required for inversion. Motivated by this limitation, we propose a strategy to realize doubly

curved shells that are bistable for any thickness. We then study the nonlinear dynamic

response of one-dimensional (1D) arrays of our universally bistable shells when coupled by

compressible fluid cavities. We find that the system supports the propagation of bidirectional

transition waves whose characteristics can be tuned by varying both geometric parameters

as well as the amount of energy supplied to initiate the waves. However, since our bistable

shells have equal energy minima, the distance traveled by such waves is limited by dis-

sipation. To overcome this limitation, we identify a strategy to realize thick bistable shells

with tunable energy landscape and show that their strategic placement within the 1D array

can extend the propagation distance of the supported bidirectional transition waves.
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Curved elastic shells have drawn significant interest, not
only because of their outstanding structural performance
but also for their extraordinarily rich nonlinear

behavior1–10. In particular, curved elastic shells with low thick-
ness to radius ratio typically possess two stable
configurations1,6,11,12—a feature that has been exploited to realize
tunable lenses13, as well as valves for autonomous control of soft
actuators14. However, the low thickness to radius ratio of such
shells makes them extremely sensitive to imperfections and,
therefore, limits their possible range of applications. On the other
hand, curved elastic shells with large thickness to radius ratio are
structurally more robust, but typically lack bistability.

Multistable structures comprising arrays of interconnected bistable
elements have recently emerged as a powerful platform to manipulate
and control the propagation of mechanical signals, owing to their
ability to support the propagation of transition waves—nonlinear
waves similar to those of falling dominoes that sequentially switch all
elements15. Such transition waves have been recently exploited to
enable unidirectional propagation16–18, achieve complex shape
reconfigurations19 and realize structures that can be quickly
deployed20, as well as mechanical logic gates21. However, almost all
previous studies have focused on bistable elements that possess two
energy minima of different height16–21 and, therefore, support uni-
directional wave propagation. By contrast, the advantages and chal-
lenges associated with the propagation of transition waves in systems
whose constituents possess equal energy minima have received very
limited attention22.

In this work, we first identify a strategy to realize bistable
doubly curved shells with arbitrary thickness. We then focus on
arrays of such bistable shells and use a combination of

experiments and numerical simulations to study their non-linear
dynamic response. Owing to their doubly–curved nature, the
shells can be connected using rigid tubes, to form airtight cavities
between neighboring elements. Importantly, such fluidic cavities
introduce a coupling between the shells and enable the propa-
gation of transition waves, which sequentially switch the shells
from one stable configuration to the other. Here, we system-
atically study the propagation of transition waves in arrays of
bistable shells with equal energy minima. We show that the
velocity of the propagating transition waves in such systems is not
a fixed system property, but can rather be tuned by controlling
the energy supplied to initiate the pulses. Further, we find that the
propagation of the transition waves is limited by dissipation. To
overcome this limitation, we introduce curved elastic shells with
tunable energy profile and demonstrate that, when few of such
elements are embedded into our arrays, the waves can propagate
for longer distances while maintaining bidirectionality.

Results
Design of thick bistable shells. We begin by considering doubly
curved thick shells (i.e., shells with non-zero Gaussian curvature)
obtained by the 360o revolution of the height profile (see black
dashed line in Fig. 1a)

h ¼ H 1þ 2 r
R

� �3 � 3 r
R

� �2h i
; r 2 ½0;R�

0; r 2 ½R;Rþ S�;

(
ð1Þ

where H is the maximum shell height, R is the shell radius and S
denotes the length of the flat portion added at the base of the shell
to facilitate the enforcement of boundary conditions in

Fig. 1 Our shells. a–c Single shells. a Shell geometry, obtained by the 360o revolution of the height profile h(r) (dashed line) defined in Eq. (1). Note that H
denotes the maximum shell height, R is the shell radius, T is the shell thickness and S is the length of the flat portion added at the base. The blue shaded region
indicates the portion of the shell that is inflated and deflated and upole represents the pole displacement. b Elastic strain energy landscape as a function of
the pole displacement during the quasi-static inflation/deflation of two shells with H/R=0.59 and T/R=0.0787 (red) and T/R=0.1653 (blue). c Evolution
of the energy released, Ur, upon inversion as a function of H/R and T/R. The red marker corresponds to the energy release for a shell with T/R=0.0787
whereas the blue marker for a shell with T/R=0.1653. All shell geometries that lie in the gray shaded area are found to possess only a single stable state (the
undeformed–"as fabricated" state) and are therefore monostable. d–h Double shells. d Flattening of two identical single shells. e Gluing the two single shells in
the flat deformed configuration to obtain the double shell. f The geometry of the double shell, where Ttotal corresponds to the total thickness of the double shell.
g Strain energy landscape for double shells with different thickness. h Contour plot of the energy released, Ur, as a function of H and Ttotal.
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experiments and simulations. The final shell geometry, shown in
Fig. 1a, is obtained by offsetting the height profile h by a distance
equal to the shell thickness T. To investigate the quasi-static
response of such shells upon pressurization, we conduct Finite
Element (FE) analyses using the commercial package ABAQUS
2019/Standard. In the analyses we create half shell models, mesh
them using 8-node fully integrated hybrid linear brick elements
(Abaqus Element code C3D8H) and use an incompressible
hyperelastic Neo-Hookean material with initial shear modulus, μ,
to capture the material’s response (see Supplementary Note 1.4
and Supplementary Figs. 9–12). Further, we impose symmetry
boundary conditions and subject the models to inflation and
deflation by controlling the enclosed volume through the fluid
filled cavity interaction (see Fig. 1a). In Fig. 1b we report the
evolution of the elastic strain energy, U, as a function of the pole
displacement, upole, for two shells characterized by H/R= 0.59,
but with T/R= 0.0787 (red line) and T/R= 0.1653 (blue line). We
find that the thinner shell features an elastic strain energy land-
scape with two energy minima at upole= 0 and upole ≈ 2H and,
therefore, is bistable. Importantly, due to finite thickness effects,
the stable configuration at upole ≈ 2H is characterized by an
energy state higher than that of the undeformed one. As a result,
the shell releases energy Ur when transitioning from its inverted
state to its initial one (see Fig. 1b). By contrast, the strain energy
landscape of the thicker shell monotonically increases with the
pole displacement upole, indicating that the particular shell is
monostable. A more systematic analysis on the effect of shell
height H and thickness T to the response of the shells reveals that
those with T/R < 0.159 have two stable states, whereas those with
T/R > 0.159 are monostable (see Fig. 1c).

Next, since the results of Fig. 1c indicate that our thick doubly
curved shells with T/R > 0.159 are monostable for any choice of
H/R, we identify a strategy to realize shells that possess two stable
states for any set of geometric parameters. To obtain such shells,
we combine two identical doubly curved shells with thickness T,
height H and the profile given by Eq. (1). We first compress the
two identical shells until they elastically deform into a flat
configuration (see Fig. 1d) and then glue them together (see
Fig. 1e). To assess the bistability of the resulting shells (see
Fig. 1f), we use FE simulations in which we account for the entire
gluing process (see Supplementary Note 1.4 and Supplementary
Fig. 10). In Fig. 1g we report the strain energy landscape predicted
by our FE analyses for shells with height H/R= 0.59 and total
thickness Ttotal/R∈ [0.078, 0.236] (with Ttotal= 2T). Remarkably,
we find that all considered shells are bistable and characterized by
two strain energy minima with identical height due to the
engineered stress symmetry between the inverted and initial
stable states. Joining the two single shells in a deformed
configuration coinciding with the horizontal symmetry plane,
induces a residual stress field (symmetric about the horizontal
plane) in the joint double shell, which ensures that the resulting
double shell will be bistable. Finally, in Fig. 1h we report the
evolution of the energy release Ur as a function of both H/R and
Ttotal/R for Ttotal/R∈ [0.078, 0.236] and H/R∈ [0.39, 0.78]. Our
results indicate that the energy release Ur is zero for all the
considered geometry combinations, suggesting that our double
shells are bistable for any choice of height and thickness and
always possess equal energy minima.

To quantify the validity of our numerical simulations we
fabricate a double shell with a total thickness of Ttotal= 4 mm, out
of silicone rubber (Elite Double 8, Zhermack–with an initial shear
modulus μ= 83 kPa23) and two identical shells with radius
H/R= 0.59, T/R= 0.079, and R= 25.4 mm (see Supplementary
Note 1.2 and Supplementary Figs. 4–5). We then characterize its
quasi-static response by attaching its boundaries to an enclosed
rigid cylinder and supplying water with a syringe pump (Pump

33DS, Harvard Apparatus) at a constant rate of 30 mL/min to
inflate it and deflate it (see Fig. 2a). The pressure-volume curve of
our shell is obtained by monitoring the pressure during the tests
with a pressure sensor (MPXV7025DP by NXP USA), whereas to
monitor the displacement of the shell’s pole we recorded videos
which we processed to extract the displacement history of its
center point (see Supplementary Note 1.3 and Supplementary
Figs. 6–8). The experimental results shown in Fig. 2b,c do not
only confirm bistability (see region of negative pressure in
Fig. 2b), but also indicate that the engineered stress symmetry of
our shells leads to pressure-volume and pole displacement-
volume curves which are entirely symmetric between loading and
unloading. Further, the good agreement between the experi-
mental and numerical data, verifies the predictive ability of our
FE simulations.

