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ABSTRACT: Graphene has attracted intense attention to the use in extreme applications.
However, its small thickness facilitates wrinkle formation, and it is not clear how such
structural change affects its area-specific capacitance. Herein, we combine molecular dynamics
and continuum mechanics-based simulations to study the changes in surface area induced by
wrinkles. We find that the high specific surface area of graphene can only be affected up to 2%
regardless of loading conditions, geometry, and defects.
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Graphene represents an ideal two-dimensional material
composed of a single layer of atoms organized in a

hexagonal lattice and connected by sp2 in-plane carbon−carbon
bonds.1−6 It exhibits a high strength (∼118 GPa) and elastic
modulus (∼1 TPa),7 high specific surface area (∼2600 m2/g),8

and high electrical and thermal conductivity, making it a perfect
candidate as an electrode material in applications that require
area-specific capacitance and long life,9,10 such as super-
capacitors. Furthermore, graphene’s ultrathin nature allows it
to easily bend, fold, and scroll without rupture, forming
continuous wrinkles akin to fingerprint patterns.11−13 For this
reason, graphene has tremendous potential for use in flexible
devices such as foldable displays and stretchable electronics for
data storage.9,14,15 Nevertheless, these applications involve
nonlinear complex deformation, and limits in knowledge about
the relationship between wrinkling, defects, and area-specific
capacitance significantly impede an evaluation of the robustness
of graphene for these applications.
In this Letter, we use a combination of molecular dynamics

(MD) and continuum mechanics-based simulations to show
that surface area changes induced by wrinkling in loaded free-
standing sheets of graphene are small with respect to changes in
loading conditions and geometry. Furthermore, we investigate
the effect of defects on the changes in surface area and identify
a critical threshold below which the wrinkle pattern is
minimally altered by the defects. Wrinkling in graphene has
been a topic of much research in recent years and has been

studied within the context of substrate deposition,16−18 ripples
in unloaded free-standing sheets,19,20 and free-standing sheets
subjected to applied mechanical loading. In the latter category,
research has included experiments,21 MD simulations,4,11,12,22

and continuum-based approaches13,21,23−27 such as finite
element simulations and grillage models based on continuum
beams.28 However, despite this tremendous interest in the
topic, only limited research has focused on graphene wrinkling
in the context of electronics,16 and to the best of our
knowledge, none has studied the change in surface area or
the effect of defects, both of which are focuses of this work.
At small scales, full atomistic MD simulations using

sophisticated force fields are the most reliable way to predict
the mechanical response and reveal the physical mechanism of
graphene under various loading conditions such as bending,
self-folding, crumpling, and stretching up to rupture.4,12,22,29

Their application, however, is constrained by sample size
limitations, as the method requires large computational
resources for force calculation and time integration.27,30,31

These limitations motivate the development of multiscale
modeling methods that incorporate continuum elasticity
theory, which typically use a two-dimensional membrane or
shell approximation of a thin sheet.31−34 Here, we combine MD
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simulations based on rigorous force field with a continuum
model based on Koiter’s plate theory (KPT). The latter model
is found to be rigorous when the bending and stretching
energies of a sheet are of comparable magnitude (the regime of
interest for deformations involving wrinkling35−37), and it has
been recently successfully applied to study wrinkling in
polymeric sheets.33

We start by using MD simulations and adopt the Adaptive
Intermolecular Reactive Empirical Bond Order (AIREBO)
force field to accurately model the interactions among carbon
atoms in graphene38,39 (the potential equations and boundary
conditions are discussed in detail in the Supporting
Information). This force field has been widely used and proven
to be reliable to reproduce the mechanical behavior observed
experimentally in graphene and carbon nanotubes.5,11,12,40 We
first investigate the wrinkle pattern in a graphene annulus under
torsion, as shown schematically in Figure 1a. For small values of

torsion angle Δθ, no wrinkling is observed. However, when a
critical value of Δθ (Δθ ∼6°) is reached, several wrinkles
appear together, as shown in Figure 1b. When the applied
deformation is further increased, the material starts to fail
because the covalent bonds on the inner boundary break (see
snapshot for Δθ =10° in Figure 1b) and, eventually, the wrinkle
pattern vanishes (see snapshot for Δθ = 12° in Figure 1b). We
also note that the number of wrinkles, N, only slightly increases
with the increasing torsion angle (N = 6 for Δθ = 6° and N = 7