Propagation of transition waves in arrays of universally bis-
table shells. Having identified a strategy to realize doubly curved
shells that are bistable for any combination of geometric para-
meters, we now arrange our universally bistable elements in 1D
arrays and study their non-linear dynamic behavior. Specifically,
we focus on double shells with H/R= 0.59, Ttotal/R= 0.158 and
R= 25.4 mm, and connect them using acrylic tube segments with
length Lt and internal radius equal to the radius of the shells (see
Fig. 3a). When the array is assembled, each tube segment encloses
a finite volume of air Vair= πR2Lt. Importantly, such finite air
volumes act as nonlinear nearest neighbor springs, since any
deformation of the adjacent shells causes a volume change, which
generates a resistant force to the shells. As such, our system
comprises a 1D array of nonlinear bistable elements (i.e., bistable
shells) with nearest neighbor interactions. To study its nonlinear

Fig. 2 Experimental characterization of our universally bistable thick
shells. a Schematic of the experimental setup used to quasi-statically
inflate and deflate the universally bistable shells using water, while being
submerged in a water tank. b, with c Quasi-static pressure-volume and pole
displacement-volume relationships obtained upon inflation (blue lines) and
deflation (red lines) of a double shell with H/R= 0.59 and Ttotal/R= 0.158
(with R= 25.4mm) in experiments (dashed lines) and FE simulations (solid
lines). Vertical black lines indicate the location of the two stable states for
the shell.
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dynamic response, we apply a pressure pulse (i.e., a constant
pressure Δp for 100 ms) to the first/last shell of the array (while
keeping the other end at atmospheric pressure) and monitor the
propagation of the initiated pulse.

In Fig. 3b, we report results for an array comprising N= 10
double shells connected via 11 acrylic tubes with length Lt= 28
mm. We first arrange all shells with the pole pointing to the
left (i.e., upole,i= 0 mm with i= 1, 10) and apply a pressure pulse
with magnitude Δp= 69 kPa to the first unit on the left. We
find that the applied pressure initiates a transition wave that
sequentially switches all shells to their inverted state correspond-
ing to upole,i= 2H. We then apply an identical pressure pulse to
the last shell in the array and observe the propagation of another
transition wave that sequentially resets all shells back to their
initial configuration (Fig. 3c). To better characterize these elastic
waves, in Fig. 3d we report the evolution of their velocity
(calculated by monitoring the time at which upole,i=H) during
propagation. We then find that the two pulses considered in
Fig. 3b and c propagate with similar velocities through the array
(see red and pink markers in Fig. 3d), indicating that our system
supports bidirectional transition waves. While the resetting of
bistable systems typically requires application of external
forces16,19–21, such bidirectionality provides a simple mechanism
to bring the system back to its initial configuration. Importantly,
Fig. 3d also reveals that the wave velocity is not constant during
propagation, but rather “v-shaped” because of the combined
effect of dissipation (introduced by both the fluid cavities and
the elastomeric shells) and the free boundary. Damping
progressively reduces the energy carried by the waves, thereby
reducing the transition wave velocity. On the other hand, when
the head of the pulse reaches the end of the array, the energy
required to switch the last few units decreases, thereby leading
to an increase of the transition wave velocity. It is important to
note that propagation of the pulses through the entire array is
only possible when dissipation and the size of the array (i.e., N)
are carefully balanced. For instance, if in our structure N is
increased to 12, we find that the pulse stops after switching
6 shells, since it loses all its energy before being sufficiently close
to the free end so as to benefit from boundary effects (see blue
markers in Fig. 3d). Finally, the results of Fig. 3d highlight two
promising strategies to tune the wave speed. First, the wave
velocity can be controlled by varying the length of the connected
tube segments, as this alters the effective stiffness of the nearest-
neighbor springs provided by the air cavities. By reducing Lt to
22 mm we find that the pulse maintains a higher velocity for
longer distance and is less affected by dissipation (see yellow
markers in Fig. 3d). Second, the wave velocity in our array can be
tuned by controlling the energy supplied to initiate the pulses. In
an array with N= 10 shells, we find that an increase of the
magnitude of the applied input pressure from Δp= 69 kPa to
Δp= 172 kPa results in a substantially faster pulse (see green
markers in Fig. 3d). Note that this feature marks an important
difference between our system and bistable structures with energy
minima of different height, since for the latter the wave velocity is
governed by the energy difference between their two stable states
and, therefore, is a fixed system property given a certain
geometry16,19–21.

In order to obtain a better understanding for the dynamic
response of our system and ensure that the behaviors observed in
the tests are not introduced by experimental artifacts, we develop
a numerical model. To this end, we focus on the [i]-th shell,
which is connected to the [i− 1]-th and [i+ 1]-th shell through
tubes with radius R and length Lt (see Fig. 4a), and write its
equation of motion as (see Supplementary 2.3)

m
d2upole;i
dt2

þ β
dupole;i
dt

þ dUðupole;iÞ
dupole;i

þ f i�1 � f i ¼ 0; ð2Þ

where m is the mass of the shell, β is a viscous damping
parameter whereas upole,i and U(upole,i) denote the pole

Fig. 3 Bidirectional transition waves in 1D arrays of bistable shells
connected with compressible fluid cavities. a Schematic of the 1D array.
b,c Bidirectional propagation of transition waves in an array of 10
universally bistable shells with H= 15 mm, R= 25.5 mm and Ttotal= 4mm,
excited by supplying Δp= 69 kPa of pressure for 100ms. d Evolution of the
transition wave velocity during propagation for an array of 10 universally
bistable shells excited at the left (red markers) and right (pink markers)
ends by applying a pressure Δp= 69 kPa for 100ms. Blue markers
represent the velocity for an identical pulse propagating in an array of N=
12 universally bistable shells, whereas green and yellow markers
correspond to the wave velocity for a pulse excited using Δp= 172 kPa and
a pulse in an array with reduced shell to shell spacing (Lt= 22 mm),
respectively.
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displacement and the strain energy potential of the [i]-th shell,
respectively. Finally, fi−1 and fi represent the interaction forces
acting on the [i]-th shell due to the changes in volume in tubes
[i− 1] and [i], respectively. Such interaction forces can be

determined using Boyle’s law as,

f i ¼ πR2patm
πR2Lt

πR2Lt þ ΔViþ1 � ΔVi
� 1

� �
;

f i�1 ¼ πR2patm
πR2Lt

πR2Lt þ ΔVi � ΔVi�1
� 1

� �
;

ð3Þ

where patm is the atmospheric pressure, and ΔVj is the volume
change associated with the pole displacement of the [j]-th shell
(see Supplementary 1.3). For an array comprising N double shells,
Eqs. (2) results in a system of N coupled differential equations,
which we numerically solve (using a Python implementation of
the Dormand Prince 8(5,3) method24) to determine the pole
displacement of the [i]-th shell as a function of time t.

To test the relevance of our discrete model, we first compare its
predictions to the experimental results shown in Fig. 3. In all our
numerical analyses we use m= 30 g and β= 2.5 kg/s (note that β is
determined by fitting the result from our discrete model to the
experimental results of Fig. 3b and its then kept fixed for all other
numerical simulations) and determine ΔVi and U associated with
upole,i by linearly interpolating the FE results shown in Fig. 1g–h
(see Supplementary Fig. 11). Further, to ensure identical boundary
conditions, we apply the experimentally extracted displacement
signal to the shell from which the pulse is initiated and leave the
opposite end at atmospheric pressure. We find that our numerical
analyses can successfully reproduce all the experimental results
reported in Fig. 3, confirming the validity of our discrete model.

Next, in an attempt to derive analytical expressions for the
wave velocity, we neglect dissipative phenomena and approx-
imate the interaction forces acting on the [i]-th shell as

f i � kðupole;i � upole;iþ1Þ
f i�1 � kðupole;i�1 � upole;iÞ;

ð4Þ

where k is a linear approximation for the effective stiffness of the
nonlinear nearest neighbor springs provided by the air cavities
(see Supplementary Note 2.4 and Supplementary Fig. 23). By
substituting Eq. (4) into Eq. (2) and setting β= 0, we obtain

m
d2upole;i
dt2

þ dUðupole;iÞ
dupole;i

þ

þ kðupole;iþ1 � 2upole;i þ upole;i�1Þ ¼ 0:

ð5Þ

Then, we introduce a continuous function uð~x; tÞ that
interpolates the pole displacement of [i]-th shell located at ~x ¼
xi=Lt ¼ i as uð~x ¼ i; tÞ ¼ upole;i. We also assume that the width of
the propagating pulses is much larger than the shell to shell
distance and express upole,i±1 using Taylor expansion as

upole;i ± 1 ¼ u i± 1; tð Þ ¼ u±
∂u
∂~x

þ 1
2
∂2u

∂~x2

� �
~x¼i

: ð6Þ

Substitution of Eq. (6) into Eq. (5) yields

ðc20 � c2Þ ∂
2u

∂ζ2
¼ 1

m
dUðuÞ
du

; ð7Þ

where ζ ¼ ~x � c t is the traveling wave coordinate, c is the wave
velocity and c20 ¼ k=m (see Supplementary Note 2.4). Finally, to
analytically solve Eq. (7) we assume that the bistable energy
potential for the double shells can be approximated as

UðuÞ � 1
4
ksu

2 u
H

� 2
� 	2

þ C; ð8Þ
where C denotes the height of the two energy minima located at
u= 0 and 2H and 0.25ksH2 is the height of the energy barrier that
has to be overcome to switch the shells from one stable state to

Fig. 4 Analytical and numerical results in the absence of dissipation.
a Schematic of our system, showcasing the i− 1, i and i+ 1 shells during the
propagation of a transition waves that sequentially switches the shells from
one stable state to another. b Discrete mass-spring model used to
represent the response of our system. c,d Effect of the input energy
provided to initiate the pulse on (c) the pulse velocity, c, and (d) the pulse
width, w, for three shell geometries with (H, Ttotal)= (12.5, 3) mm (yellow),
(H, Ttotal)= (15, 4) mm (blue) and (H, Ttotal)= (17.5, 5) mm (red) and R=
25.4mm, as predicted by the discrete (markers) and continuum models
(lines). e Wave velocity, c, and (f) width, w, vs. input energy, Ein, for an
array of universally bistable shells with (H, Ttotal)= (15, 4) mm and R=
25.4mm, for three values of shell-to-shell spacing, Lt= 32 mm (yellow), 28
mm (blue) and 22mm (red), as predicted by the discrete (markers) and
continuum model (lines). Note that in c–f we report two analytical
solutions: one in which c is obtained by solving Eq. (13) (solid lines) and one
in which c is given by Eq. (14) (dashed lines).
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the other. By introducing Eq. (8), Eq. (7) simplifies to

∂2u

∂ζ2
¼ c2s

c20 � c2
u

u
H

� 1
� 	 u

H
� 2

� 	
; ð9Þ

where c2s ¼ ks=m. Eq. (9) has the form of a Klein–Gordon
equation with quadratic and cubic nonlinearities (see Supple-
mentary Note 2.4). Importantly, such equation admits solitary
wave solutions of the form25

u ¼ H 1 ± tanh
x � ct
w

� 	h i
; ð10Þ

where w is the width of the propagating pulses.
Next, we determine c and w as a function of the geometry

of the system and the energy supplied to the first shell to
initiate the pulse. To begin with, we substitute the solution Eq.
(10) into Eq. (7) and find that the latter is identically satisfied
only if

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc20 � c2Þ

c2s

s
: ð11Þ

Then, we calculate the total energy carried by the transition
wave defined by Eq. (10)

E ¼
Z 1

�1

1
2
m

∂u
∂t

� �2

þ 1
2
k

∂2u
∂x2

� �
þ UðuÞ

" #
dx

¼ H2 2
3w

ðkþmc2Þ þ 1
3
wks

� �
:

ð12Þ

Since in the absence of dissipation E is equal to the energy
supplied to the first unit to initiate the pulse, Ein, we find that

H2 2
3wðcÞ ðkþmc2Þ þ 1

3
wðcÞks

� �
¼ Ein; ð13Þ

which we can numerically solve to obtain c for a given Ein.
Further, to obtain an explicit expression for c as a function of
Ein, we take a Taylor’s series expansion of Eq. (13) around
c/c0 = 0 (since in our system c/c0 ~ 0.2), while retaining terms
up to the third order. This yields

c ¼ ffiffiffi
2

p
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ein

Emin
� 1

s
; ð14Þ

where

Emin ¼
2

ffiffiffi
2

p

3
H2

ffiffiffiffiffiffi
ksk

p
; ð15Þ

represents the minimum amount of input energy required to
initiate the transition wave. Eq. (14) confirms that the speed of
the propagating transition waves can be tuned by modifying
the amount of energy supplied to the system.

To assess the validity of the analytical solution, in Fig. 4c–f we
compare the evolution of the transition wave velocity c and width
w as predicted by our continuum model (lines) and discrete
model (triangular markers). In particular, in Fig. 4c and d we
consider three arrays all with Lt= 28 mm, but made out of shells
with (H, Ttotal)= (12.5, 3.0) mm (red), (15.0, 4.0) mm (purple)
and (17.5, 5.0) mm (yellow) and report the evolution of c and w as
a function of Ein. Differently, in Fig. 4d and f we investigate the
evolution of c and w as a function of Ein for arrays realized using
shells with (H, Ttotal)= (15, 4.0) mm when we vary Lt. Note that
in each plot we report two analytical solutions: one in which c is
obtained by solving Eq. (13) (solid lines) and one in which c is
given by Eq. (14) (dashed lines). As for the numerical results,
these are obtained by conducting simulations with N= 500 and
β= 0, using Eq. (10) (with x= 10 and c varied to tune Ein) to

prescribe the pole displacement of the first shell and initiate the
pulse and numerically evaluating the integral in Eq. (12) to
calculate Ein (which is equal to the total energy carried by the
pulse). We observe good agreement between the predictions of
the discrete model and corresponding results from the continuum
model with c obtained by solving Eq. (13) for all considered levels
of input energy. Differently, when using Eq. (14) to determine c in
the continuum model, the analytical solution matches the
experimental results only for low input energies, since the
assumption c/c0→ 0 is violated for large enough values of Ein.
Finally, in full agreement with our experimental observations,
both our numerical and analytical results indicate that c increases
with Ein for all considered double shell arrays, whereas the width
w decreases.

While Eq. (14) enables us to calculate c as a function of the
input energy and geometric parameters, it does not capture its
experimentally observed reduction during propagation caused by
dissipation (see Fig. 3d). To overcome this limitation, we assume
linear viscous dissipation with damping coefficient β and
compute the energy dissipated by each shell in the array upon
its inversion as (see Supplementary Note 2.4),

Edamped ¼
Z 1

�1
β

∂u
∂t

� �2

dt ¼ 4βcH2

w
: ð16Þ

By introducing Eq. (11), Eq. (16) can be rewritten as

Edamped ¼
2

ffiffiffi
2

p
βH2cscffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 � c2

p ; ð17Þ

which, by taking a Taylor’s series expansion around c/c0= 0 and
retaining terms up to the second order, can be further simplified
to

Edamped �
2

ffiffiffi
2

p
βH2csc
c0

: ð18Þ

Finally, introduction of Eq. (14) into Eq. (18) yields

Edamped ¼ 4βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei

Emin
� 1

s
; ð19Þ

where Ei denotes the energy carried by the transition wave when
propagating through the i-th unit.

Note that Eq. (19) can be used to adjust the velocity and
account for the effect of damping in our continuum model.
Specifically, focusing on the [i]-th shell we calculate Ei by
subtracting the energy dissipated in the inversion of the previous
i− 1 shells from the energy supplied to initiate the pulse and
subsequently calculate the adjusted velocity using Eq. (14). In
Fig. 5a we focus on an array with N= 10 double shells identical to
those considered in Fig. 3b, with c and report the evolution of c
during propagation for different values of input energy, assuming
β= 2.5 kg/s. Notably, we find that the prediction of the
continuum model (dashed lines in Fig. 5) nicely agree with the
numerical results (continuum lines) up to the fifth shell for
moderate and large values of the input energy. Beyond the fifth
shell, the free boundary starts to play an important role and this
cannot be captured with our continuum model (since we assume
the array to be infinitely long). Once again, we observe that by
increasing the amount of energy supplied to the first unit, pulses
with higher velocity are initiated. However, irrespectively of Ein,
for the level of dissipation present in our structure all transition
waves are found to stop after the inversion of the first few units in
the absence of favorable end effects.

Next, we use our analytical model to predict the finite
propagation distance in systems with a nonzero dissipation.
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Towards this end, we impose conservation of energy

Eiþ1 � Ei ¼ �Edamped ¼ �4βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei

Emin
� 1

s
: ð20Þ

To solve Eq. (20) and determine the number of units that the
wave switches before stopping, Nstop, we take the continuum limit
of Eq. (20),

dEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

Emin
� 1

q ¼ �4βH2csd~x; ð21Þ

where Eð~xÞ is a continuum function that interpolates Ei as

Eð~x ¼ iÞ ¼ Ei: ð22Þ

By integrating both sides of Eq. (21) we obtain

2Emin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

Emin
� 1

s �����
ENstop

E0

¼ �4βH2csNstop; ð23Þ

Since E0= Ein and ENstop
¼ Emin, Nstop can be solved from Eq. (23)

as (see Supplementary Note 2.4)

Nstop ¼
Emin

2βH2cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

Emin
� 1

s
: ð24Þ

In Fig. 5b we consider an array comprising 500 double shells with
R= 25.4 mm, H= 15 mm, Ttotal= 4 mm and report the evolution
of Nstop as predicted by Eq. (24) and by our discrete model for
different values of β. We find excellent agreement between
analytical and numerical results, with Nstop that monotonically
increases as either the damping coefficient and the energy input
become larger.

Shells with tunable strain energy landscape. So far we have
shown via a combination of experiments and analyses that a
system comprising an array of universally bistable shells sepa-
rated by air cavities supports the propagation of bidirectional
transition waves with characteristics that can be tuned by varying
both geometric parameters and the amount of energy supplied to
initiate them. However, our results also indicate that the propa-
gation of these pulses in real systems is heavily obstructed by
unavoidable dissipation. Motivated by this limitation, we design
shells with tunable strain energy landscape and demonstrate that
their strategic placement within the array can successfully extend
the propagation distance of the waves in dissipative systems. Even
though several strategies have been proposed to bias the strain
energy landscape of bistable structures21,26, the approach pre-
sented here results in bistable shells with energy landscape that
can be easily and actively tuned without the need for further
assembly or fabrication. Our tunable shells comprise a double
bistable shell (shown in green in Fig. 6a) encapsulated between
two single shells (shown in purple in Fig. 6a, see Supplementary
Note 1.5 and Supplementary Figs. 13–15). Note that this fabri-
cation process results in the formation of two inflatable cavities
(see Fig. 6b). Importantly, the control of their volume enables us
to modify on the fly the strain energy landscape of the shell. To
demonstrate the concept, in Fig. 6c we consider a tunable shell
realized using two shells with H/R= 0.59, T/R= 0.0395, and R=
25.4 mm as caps and a double shell with H/R= 0.59, Ttotal/R=
0.158 and R= 25.4 mm made out of a stiffer silicone rubber (Elite
Double 32, Zhermack—see Supplementary Note 1.5). To char-
acterize the static behavior of this shell, we conduct inflation and
deflation at different levels of pre-inflation for the two internal
cavities. Specifically, in our first test both internal cavities are
empty (ΔVp,1= ΔVp,2= 0), whereas in the second one we pre-
inflate one cavity with 10 ml of water (ΔVp,1= 0, ΔVp,2= 10ml)
and in the third one we further add another 10 ml of water to the
pre-inflated cavity (ΔVp,1= 0, ΔVp,2= 20 ml). We find that for
ΔVp,1= ΔVp,2= 0 the pressure-volume curve of our tunable shell
(see Fig. 6c) is qualitatively identical to the one of the double shell
(see Fig. 2g). Differently, when one of the internal cavities is pre-
inflated (i.e., ΔVp,2 ≠ 0) the maximum pressure required to invert
the tunable shell during inflation drops, whereas the magnitude of
the negative pressure required to bring it back to its original state
increases. This indicates that the pre-inflation of an internal
cavity increases the elastic strain energy stored in the initial state,
but simultaneously decreases that associated to the inverted
configuration. As a result, only a small input pressure is required
to invert a tunable shell with a pre-inflated internal cavity and
such inversion leads to the release of a large amount of energy.
Finally, we note that, by pre-inflating the other internal cavity
(i.e., ΔVp,1 ≠ 0, ΔVp,2= 0) we can decrease the elastic energy
stored in the initial state and increase that associated to the
inverted configuration, thus realizing a shell that release a large
amount of energy when snapping back to the initial state.