for Δθ = 10°). At small torsion angles, the wrinkle pattern is
regular and resembles a sinusoidal wave along the θ direction;
however, for large torsion angles, irregularities appear because
of local bond failure (see Figure S1 in the Supporting
Information). We also record the torque measured on the
boundary as a function of the applied torsion angle Δθ and
compare the results with those obtained for the case where the
wrinkles are completely suppressed (in this case the displace-
ments of all the atoms in the z-direction are set to be zero). As
clearly shown in Figure 1c, the two curves are identical until the
critical point is reached. At Δθ ∼6°, the two curves start to
differ as the case with wrinkles exhibits smaller torque than the
case without wrinkles. We also note that both τ−Δθ curves are
characterized by a peak, which reflects the point at which failure
first occurs and thus indicates the strength of graphene. For the
case with wrinkling, this peak (τ = 592 nN·nm) occurs at Δθ =
9°. In contrast, a larger torque (τ = 713 nN·nm) is reached at
an earlier stage (Δθ = 8°) for the case without wrinkling.
Considering the geometry of the annulus, our results predict
material strengths of 41.9 ± 0.3 and 50.4 ± 0.9 N/m for the
cases with and without wrinkles, respectively, which nicely
agree with the reported experimental measurements of 42 ± 4
N/m7 (see horizontal dashed lines in Figure 1c). The excellent
agreement between our simulation results and the experimental
measurements confirms that our MD simulations are
appropriate and reliable. Moreover, the better agreement
found for the case with wrinkles suggests that wrinkles may
be an intrinsic feature of graphene when subjected to loading.
Next, we focus on the effect of wrinkles on the surface area.

Although the deformation applied to the annulus is large
enough to rupture it, its surface area only increases up to 2%
(see Figure 1d; the calculation of the surface area is discussed in
detail in the Supporting Information). This result is very
important and suggests that the area-specific capacitance of
graphene is not affected by the wrinkle geometry. This
observation is also supported by recent experiments that have
shown that the capacitance of supercapacitors made of wrinkled
graphene sheets is not affected by the applied deformation over
hundreds of loading cycles.9

We then examine how the surface area of graphene is affected
by the system size and use MD simulations to investigate the
deformation of graphene annuluses with internal radius Ri
ranging from 0.75 to 4.5 nm (all models are characterized by
Ro/Ri = 3, Ro denoting the outer radius). Figure 2a shows the
wrinkle patterns calculated at Δθ = 8°. Generally, we find that
the wrinkle number (N) is proportional to Ri (Figure 2b), but is
almost independent of Ro/Ri (see Table S1 in the Supporting
Information), and that larger Ri yield larger out-of-plane
fluctuation (see Figure 2c). Moreover, our numerical
simulations reveal that the surface area change is not
significantly affected by the size of the domain and is always
less than 2% (Figure 2d). Interestingly, the effect of size on the
out-of-plane fluctuations can be nicely captured using a simple
geometric model that assumes a sinusoidal profile along the θ
direction and describes the height of the wrinkles with a log-
normal function (see Figure S2; the geometric model is
discussed in detail in the Supporting Information). However,
the simple geometric model cannot well predict the change of
surface area induced by the wrinkles (see continuous black line
in Figure 2d). One of the reasons for this difference is that a
graphene wrinkle at large deformation is not exactly sinusoidal
in shape, such that the geometric model has limited application
for surface area predictions.

Figure 1. Molecular dynamics (MD) simulations of a graphene
annulus with twisted inner boundary. (a) Schematic of boundary
conditions used for the graphene annulus. The outer layer of atoms (of
width d) in the annulus is fixed and the inner layer is displaced by a
torsion angle of Δθ. (b) Simulation snapshots of the equilibrated
wrinkled patterns of the graphene annulus for Δθ = 4°, 6°, 10°, and
12° (Ro/Ri = 3 and Ri = 1.5 nm). Each atom is colored according to
the displacement in the z-direction. (c) Total torque on the innermost
layer of atoms of the annulus as a function of Δθ. For the case with
wrinkles, all the atoms between the two boundaries are free to move in
all the directions, while for the case of no wrinkles, all the atoms
between the two boundaries can only move in the x−y plane. (d) The
total surface area (normalized by the projected area S0) as a function of
Δθ. Note that even for Δθ = 8−10°, where graphene starts to fail, the
surface area change is less than 2%.
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To overcome the limitations of the geometric model and to
facilitate investigations of wrinkling in larger domains, we
assumed that the mechanism of bending resistance in a
graphene monolayer is reasonably well-described by the
mechanism that characterizes bending resistance in a thin
continuum shell and developed a graphene model based on
KPT (the model is discussed in detail in the Supporting
Information). To estimate the bending stiffness to be entered
into the model, we performed a full atomistic simulation of a
rectangular graphene sheet with one edge clamped and the
other subjected to a transverse displacement δ (see Figure 3a).
The force (F)−deflection (δ) relation as measured in MD
simulations is shown in Figure 3b. Since according to beam
theory41