Fig. 5 Effect of dissipation. a Comparison of the continuum and discrete
model predictions for the transition wave velocity as a function of the
propagation distance for an array of 10 double shells with R= 25.4mm,
H= 15 mm, Ttotal= 4mm and β= 2.5 kg/s. b Theoretical (solid lines,
Eq. (24)) and discrete (markers) model predictions for the number of shells
flipped before the transition wave stops Nstop as a function of the input
energy provided to an array of 500 double shells with R= 25.4mm,
H= 15 mm, Ttotal= 4 mm, for different levels of viscous dissipation β. Note
that the levels of dissipation investigated in b are much lower than that
considered in a.
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To test the capability of such tunable shells to extend the
propagation distance of transition waves in dissipative systems,
we consider an array with N= 12 double shells identical to the
ones used in the experiments of Fig. 3. Since dissipation prevents
the transition waves to switch all elements in the array when
those are simple double shells (see blue markers in Fig. 3d), we
place our tunable shell in between the 6th and 7th shell of the
array, as shown in Fig. 7a–b. First, we charge the tunable shell by
pre-inflating the cavity that faces the end to which the pressure
pulse is applied with 20ml of water (see Fig. 7a,b). Then, we
initiate a pulse by applying an input pressure Δp= 69 kPa to
either the first or last unit in the array. Remarkably, we find that
the charged tunable shell enables the transition wave to propagate
through the entire array of 12 double shells (see Fig. 7c,d), since
the energy that it releases when snapping to its inverted state
compensates for the energy lost by the pulse because of
dissipation. Furthermore, we emphasize that the introduction of
the tunable shell in the array does not inhibit the bidirectionality
of the supported transition waves (see Fig. 7c,d). This is because
by simply changing the polarity of the tunable shell (i.e., pre-
inflating the opposite cavity), we can reverse the direction in
which energy will be released. Finally, we note that the control of
the tunable shell by adding or removing volume to one of its
internal cavities is extremely simple, and does not require re-
assembly of the array.

Discussion
In summary, we have demonstrated a robust strategy for the
design of doubly curved thick shells which are bistable for any
combination of geometric parameters. Further, we have studied
the propagation of transition waves in 1D arrays of such shells
coupled by compressible fluid cavities and demonstrated that the
supported pulses are bidirectional. Our combined experimental,
numerical and analytical results reveal that the characteristics of
the supported non-linear waves can be tuned not only by altering
the geometry of the system but also by controlling the amount of
energy supplied to initiate them. However, since our universally
bistable shells do not release energy when transitioning between
their two stable states, the distance traveled by the supported
transition waves is limited by unavoidable dissipative phenomena.
To compensate for this without sacrificing bidirectionality, we
designed thick bistable shells with tunable energy landscape. We
then demonstrated that their strategic placement in 1D shell
arrays can extend the propagation distance of transition waves,
since they can be easily set to release the energy required to
compensate for dissipation. As such, by combining universally
bistable and tunable shells we realized 1D arrays that support the
bidirectional propagation of transition waves over finite distances
while being easy to reset and tune.

Even though in this study we used rigid chambers to connect
adjacent shells, we envision the proposed strategy to provide a
new route for soft robotic locomotion. By making the chambers
unidirectionally stretchable, they would sequentially extend dur-
ing the propagation of transition waves and emulate the recti-
linear locomotion of snakes. In addition, our system’s unique
property, namely the dependence of transition wave velocity to
the input energy, could enable the design of smart energy
absorption devices which effectively transfer energy but are able
to avoid energy concentrations through dissipation. Further,
systems based on our strategy could also serve as energy sensors,
as the energy input can be determined by monitoring the effective
transition wave velocity.

Finally, we believe that the proposed strategies to design bis-
table doubly curved shells have the potential to impact

Fig. 6 Shells with tunable energy landscape. a Our tunable shell comprises
a double shell and two single shell caps. b Geometry of the tunable shell.
c Experimental pressure-volume relationship for the tunable shell during its
quasi-static inflation (blue) and deflation (red) for 3 different levels of pre-
inflation for an internal cavity.

Fig. 7 Transition waves in arrays of shells with tunable energy landscape.
a, b Arrays of 12 double shells, where a charged tunable shell is placed
between the 6th and 7th shell of the array. c, d Experimental pole
displacement histories for each shell in the array upon propagation of a
transition waves initiated by supplying Δp= 69 kPa of pressure for 100ms.
Vertical black arrows point to the shell number and location of the charged
tunable shell in the array.
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applications that extend beyond transition waves, including soft
mechanical logic gates and reconfigurable structures.

Methods
Details on the geometry, design, fabrication, testing, and Finite Element modeling
of the doubly curved shells, universally bistable shells and shells with tunable
energy landscape are provided in Supplementary Note 1. The full details for the
experimental setup, as well as for the testing and modeling of transition waves in
1D arrays of bistable doubly curved shells are provided in Supplementary Note 2.

Data availability
The experimental and numerical data in support of the findings in this study are available
from the corresponding author upon request.

Code availability
All numerical codes used to computationally study the propagation of transition waves
and all Abaqus Python scripts used to create the FE models are available from the
corresponding author upon request.
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Supplementary Note 1: Our Thick Shells

In this section we provide details on the geometry, fabrication, testing and Finite Element
modeling of the thick shells considered in this study.

1.1 Geometry

1.1.1 Single Doubly Curved Shells

The geometry of the doubly curved shells considered in our study is based on the 360o

revolution of the height profile, h, given by

h =


H
[
1 + 2

(
r
R

)3 − 3
(
r
R

)2]
, r ∈ [0, R]

0, r ∈ [R,R + S]

, (1)

where H is the maximum shell height at r = 0, R is the shell radius and S denotes
the length of a flat portion added at the base of the cap to facilitate the enforcement of
boundary conditions in experiments and simulations (see black dashed line in Fig. 1). The
final geometry of the single doubly curved shells is obtained by offsetting h(r, R,H, S) at a
distance equal to the shell thickness T (see Fig. 1). Note that the particular expression for
the profile of the shell h(r, R,H, S) can be obtained starting from a 3rd order polynomial
by demanding that the maximum height of the shell at r = 0 is H and the height of the
shell at the base of the profile (r = R) drops to zero,

h(0, R,H, S) = H, h(R,H, S) = 0. (2)
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Supplementary Figure 1: Schematic of the single doubly curved shell considered in this
study. The dashed line indicates the profile h. The shell is obtained by offsetting the the profile
at a distance equal to the nominal thickness T .

Finally, we demand that the gradient of the profile at the top (r = 0) and base (r = R)
is also equal to zero,

dh(r, R,H, S)

dr

∣∣∣∣
r=0

= 0 ,
dh(r, R,H, S)

dr

∣∣∣∣
r=R

= 0 (3)

The former constraint is a result of the axial symmetry of the profile whereas the latter
ensures that there is a continuous transition from the shell profile to the flat portion.

1.1.2 Universally Bistable Doubly Curved Shells

The universally bistable doubly curved shells considered in this study are obtained by
combining two identical single shells, the geometry of which is described in Section 1.1.1.
We first place the two identical single shells with radius R, height H and thickness T (see
Fig. 2a) as mirrored images of each other (see Fig. 2b) and we then compress the shells
by two rigid plates until they elastically deform into a flat configuration (see Fig. 2c).
Next, we glue the two shells in the deformed flat state, thus forming a single doubly
curved shell for which the the stress-free configuration has been eliminated. Note that
the newly formed doubly curved shell will naturally rest in a new stable state, and will
in general have a different height profile from the one of the single shells that comprise it
(see Fig. 2d).
All universally bistable shells fabricated and tested in this study are comprised of two
identical single shells for which the geometric parameter values are presented in Table 1.
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Supplementary Figure 2: Geometry and construction of universally bistable shells. (a) The
universally bistable shells comprise two doubly curved single shells. (b) The two single shells
are placed as mirrored images of each other. (c) The two shells are elastically deformed into a
flat configuration and glued together. (d) The newly formed doubly curved shell rests in a new
stable state.

1.2 Fabrication

All shells tested in this study are made of Elite Double 8 silicone rubber (Zhermack)
and were casted using the two-part mold shown in Fig. 3. The mold was 3d printed in
Vero-clear using an Objet Connex 500 printer (Stratasys).

1.2.1 Single Doubly Curved Shells

Our single shells can be fabricated using the following 3 steps (see Fig. 4):

Step 1: expose all inner surfaces of the mold to Ease Release 200 spray (Mann Release
Technologies) to facilitate the process of removing the cured silicone rubber.
Step 2: pour a mixture of equal amounts of Elite Double 8 base and catalyst (here made
using the Zhermack Doublemix mixer) into Part A of the mold.
Step 3: slowly place part B of the mold on top of part A, allowing for any excess silicone
rubber to flow out of the mold and cure for 20 minutes.
All shells fabricated and tested in this study have Radius R = 25.4 mm, height H = 15
mm, thickness T = 2mm and a flat portion of length S = 20 mm (see Table 1)

1.2.2 Universally Bistable Shells

Our thick shells can be fabricated using the following 9 steps (see Fig. 5):
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Part A

Part B

Single Shell

Supplementary Figure 3: The 3D printed mold used for the fabrication of all single shells.

Step 1 Step 2 Step 3

Supplementary Figure 4: The 3 steps for the fabrication of the single doubly curved shells.

Radius (R) 25.4 mm
Height (H) 15 mm

Thickness (T ) 2 mm
Flat Length (S) 20 mm

Table 1: Values of the geometric parameters for the shells fabricated and tested in this study.

Step 1: expose all inner surfaces of the molds to Ease Release 200 spray (Mann Release
Technologies) to facilitate the process of removing the cured silicone rubber.
Step 2: pour a mixture of equal amounts of Elite Double 8 base and catalyst (here made
using the Zhermack Doublemix mixer) into Part A of the mold.
Step 3: slowly place part B of the mold on top of part A, allowing for any excess silicone
rubber to flow out of the mold and cure for 20 minutes.
Step 4: remove the single shell from its molds peeling off any excess silicone. Repeat the
process to fabricate two shells.
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Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

Supplementary Figure 5: The 9 steps for the fabrication of the universally bistable shells.

Step 5: place one of the shells upside down on a flat rigid surface.
Step 6: gently spread a thin layer of Elite Double 8 on the inner surface of the second
shell to glue the two shells together.
Step 7: place and align the second shell directly on top of the upside-down shell.
Step 8: flatten the two shells with a rigid plate. Place a small weight on top of the rigid
surface to ensure that the two shells remain in contact while the silicone rubber cures.
Step 9: cure for 20 minutes.
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1.3 Testing

In order to characterize the quasi-static response of our shells we conducted experiments to
determine their pressure-volume relationship and quantify the displacement of their pole
upon inflation and deflation. We tested all shells using the the custom-made setup shown
in Fig. 6a, which is made using a clear cast acrylic tube (McMaster Carr part number:
8532K46) and laser-cut acrylic plates (McMaster Carr part number: 1178T12). In all our
tests, to eliminate the effect of fluid compressibility, we load the shells by supplying water
at a constant rate of 30 mL/min with a syringe pump (Pump 33DS, Harvard Apparatus).

Pressure-Volume. The pressure-volume curve of our shells is obtained by monitoring
the pressure during the tests with a pressure sensor (MPXV7025DP by NXP USA). Note
that to eliminate the influence of gravity, for these tests we submerge the entire custom-
made setup shown in Fig. 6a in a water tank (see Fig. 6b).

Displacement-Volume. In order to monitor the displacement of the shell’s pole during
inflation and deflation, we use a green-colored pin attached to the shell (see Fig. 7c-g and
Fig. 8c-g). We inflated and deflated the shells and recorded videos of their deformation
which we processed to extract the displacement history of the shells’ center point. Specif-
ically, for each recorded frame, a custom Matlab script was used to monitor and log the
location of the green colored pin, from which we were able to infer the displacement of
the shells’ center point. Note that to eliminate the effect of viscous forces to the motion
of the green-colored pin we performed these tests at ambient pressure without having the
shells submerged in the water tank.

1.3.1 Results

In Figs. 7a and 8a we report the evolution of the pressure p recorded when prescribing
a change in volume ∆V for a single doubly curved shell (with geometric parameters de-
scribed in Table 1) and a universally bistable shell (comprising two shells with geometric
parameters described in Table 1), respectively. For both structures the inflation (blue
lines) and deflation (red lines) pressure-volume curves do not coincide owing to the hys-
teretic behavior of the shell’s deformation. All curves are extremely non-linear featuring a
local-maximum pressure value during inflation pi,max, and a local minimum pressure value
during deflation pd,min. The fact that the pressure-volume curves cross the horizontal axis
(p = 0) more than once indicates that the shells have two stable states, their initial state
and the inverted state. The positive pressure limit point during inflation (pi,max) corre-
sponds to the pressure required to invert the shell to its second stable state. Moreover, the
pressure limit point during the deflation of the shell (pd,min) corresponds to the negative
pressure required to push the shell back to its initial state. Note that for the universally
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Supplementary Figure 6: Experimental setup for the quasi-static testing of shells subjected
to inflation and deflation. (a) The custom apparatus comprised of clear cast acrylic tube and
laser-cut acrylic plates. (b) The syringe pump used to inflate/deflate she shells while fully
submerged in the water tank. (c) Schematic of the experimental setup used to quasi-statically
inflate and deflate the universally bistable shells using water, while being submerged in a water
tank.

bistable shells |pi,max| ∼ |pd,min|, so that the pressure required to transition between the
stable states is identical owing to the “stress-symmetry” between them. Differently, for
the single shell |pi,max| > |pd,min| suggesting that the input energy required to invert the
shell is larger than the corresponding energy required to push the shell back to its initial
state.

In Figs. 7b and 8b we report the evolution of the vertical component of the pole
displacement, upole, extracted when prescribing a change in volume ∆V . Also in this case
we find that the displacement-volume curves during inflation (shown in blue in Fig. 7b and
Fig. 8b) do not coincide with the deflation curves (shown in red in Fig. 7b and Fig. 8b).
Furthermore, our results indicate that at the volume change ∆V that corresponds to
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the two pressure limit points pi,max and pd,max, the poles undergo a sudden and large
displacement, a feature typical of snap-through instabilities.
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Supplementary Figure 7: Testing of doubly curved shells. (a)-(b) The experimental pressure-
volume and displacement-volume relationships. (c)-(e) Snapshots of the shell’s deformation
during inflation and deflation highlighting the pole displacement.
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Supplementary Figure 8: Testing of universally bistable shells. (a)-(b) The experimental
pressure-volume and displacement-volume relationships. (c)-(e) Snapshots of the shell’s defor-
mation during inflation and deflation highlighting the pole displacement.

9



1.4 Finite Element Modeling

In an effort to better understand the effect of geometric parameters on the response of our
shells, we performed Finite Element simulations using the commercial non-linear Finite
Element software Abaqus (Dassault Systemes, SIMULIA). In all our analyses we modeled
Elite Double 8 as an incompressible Neo-Hookean solid with an initial shear modulus
µ = 83kPa [?]. We constructed half shell models and meshed them using 8-noded fully
integrated hybrid linear brick elements (C3D8H) as shown in Fig. 9a. To capture the
response of the full shell geometry with our half-shell models, we imposed symmetry
boundary conditions uz = 0 on the flat face of the models (see Fig. 9b). The models
were inflated and deflated by controlling volume through the fluid filled cavity interaction
and rigid body motions were eliminated by fixing all displacement components for the
outer-rim of all shells (see Fig. 9c).

1.4.1 Single Doubly Curved Shells

The finite element analyses for the inflation and deflation of the single doubly curved
shells consist of the following steps:

Step 1: Perform a static step to pressurize the shells by imposing a pressure on their
inner surface equal to p = 10−7 × µ.
Step 2: Perform a Frequency Analysis about the pressurized state to obtain the first
eigenmode for the shell (see Fig. 9d).
Step 3: Perturb the initial shell geometry through

x(i)
p = x(i) + λu

(i)
1 ,

where x
(i)
p is the perturbed coordinate vector for node i, x(i) is the initial coordinate vector

for node i, u
(i)
1 is the displacement vector corresponding to the first frequency mode for

node i and λ = 5 × 10−5 is a scalar amplification factor to ensure that the perturbation
amount does not significantly alter the base geometry (see Fig. 9e).
Step 4: Perform a Dynamic Implicit simulation with a duration of t = 60s where the
shell is being inflated for t ∈ [0, 30]s and deflated for t ∈ [30, 60]s. Despite the quasi-static
nature of the experiments, we used dynamic implicit simulations to better capture the
snap-through instabilities that are triggered during the inflation and deflation of the shells.
Note that, to eliminate spurious vibrations during the inflation/deflation of the shells, in
these analyses we use a stiffness proportional Rayleigh damping parameter βR = 0.01.

1.4.2 Universally Bistable Shells

The finite element analyses for the inflation and deflation of the universally bistable shells
consist of the following steps:
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Supplementary Figure 9: Finite element modeling of single doubly curved shells. (a) The
symmetric base half-shell geometry. (b) The region on which the symmetry boundary condition
is applied. (c) The region on which the zero displacement boundary condition is applied. (d)
The first frequency mode (amplified) as computed from the frequency analysis step. (e) The
perturbed shell geometry. (f) Snapshots of the shell’s deformation during inflation and deflation.

Step 1: Starting with two identical single shells positioned as mirrored images of one
another (see Fig. 10a), perform a quasi-static step in which both shells are elastically
deformed until their inner surfaces become perfectly flat. Specifically, to each node on
the inner surface of the shell we prescribe a displacement in vertical direction u = −h(r).
Step 2: Define a new model with initial geometry identical to the deformed geometry of
the two single shells in their flat configuration. Import the stress field due to the elastic
flattening of the single shells and impose it as an initial condition for the new model.
Step 3: Enforce a tie constraint for all nodes located in the inner surface of the two single
shells to form the universally bistable shell.
Step 4: Perform a quasi-static step to perturb the geometry of the universally bistable
shell from the flat configuration by supplying a small pressure load (p = 10−2 × µ, see
Fig. 10b) and subsequently remove the pressure load, allowing the universally bistable
shell to rest in its stable state (see Fig.10c).
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Step 5: Perform a Frequency Analysis step to compute the first eigenmode for the
universally bistable shell (see Fig.10d).
Step 6: Perturb the universally bistable shell geometry through

x(i)
p = x(i) + λu

(i)
1 ,

where x
(i)
p is the perturbed coordinate vector for node i, x(i) is the initial coordinate vector

for node i, u
(i)
1 is the displacement vector corresponding to the first frequency mode for

node i and λ = 5 × 10−5 is a scalar amplification factor to ensure that the perturbation
amount does not significantly alter the base geometry.
Step 7: Perform a Dynamic Implicit simulation with a duration of t = 60s where the
shell is being inflated for t ∈ [0, 30]s and deflated for t ∈ [30, 60]s (see Fig.10e-f). To
eliminate spurious vibrations during the inflation/deflation of the shells, use a stiffness
proportional Rayleigh damping parameter βR = 0.01.