δ=F D L L12 / ( / )2
(1)

(where L = 3.1 nm is the effective length of the plate), the
numerical results reported in Figure 3b can be used to calculate
the bending stiffness D. It is important to note that, as indicated
by the slope of the curve, D changes as a function of the applied

deformation. In fact, larger deflection yields larger D, which is
found to vary between 0.09 nN·nm (for δ/L = 0.01) and 0.28
nN·nm (for δ/L = 0.03). This result agrees with theoretical
predictions of graphene’s bending stiffness in folding (Dfold =
0.19 nN·nm)11 and also explains the large variation of bending
stiffness that are used by different groups to build continuum
models of graphene.11,42−44 Having determined a range of
values for the bending stiffness of graphene, we now assume D

Figure 2. Effect of size on the surface area of a wrinkled graphene
annulus. (a) Snapshots taken for several graphene annuluses under a
torsion angle of Δθ = 8° in MD simulations (Ro/Ri = 3 and Ri = 0.75,
1.5, 3, and 4.5 nm). (b) The number of wrinkles as a function of Ri for
annuluses with Ro/Ri = 3. The effect of Δθ is shown via error bars
representing standard deviation. The solid curve is given by a linear fit.
(c) The amplitude of wrinkles as a function of distance from the inner
boundary. Curves are given for the different Ri shown in (a). The solid
curves are generated using the geometric model given in Supporting
Information eq S3 with associated parameters provided in Supporting
Information Table S1. The data points are measured from MD
simulations. (d) The total surface area as a function of Ri under torsion
of Δθ = 8° (Ro/Ri = 3). The geometric model overpredicts the area
change for large graphene annuluses.

Figure 3. Comparison between the results given by MD simulations
and a continuum mechanics model based on KPT. (a) Schematic of
the model deformation used to measure the effective KPT bending
stiffness via MD simulation. (b) The force−displacement curve
obtained for the model shown in panel a from MD simulation. Three
measurements of the slope of the loading curve are obtained based on
a linear fit from δ/L = 0 to 1%, 2%, and 3% displacement, respectively.
(c) Snapshots for results given by the KPT model for annuluses with
Ro/Ri = 3 and Ri = 0.75, 1.5, 3, and 4.5 nm under a torsion angle of Δθ
= 8°, which show good agreement with the corresponding MD results
in Figure 2a. (d) Comparison between the MD and KPT results for
the number of wrinkles as a function of Ri. KPT results are provided
for two different values of effective bending stiffness. The effect of Δθ
is included in the error bar representing standard deviation. (e)
Comparison between the MD and KPT results for the wrinkle
amplitude as a function of Ri. Error bars again represent standard
deviation and show the effect of changing Δθ. (f) The total surface
area as a function of Ri for the fixed Ro/Ri = 3 under torsion of Δθ =
8°. The KPT model using a smaller bending stiffness, D = 0.15 nN·nm,
gives better agreement with the MD results in panels d−f.
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to be a constant and use different values within the measured
range in KPT model to investigate the formation of wrinkles in
an annulus subjected to torsion. In Figure 3c, we report the
wrinkle patterns observed at Δθ = 8° assuming the effective
bending stiffness Deff = 0.15 nN·nm for annuluses with the
same dimensions as those shown in Figure 2a. Clearly, the
continuum model gives much better agreement with MD
simulations (Figure 2a) than the simple geometric model (see
Figure S2 in Supporting Information), and correctly captures
not only the number of wrinkles, but also their morphology. A
quantitative comparison between the numerical results
obtained using MD and the continuum model is shown in
Figure 3d−f, where we report the evolution of N, Hmax, and the
surface area as a function of the annulus size. Good agreement
between MD and KPT simulations is found using Deff in the
continuum model. However, as shown in Figure 3d,e, using the
larger bending stiffness Dfold (i.e., the theoretical graphene
folding result) instead yields fewer wrinkles and larger
amplitudes, and thus, a worse agreement with MD. The better
agreement for KPT against MD simulations by using Deff (0.15
nN·nm) rather than Dfold (0.19 nN·nm) suggests that the
deformation in graphene wrinkling in the current study is
smaller than that in graphene folding in literature.11 In addition,
Figure 3f shows that the KPT simulations can accurately predict
the evolution of the surface area, in contrast to the geometric
model (Figure 2d). We find that the KPT simulations provide
more computing efficiency than MD, particularly at larger
length scales.