Mises Stress S (kPa)

2163045597388

Mises Stress S (kPa)

427497294117139

(a) (b)

(c) (d)

(e) (f)

p

Supplementary Figure 10: Finite element modeling of universally bistable shells. (a) Two
single shells are positioned as mirror images of one another. (b) The two single shells elastically
deformed until flat, and they are glued in their deformed configuration. (c) The new stable
state of the universally bistable shell is not stress-free. (d) The first frequency mode of the
universally bistable shell (amplified) as computed from the frequency analysis step. (e)-(f)
Inflation-Deflation of the universally bistable shell.
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1.4.3 Results

To verify the validity of our Finite Element simulations, we first compared their predic-
tions to the experimental results obtained when inflating and deflating our shells (see
experimental results reported in Fig. 7 and Fig. 8). The results reported in Figs. 11 in-
dicate that the FEA simulations can accurately capture the response of both our single
doubly curved and universally bistable shells during inflation and deflation. Finally, in
Figs. 11c and f we show the evolution of the elastic strain energy U as a function of their
pole displacement, upole, for both inflation and deflation of the shells. We find that the
inverted state of the single doubly curved shell is characterized by an energy much higher
than that of the initial state. In contrast, for the universally bistable shell U exhibits two
energy minima of identical height, suggesting that the shell has two equally preferable sta-
ble states. Note that the energy minima for the universally bistable shell correspond have
both non-zero elastic strain energy, owing to their fabrication process which eliminates
the existence of a stress free state.

Having established the validity of our FEA simulations, we then use them to investigate
the effect of the shells’ height H (with H ∈ [10, 20] mm) and thickness T (with T ∈ [2, 6]
mm) on their mechanical response. For each considered geometry, we simulated the
inflation and deflation following the steps outlined in Section 1.4.1 and Section 1.4.2 for
the single and universally bistable shells, respectively, and extracted their elastic strain
energy U as a function of their pole displacement uupole (see Fig. 12b). Next, we identified
the minima of U and defined the energy barrier Ub as the energy required to deform the
shells from their initial stable state to their inverted state, and the energy release Ur as
the energy difference between the inverted state of the shell and its initial stable state.

In Figs. 12c and e and Figs. 12d and f we report contour plots of the normalized
energy barrier Ub/µRHT and energy release Ur/µRHT (µ being the shear modulus of
Elite Double 8 and R denoting the shell radius) for the single and universally bistable
shells as a function of their height H and thickness T . Three key features emerge from
the plots. First, all considered universally bistable shells are bistable (hence their name
“universally bistable”), whereas the single shells are bistable only for T <4.05mm (the
gray region in the contour plots corresponds to geometries for which the shells were found
to be monostable and therefore the energy barrier Ub and energy release Ur could not be
defined). Second, for both single and universally bistable bistable shells the energy barrier
Ub increases as the shell height H and the thickness T become larger. Third, while the
energy release Er for the single bistable shells increases as a function of both H and T ,
it is zero for all universally bistable shells - an indication that the two energy minima for
these system are always identical.
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Supplementary Figure 11: Finite element simulations of the single doubly curved and univer-
sally bistable shells. The numerical results are presented as solid lines whereas the corresponding
experiments are drawn as dashed lines. Blue colored lines correspond to the inflation whereas
red lines correspond to the deflation of each shell. (a) Comparison between experimental and
numerical pressure-volume curves for the single shell. (b) Comparison between experimental
and numerical pole displacement-volume curves for the single shell. (c) Numerical strain en-
ergy profile as a function of the pole displacement for the single shell. (d) Comparison between
experimental and numerical pressure-volume curves for the universally bistable shell. (e) Com-
parison between experimental and numerical pole displacement-volume curves for the universally
bistable shell. (f) Numerical strain energy profile as a function of the pole displacement for the
universally bistable shell.
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Supplementary Figure 12: Parametric Study on the effect of the height H and thickness T
of single and universally bistable shells to their stability and strain energy landscape.
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1.5 Shells with Tunable Energy Profile

In this section, we describe the geometry, fabrication and testing of shells with tunable
energy profile.
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Supplementary Figure 13: Tunable shell Geometry. (a) Geometry of the single shell. (b)
Geometry of the cap shell. (c) Assembly of the tunable shell from two single shells and two cap
shells. (d) The two single shells are first joined to produce a double shell. (e) The final geometry
of the tunable shell

1.5.1 Geometry

Our tunable shells comprise two pairs of single shells (see Fig. 13). and are obtained
by first joining a pair of single shells to form a universally bistable shell (see Fig. 13c-d)
witch is then sandwiched between the two remaining shells (see Fig. 13d-e). Notably, this
fabrication process results in the formation of two inflatable cavities (see Fig. 13e) and
the energy profile of the system can be tuned by controlling their volume.

1.5.2 Fabrication

The tunable shells fabricated and tested in this study are made of silicone rubber. Specif-
ically, the outer single shells are made of Elite Double 8 (Zhermack), whereas the uni-
versally bistable shell sandwiched between them is made of Elite Double 32 (Zhermack).
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The outer single shells were casted using the two-part mold shown in Fig. 14 which was
3d printed in Vero-clear using an Objet Connex 500 printer (Stratasys). The values of the
geometric parameters used in this study for the outer shells are summarized in Table 2,
whereas the geometric parameter values for the universally bistable shell (shown in green
in Fig. 13b-c) are identical to the ones presented in Section 5. Note that the outer shells
feature an additional rim of width S and thickness T in order to further separate them
from the underlying universally bistable shells and enable the formation of the inflatable
cavities.

Radius (R) 25.4mm
Height (H) 12mm

Thickness (T ) 1mm
Flat Length (S) 20mm

Table 2: Values of the geometric parameters for the single shells comprising the top and bottom
caps of the tunable shell.

Part A

Part B

Top/Bottom
Cap Shell

Supplementary Figure 14: The 3D printed mold used for the fabrication of the top and
bottom cap shells required for the tunable shell.

The fabrication of our tunable shells consists of the following 20 steps:

Step 1: expose all inner surfaces of the mold shown in Fig. 3 to Ease Release 200
spray (Mann Release Technologies) to facilitate the process of removing the cured silicone
rubber.
Step 2: pour a mixture of equal amounts of Elite Double 32 base and catalyst (here
made using the Zhermack Doublemix mixer) into Part A of the mold (see Fig. 3).
Step 3: slowly place part B of the mold on top of part A, allowing for any excess silicone

17



Step 1 Step 2 Step 3 Step 4 Step 5

Step 6 Step 7 Step 8 Step 9 Step 10

Step 11 Step 12 Step 13 Step 14 Step 15

Step 16 Step 17 Step 18 Step 19 Step 20

Supplementary Figure 15: The 20 Steps for the Fabrication of the tunable shells.

rubber to flow out of the mold and cure for 20 minutes.
Step 4: remove the single shell from its molds peeling off any excess silicone. Repeat the
process to fabricate two shells.
Step 5: place one of the shells upside down on a flat rigid surface.
Step 6: gently spread a thin layer of Elite Double 8 on the inner surface of the second
shell to glue the two shells together.
Step 7: place and align the second shell directly on top of the upside-down shell.
Step 8: flatten the two shells with a rigid plate. Place a small weight on top of the rigid
surface to ensure that the two shells remain in contact while the silicone rubber cures.
Step 9: cure for 20 minutes with the two rigid plates clamped to ensure a uniform seal
between the two single shells.
Step 10: remove the double shell from the rigid plates and set it aside.
Step 11: expose all inner surfaces of the mold shown in Fig. 14to Ease Release 200
spray (Mann Release Technologies) to facilitate the process of removing the cured silicone
rubber.
Step 12: pour a mixture of equal amounts of Elite Double 8 base and catalyst (here
made using the Zhermack Doublemix mixer) into Part A of the mold (see Fig. 14).
Step 13: slowly place part B of the mold on top of part A, allowing for any excess silicone
rubber to flow out of the mold and cure for 20 minutes.
Step 14: remove the single shell from its molds peeling off any excess silicone. Repeat
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the process to fabricate two shells.
Step 15: place the double shell made of Elite Double 32 upside down on a flat surface.
Step 16: gently spread a thin layer of Elite Double 8 on the outer rim of the inner surface
of one of the single shells made of Elite Double 8. Avoid spreading Elite Double 8 on the
region of the cavity at this point.
Step 17: align a narrow tube that will be used to inflate the cavity.
Step 18: place the single shell with the narrow tube on top of the double shell and press
firmly on the outer rim region where the two shells must be glued.
Step 19: ensure that the double shell is glued to the single shell cap and that the cavity
can be inflated without any leaks. Repeat the same process on the reverse side of the
double shell by gluing the second single shell cap.
Step 20: ensure that both cavities can be inflated without any leaks.

1.5.3 Testing

In order to characterize the quasi-static response of our tunable shell we conducted ex-
periments to determine its pressure-volume relationship upon inflation and deflation for
different levels of pre-inflation of the two internal cavities. Specifically, we considered,
Test 1: Both Cavity 1 and Cavity 2 are not pre-inflated (∆Vp,1 = 0 and ∆Vp,2 = 0) (see
Fig. 16a)
Test 2: Cavity 1 is not pre-inflated (∆Vp,1 = 0) and Cavity 2 is pre-inflated by supplying
∆Vp,2 = 10ml (see Fig. 16a)
Test 3: Cavity 1 is not pre-inflated (∆Vp,1 = 0) and Cavity 2 is inflated by supplying
∆Vp,2 = 20ml (see Fig. 16a)

Note that all tests are conducted as detailed in Section 1.3 and that the results from Tests
2-3 can be used to deduce the response of the shell if Cavity 1 was pre-inflated instead
of Cavity 2. This is because an inflation test with ∆Vp,1 = 0 and ∆Vp,2 = 10/20 ml is
identical to a deflation test with ∆Vp,1 = −10/− 20 ml and ∆Vp,2 = 0.
In Fig. 16b we report the pressure-volume curves recorded during inflation (blue lines)
and deflation (red lines) for Tests 1-3. We find that for Test 1 the response of the tunable
shell is qualitatively identical to the one of the universally bistable shell (see Section 1.3).
However, the tunable shell requires a larger amount of pressure to transition to its second
stable state (inverted) owing to the significantly stiffer rubbers used (Elite Double 32)
and its overall increased thickness.

Differently, in Test 2 and Test 3 the maximum pressure required to invert the shell
during inflation drops but the magnitude of the negative pressure required to bring the
tunable shell back to its original state increases. This suggests that by pre-inflating Cavity
2 we increase the elastic strain energy stored in the initial state while simultaneously
decreasing the elastic strain energy stored in the inverted state of the tunable shell. As
a result, in Test 3 only a small input pressure is required to invert the tunable shell and
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Supplementary Figure 16: Testing of the tunable shell. (a) Schematic of the tunable shell.
(b) The experimental pressure-volume relationship for the tunable shell for 3 different levels of
pre-inflation for Cavity 2.

release a large amount of stored elastic energy.
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Supplementary Note 2: Arrays of Universally Bistable

Shells

In this section we discuss the experimental setup and provide details for the testing and
modeling of transition waves that propagate in arrays of universally bistable shells.

2.1 Fabrication

The experimental setup used to propagate transition waves in arrays of universally bistable
shells is shown in Fig. 17. This setup consists of a 1D array of universally bistable shells,
acrylic tubes and plates to connect them, two pressure regulators, a solenoid valve, an
LCD screen, an Arduino and a power supply.

Power Supply

USB Connection

Array of Thick Shells

Pressure Regulator

Solenoid Valve

Arduino
LCD Screen

Inlet

Outlet

Supplementary Figure 17: The experimental setup used to study the propagation of transi-
tion waves in arrays of universally bistable shells.

To construct the array of universally bistable shells we glue clear cast acrylic tubes
(McMaster Carr part number: 8532K46) of length Lt and internal radius1 R = 25.4mm
to acrylic plates (McMaster Carr part number: 1178T12) and sandwich the universally
bistable shells between them as shown in Fig. 18. To hold the universally bistable shell in
place and eliminate any leaks we connect the two acrylic plates adjacent to each universally
bistable shell using stainless steel M3 screws (McMaster Carr part number: 90751A113)
and thumb nuts (McMaster Carr part number: 93886A220). Tesselating this combination
of acrylic plates, tubes and universally bistable shells leads to the array of universally
bistable shells depicted in Fig. 17.

When the array is assembled, the acrylic tubes used to connect the universally bistable
shells, enclose a finite volume of air equal to Vair = πR2Lt at atmospheric pressure, where
R is the internal radius of the acrylic tubes and Lt is their length (see Fig. 18). Any
relative displacement between the universally bistable shells adjacent to each acrylic tube

1Note that the internal radius of the tubes is identical to the radius of the universally bistable shells
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Supplementary Figure 18: Schematic highlighting the details of the connections between the
acrylic tube, acrylic plates and the universally bistable shells in order to construct the arrays of
universally bistable shells.

changes the volume of the air enclosed by the tube resulting in a pressure/force which
in turn acts on the shells resisting the enforced volume change. As a result, the array of
universally bistable shells connected via acrylic tubes, forms a closed system of bistable
springs (i.e. universally bistable shells) coupled via interconnecting springs (i.e. air cavity
of each acryclic tubes). Having established the bistability of the universally bistable shells
used in the array, we study the transition waves that propagate in such arrays when one
of the shells is pushed from one stable state to another.

2.2 Testing

In order to provide energy to the array of universally bistable shells and propagate transi-
tion waves, we connect the first shell in the array to a pressure supply. To precisely control
the excitation pressure provided to the array, we decreased the pressure from the wall air-
outlet (∼200psi) using two pressure regulators (1/4 NPT 15CFM by Wilkerson and 1/4
NPT 9CFM by Coilhose Pneumatics) connected in series. The first pressure regulator
reduces the inlet pressure from ∼200psi to ∼ 40psi, whereas the second one accurately
controls the pressure in the range [0,40]psi. Further, to turn on and off the input pressure
we used a standard two-way solenoid valve (SC8256A002V - ASCO). The solenoid valve
was powered through an external power supply using 9V and 0.1A and controlled via an
NPN transistor (IRF520 - Vishay Siliconix). In all of our tests, we provided pressure to
the first shell of the array for 100ms after which point the input pressure was reduced
down to atmospheric.

To capture the deformation of each shell and the propagation of the transition waves
in our system, we used a digital camera (Sony RX100 IV) capable of slow motion video
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at 480 frames per second (×20 slower). Specifically, we glued two colored pins (a yellow
one and a green one - see Fig. 19a-b) to each shell and determined the displacement of
the poles by tracking them. The yellow pins were visible when the shells were at their
first stable state (see Fig. 19a) hiding the corresponding green pins. Differently, when
the shells were inverted to their second stable state, only the green pins were visible (see
Fig. 19b) hiding the corresponding yellow pins.

(a)

(b)

Supplementary Figure 19: Snapshots of the array of universally bistable shells highlighting
the two different colored pins used to track the displacements of each shell. (a) All shells are at
their first stable state. (b) All shells are at their second stable state

2.3 Discrete Model

To better understand the propagation of transition waves in our arrays of universally
bistable shells connected via acrylic tubes we develop a discrete model. To this end, we
focus on the [i]-th shell in the system, with mass m, strain energy potential Ui connected
to shells [i−1] and [i+1] through acrylic tubes with length Lt (see Fig. 20a). To determine
the equation of motion for the [i]-th shell in the system we assume that,

(i) the mass m is concentrated at the pole of the shell.
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Supplementary Figure 20: Array of universally bistable shells. (a) Schematic of the pole
displacement and corresponding volume change for the [i−1], [i] and [i+1]-th shell in the array.
(b) Simplified approximation of the system as a discrete collection of masses, bistable springs
and interconnecting springs.

(ii) the kinematics of the shell are fully captured by its pole displacement upole,i.

(iii) a displacement of upole,i leads to a corresponding volume change of the air adjacent to
the [i]-th shell equal to ∆Vi(upole,i). Note, that the relationship between the change
in volume of each shell ∆Vi and its pole displacement upole,i can be determined from
our quasi-static experiments and FEA simulations (see Fig. 8 and Fig. 11).

(iv) the change in the volume of air ∆Vt,i enclosed by tube i, connecting shells [i − 1]
and [i] (see Fig. 20a) can be computed from their corresponding changes in volume
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∆Vi−1 and ∆Vi through,

∆Vt,i = ∆Vi (upole,i)−∆Vi−1 (upole,i−1) (4)

(v) changes in the volume of air enclosed by tube [i], ∆Vt,i, results in a a pressure change
∆pi that can be determined via Boyle’s law

patmV0 = (patm + ∆pi) (V0 + ∆Vt,i) (5)

where V0 = πR2Lt is the initial volume of air enclosed by tube [i] and patm is the
initial (atmospheric) pressure. It follows from Eq. (5) that

∆pi = patm

(
πR2Lt

πR2Lt + ∆Vt,i
− 1

)
(6)

Under these assumptions, the equation of motion for the [i]-th shell can be written as

m
d2upole,i
dt2

+ β
dupole,i
dt

+
dU (upole,i)

dupole,i
+ fi−1 − fi = 0 (7)

where U is the quasi-static bistable strain energy potential for the universally bistable
shells, β is a linear damping parameter and fi−1 and fi are the forces acting on the [i]-th
shell due to the changes in volume in tube [i− 1] and [i], respectively. Such forces can be
determined from Eq. (6) as

fi = πR2patm

(
πR2Lt

πR2Lt + ∆Vi+1(upole,i+1)−∆Vi(upole,i)
− 1

)
, (8)

fi−1 = πR2patm

(
πR2Lt

πR2Lt + ∆Vi(upole,i)−∆Vi−1(upole,i−1)
− 1

)
Substitution of Eqs. (8) into Eq. (7) yields

m
d2upole,i
dt2

+ β
dupole,i
dt

+
dU (upole,i)

dupole,i
+

πR2patm

[
πR2Lt (∆Vi+1 − 2∆Vi + ∆Vi−1)

(∆Vi+1 −∆Vi + πR2Lt) (∆Vi −∆Vi−1 + πR2Lt)

]
= 0. (9)

For a system of N universally bistable shells, Eq. (9) results in a system of N cou-
pled differential equations, which given the strain energy potential U(upole) and pole
displacement-volume ∆V (upole) relationships can be solved numerically to determine the
pole displacement of the [i]-th universally bistable shell as a function of time t.
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In this study, we consider arrays comprising 10 universally bistable shells and use a
Python implementation of the Dormand Prince 8(5,3) method to integrate Eqs. (9). The
mass of each universally bistable shell m was taken to be the average of each shell in
the array and was found equal to m = 30g. In every time step, given upole,i, we use our
FE results shown in Fig. 11 to determine ∆Vi and dUi/dupole,i. Moreover, we initiate
transition waves by controlling the pole displacement of the first shell through,

upole,1 = H [1± tanh (f(t− t0))] (10)

where H is the height of the universally bistable shell2, f is the characteristic frequency
of the pulse (in shells/s), t is time and t0 is the time at which the pulse arrives at the
first shell. Note that in all our numerical analyses we use β = 2.5kg/s - value obtained
by fitting the result of our discrete model to a single experiment on the same system.