Since the properties of graphene are known to be highly
affected by intrinsic defects,45 we also used MD simulations to
investigate the effect of various kinds of defects including 5-7-7-
5 (i.e., Stone−Wales defects, a defect with one C−C bond
rotated in plane for 90°), missing atom and a hybrid of both
types on the wrinkled patterns. As shown in Figure 4a, for low
concentration of defects (Cdef = (number of defects)/(total
number of atoms in pristine model) = 0.001), the defects do
not alter the overall wrinkle pattern (both N and Hmax are
almost constant for the 4 models shown in in Figure 4a). We
also computed and compared the surface area of systems with
and without defects. The results, summarized in Figure 4b,
show that for all configurations with Cdef = 0.001 the surface
area is close to the theoretical value of planar graphene (S0 =
2600 m2/g),8 and is not affected by the defects and that defects
can only cause less than 0.2% difference in surface area. We also
compared the total potential energy of the undeformed (E0, for
Δθ = 0°, no wrinkles) and wrinkled (E1, for Δθ =8°)
configurations and computed the energy change (ΔE = E1 −
E0) for each carbon atom, as shown in Figure 4b. Again, we
note that the values obtained for the models with defects (2.41
± 0.02 kcal/(mol/atom) for the 3 models with defects) are
close to those reported for pristine graphene (2.73 kcal/(mol/
atom)), suggesting that low concentrations of defects do not
alter the overall deformation field in graphene. Next, we
investigated how the wrinkle pattern and surface area is affected
by the defect concentration in the graphene annulus. Starting
from Cdef = 0.001, we progressively increase the concentration
of defects up to Cdef = 0.23 and measure ΔE for Δθ = 8°. The

Figure 4. Comparison of graphene surface area for varied defects and geometries. (a) MD simulation snapshots of a graphene annulus (Ro/Ri = 3
and Ri = 3 nm) with Δθ = 8° and different forms of defects (pristine graphene, graphene with 10 5-7-7-5 defects, graphene with 10 missing atoms,
and graphene with 5 missing atoms and 5 5-7-7-5 defects). In all models before randomly creating defects we have 8642 atoms, so that the defect
concentration is Cdef = 0.001. (b) Effect of defects on the average surface area (left axis, surface area averaged by the graphene mass) and energy
caused by deformation (ΔE, right axis) for the multiple defected systems in a. Note that all the results are close to 2590 m2/g (the value for pristine
graphene at equilibrium) without deformation or wrinkles. (c) ΔE as a function of the defect concentration (Cdef) for the graphene annulus. Inserted
snapshot is for a graphene annulus with Cdef = 0.23 for Δθ = 8°, showing that the wrinkle pattern in completely suppressed (the color of the atoms
corresponds to the same color bar as given in panel a). (d) The schematics of the boundary conditions used for the graphene rectangle and the MD
simulation snapshot of the wrinkled pattern of a large rectangular graphene sheet (Lx = Ly = 77 nm) under a shearing strain of γ = 0.1. (e) Using the
same geometry and boundary conditions as c, we repeat the simulation using the KPT method and take the snapshot shown. (f) Comparison of the
graphene surface area for the different geometries and simulation methods. Again, it is noted that all the results are close to 2590 m2/g. (g)
Comparison of ΔE for the system as shown in c and d that are obtained from the MD and KPT simulations, respectively.
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results shown in Figure 4c clearly indicate the existence of a
critical threshold: for Cdef < 0.04, both the wrinkle pattern and
the surface area of the sheet are only marginally altered; on the
other hand, if Cdef > 0.04, ΔE gets significantly reduced and the
deformation of the sheet gets significantly altered. In fact, in
graphene with high defect concentration, the out-of-plane
wrinkle pattern is completely suppressed (see inset in Figure
4c) and the deformation energy is released in-plane by packing
and merging of the defects.
Finally, we investigated the effect of geometry and loading