2.3.1 Results

To verify the validity of our discrete model, in Fig. 21 we compare experimental (markers)
and numerical (solid lines) results for three different tests. Specifically, in Figs. 21a-b we
consider an array of 10 universally bistable shells in which the wave is initiated both
at the first (Figs. 21a) and last (Figs. 21b) unit, resultig in a left-to-right and right-to-
left propagation, respectively. Further, in Fig. 21c we present results for an array of 12
universally bistable shells. In all three experimental tests, transition waves are initiated
by providing a rectangular pressure pulse supplying ∆p = 69kPa for 100ms. In all three
simulations, the arrays are excited using a pulse with the form of Eq. (10) with frequency
f = 43.4Hz and start time t0 = 0.136s. The transition waves of Fig. 21a and Fig. 21c are
“left-to-right” and are initiated by prescribing the displacement of the first shell in the
array through,

upole,1 = H [1 + tanh (43.4(t− 0.136))] (11)

In contrast, the transition wave of Fig. 21b is “right-to-left” and is initiated by prescribing
the displacement of the last shell in the array through,

upole,10 = H [1− tanh (43.4(t− 0.136))] (12)

All plots clearly indicate that the discrete model is capable of capturing the response of
observed in experiments, as suggested by the great agreement between the two. Note
that due to the inversion of each universally bistable shell during the propagation of
transition waves, the bright colored markers used for image processing our experimental
results are naturally not visible for a range of pole displacement values resulting to the
lack of experimental data in the pole displacement range [10, 20]mm. Further, the results

2Note that the height of the universally bistable shell coincides with half of the pole displacement
between the two stable states.
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Supplementary Figure 21: Results of the discrete model and comparison against experiments
for a pulse with frequency f = 43.4Hz and start time t0 = 0.136s . Solid lines represent the
discrete model predictions whereas markers correspond to experimental measurements. (a)
Array of 10 universally bistable shells in which the wave initiates from the first shell in the
array. (b) Array of 10 universally bistable shells in which the wave initiates from the last shell
in the array. (c) Array of 12 universally bistable shells in which the wave initiates from the first
shell in the array

of Fig. 21a-b indicate the capability of our system to support bidirectional transition
waves, since in both cases, using the same input energy, the transition wave arrives at
the end of the array with exactly the same characteristics, while being initiated from
opposite sides of the same array. The results of Fig. 21c suggest that transition waves
cannot fully propagate in arrays of 12 universally bistable shells, since due to the effects
of dissipation, only six shells transition from their initial to their inverted stable state.
In this case, despite performing considerably worse than in cases where the waves fully
propagate through the array, our discrete model can still capture the main features of the
partial transition wave.

Finally, in Fig. 22 we compare the discrete model predictions to our experimental
measurements for forward (left to right) and backward (right to left) pulses initiated
using 10, 15, 20 and 25 psi of pressure, respectively. The results further demonstrate our
system’s ability to support bidirectional transition waves, but also indicate that the input
energy can affect the effective transition wave speed.

2.4 Continuum Model

To gain a deeper insight into the propagation of transition waves in our system, we
next seek analytical solutions to Eqs. (9) by taking their continuum limit in the absence
of dissipative phenomena. We begin by approximating the interaction forces between
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Supplementary Figure 22: Results of the discrete model and comparison against experiments
for forwards and backwards propagation of transition waves initiated by pulses of increasing
energy. Solid lines represent the discrete model predictions whereas markers correspond to
experimental measurements. (a)-(d) Forward propagation for pulses initiated using (a) 10, (b)
15, (c) 20 and (d) 25 psi of pressure. (e)-(h) Backward propagation for pulses initiated using (e)
10, (f) 15, (g) 20 and (h) 25 psi of pressure.

adjacent shells, fi and fi−1 (given by Eq. (8)) as

fi ≈ ki (upole,i − upole,i+1) , fi−1 ≈ ki−1 (upole,i−1 − upole,i) (13)

where the linear interaction stiffnesses ki, ki−1 are obtained by performing a least squares
fit to the fully nonlinear interaction force-relative pole displacement curve as shown in
Fig. 23.
Using Eq. (13) to represent the interaction forces between shells and in absence of viscous
dissipation effects (i.e. β = 0), the governing equation of motion for the [i]-th shell takes
the form,

m
d2upole,i
dt2

+
dU(upole,i)

dupole,i
− k (upole,i+1 − 2upole,i + upole,i−1) = 0. (14)

Next, we take the continuum limit of Eq.14. To this end, we introduce the continuous
function u (x̃, t) that interpolates the pole displacement upole,i as

u (x̃ = i, t) = upole,i, (15)
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Supplementary Figure 23: Comparison between the fully nonlinear interaction forces used
in our discrete model (Eq. (8)) and the linearized approximation used in our discrete model

where x̃ = x/Lt is the normalized coordinate along the x-axis. If the width of the propa-
gating waves is much larger than the unit shell-to-shell distance, the pole displacements
of the [i− 1]-th and [i+ 1]-th shell can then be expressed via Taylor expansion as,

upole,i−1 = u (i− 1, t) =

[
u− ∂u

∂x̃
+

1

2

∂2u

∂x̃2

]
x̃=i

upole,i+1 = u (i+ 1, t) =

[
u+

∂u

∂x̃
+

1

2

∂2u

∂x̃2

]
x̃=i

(16)

Substituting Eqs.(15) and (16) into Eq. (14) yields the continuum governing equation,

∂2u

∂t2
+

1

m

dU(u)

du
− c20

∂2u

∂x2
= 0 (17)

where c0 =
√
k/m = 364.44 shells/s is the ratio of the interaction spring stiffness to the

mass of each shell. Finally, we introduce the travelling coordinate ζ = x̃ − ct and apply
the chain rule to recompute the temporal and spatial derivatives as,

∂2(·)
∂t2

= c2
∂2(·)
∂ζ2

,
∂2(·)
∂x̃2

=
∂2(·)
∂ζ2

(18)

Substitution of Eq. (17) into Eqs. (18) yields

(c20 − c2)
∂2u

∂ζ2
=

1

m

dU(u)

du
. (19)
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In an effort to obtain analytical solutions to Eq. (19) we assume that the bistable energy
potential for the universally bistable shells U(u) can be approximated with the following
4th order polynomial

U(u) ≈ 1

4
ksu

2
( u
H
− 2
)2

+ C (20)

whereH is the height of the universally bistable shell. As shown in Fig. 24, this polynomial
describes an energy profile with two identical stable states at u = 0 (initial state of the
shell) and u = 2H (inverted state of the shell)

U(0) = U(2H) = C (21)

separated by an energy barrier of magnitude ksH
2/4.

U

u
2H0

k
s
H     + C2/4

C

H

Supplementary Figure 24: The 4th order polynomial approximation to the strain energy
potential of the universally bistable shells.

By substituting Eq. (20) into Eq. (19) we obtain

∂2u

∂ζ2
=

c2s
c20 − c2

u
( u
H
− 1
)( u

H
− 2
)

(22)

where cs =
√
ks/m = 90.87 shells/s. Remarkably, Eq. (22) has the form of Klein-

Gordon Equation with quadratic and cubic non-linearties and has been shown to admit
an analytical solution with form [?]

u = H

[
1± tanh

(
ζ

w

)]
= H

[
1± tanh

(
x− ct
w

)]
(23)

where c and w are the speed and width of the propagating transition waves. Next, we
determine c and w as a function of the geometry of the system and the energy supplied
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to the first unit to initiate the pulse. First, we substitute the solution (23) into Eq. (22)
and find that the latter is identically satisfied only if

w =

√
2(c20 − c2)

c2s
. (24)

Second, we calculate the total energy (i.e. the summation of kinetic, interaction,
bistable potential) carried by the transition waves defined by Eq. (23)

E =

∫ ∞
−∞

[
1

2
m

(
∂u(x, t)

∂t

)2

+
1

2
k

(
∂2u(x, t)

∂x̃2

)
+ U(u(x, t))

]
dx =

= H2

[
2

3w
(k +mc2) +

1

3
wks

]
(25)

Since in the absence of dissipation E is equal to the energy supplied to the first unit to
initiate the pulse, Ein, we find that

Ein = H2

[
2

3w
(k +mc2) +

1

3
wks

]
(26)

which can be solved numerically to obtain c as a function of Ein. Further, to obtain an
explicit expression for c as a function of Ein, we take a Taylor’s series expansion of Eq.
(26) around c/c0 = 0 (since in our system c/c0 ∼ 0.2), while retaining terms up to the
third order. This yields

Ein =

√
2kH2cs
3c0

(
2 +

c2

c20

)
, (27)

from which we get

c =
√

2c0

√
Ein

Emin

− 1, (28)

where

Emin =
2
√

2

3
H2
√
ksk, (29)

represents the minimum amount of input energy required to initiate the transition wave.
Eq. (28) reveals a remarkable property of our system, namely the ability to tune the speed
of the propagating transition waves by modifying the amount of energy supplied to the
system. Further, it shows that the propagating velocity c increases rapidly with the input
energy.
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2.4.1 Predictions for dissipative systems

Despite the fact that our continuum model was developed assuming no dissipation, it
can also be used to predict the finite propagation distance in systems with a nonzero
dissipation (i.e. with β > 0). To this end, we estimate the energy dissipated by each shell
during the propagation of the pulse, Edamped, as

Edamped =

∫ ∞
−∞

β

(
∂u

∂t

)2

dt = c

∫ ∞
−∞

β

(
∂u

∂ζ

)2

dζ =
4βcH2

w
. (30)

By introducing Eq. (24), Eq. (30) can be rewritten as

Edamped =
2
√

2βH2csc√
c20 − c2

, (31)

which, by taking a Taylor’s series expansion around c/c0 = 0 and retaining terms up to
the second order, can be further simplified to

Edamped ≈
2
√

2βH2csc

c0
(32)

Finally, introduction of Eq. (28) into Eq. (32) yields

Edamped = 4βH2cs

√
Ei

Emin

− 1, (33)

where Ei denotes the energy carried by the transition wave when propagating through
the i-th unit (note that in Eq. (28) we have changed Ein into Ei).

Next, use energy conservation to relate Ei to Edamped as

Ei+1 − Ei = −Edamped = −4βH2cs

√
Ei

Emin

− 1. (34)

To solve Eq. (34) and determine the number of units that the wave switches before
stopping, Nstop, we define a continuous function E(x̃) that interpolate the discrete values
of Ei as

E(x̃ = i) = Ei (35)

By introducing the continuum function Eq. (34) can be rewritten as,

dE

dx̃
= −4βH2cs

√
E

Emin

− 1 (36)

or, alternatively
dE√
E

Emin
− 1

= −4βH2csdx̃. (37)
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Next, we integrate both sides of Eq. (37) to obtain

∫ ENstop

E0

dE√
E

Emin
− 1

= −
∫ Nstop

0

4βH2csdx̃⇒ 2Emin

√
E

Emin

− 1

∣∣∣∣∣
ENstop

E0

= −4βH2csNstop,

(38)
Since E0 = Ein and ENstop = Emin, Nstop can be obtained from Eq. (38) as

Nstop =
Emin

2βH2cs

√
E

Emin

− 1. (39)
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