conditions on the change of surface area induced by wrinkles.
To this end, we considered a rectangle domain loaded in shear
(as shown in Figure 4d, the bottom layer of atoms is fixed and
top edge is displaced in x-direction with shear strain γ = 0.1).
As reported in Figure 4d,e, we find good qualitative agreement
between the wrinkling patterns obtained in MD and KPT
simulations using D = Deff. We note that the KPT results show
fewer wrinkles at larger amplitudes than the MD results,
indicating that the effective bending stiffness of graphene for
this loading case is slightly lower. Interestingly, also for this
configuration and loading conditions, we find that the surface
area of the graphene does not vary much from its relaxed state
(within ±1.7% for both MD and KPT simulations), as shown in
Figure 4f. Moreover, in Figure 4g, we report the change in
energy measured both in MD (ΔE = 0.81 kcal/(mol/atom))
and KPT (0.53 kcal/(mol/atom)) simulations. Note that the
overall smaller deformation energy obtained from the
continuum model is due to the fact that these simulations do
not account for van der Waals interactions that become
important as adjacent wrinkle surfaces come into close
proximity with each other in large deformations (stacking
conformation).46

We used MD and continuum mechanics-based simulations to
study wrinkling in free-standing graphene. In particular, we
investigated the effect of deformations involving wrinkling on
the surface area. We have shown that the large specific surface
area of graphene (2590 m2/g) does not vary beyond 2% for a
variety of loading and geometries, a result that agrees with
experimental observations.9 We have also demonstrated that
this result is not affected by defects (if Cdef < 0.04), geometry,
and loading conditions. In addition, we observe that the
number and amplitude of the wrinkles are overall proportional
to the sample size, but their exact numerical value depends on
the deformation amount. To our knowledge, this is the first
time that the effect of loading conditions, amount of loading
and defects on the surface area of graphene is rigorously
demonstrated. This is an issue of great importance and our
results provide important tools for the design of the next
generation of graphene nanoelectronics.
We have also demonstrated that continuum simulations

using KPT are capable of providing excellent agreement with
MD results provided a suitable effective bending stiffness is
used. Our simulations clearly indicate that this stiffness is
dependent on the amount and type of applied loading. In fact,
we found that for an annulus under torsion an effective bending
stiffness of 0.15 nN·nm works well. However, this value should
likely be lower for the shearing of a rectangular graphene sheet.
To our knowledge, the application of KPT to graphene
deformation is novel. Since such model is suitable for
simulating graphene sheets across a wide range of length
scales, it is vitally important for problems too large to be
efficiently simulated by MD, which may be the case in many
potential nanoelectronic applications. Improving the model,

such as by adding nonbonded interaction derived from full
atomistic MD, is a rich avenue for future investigation.
Consistent large surface area, combined with high strength,

makes graphene an ideal material for constructing super-
capacitors with long life, high capacitance, and stability for
application in energy storage as well as flexible nanoelectronic
circuits. With the models developed in this work, we provide
important insight into the deformation of graphene as well as
tools for designing the next generation of graphene nano-
electronics.
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SUPPORTING INFORMATION: 

Effect of wrinkles on the surface area of graphene: toward the design of 

nanoelectronics 

 

Zhao Qin1,2#, Michael Taylor3#, Mary Hwang1,2, Katia Bertoldi3,4* and Markus J. Buehler1,2* 
 

Molecular dynamics simulations 

MD simulations are performed via LAMMPS MD package 1 using the Adaptive Intermolecular 

Reactive Empirical Bond Order (AIREBO) force field to model the internal interactions among 
carbon atoms in graphene 2, 3. This has been widely used and proven to be a reliable force field to 
reproduce the mechanical behavior observed experimentally in graphene and carbon nanotube4-7. 
According to this model the total potential energy of the system is given by: 
 

� = �
�∑ ∑ ����	
�� + ∑ ∑ �������	�������,�,���� ����� ,                           (S1) 

 

which accounts for all interactions among carbon atoms in graphene. Moreover, ���	
�� denotes 

the REBO term of hydrocarbon 3 and �������	���� is an explicit 4-body potential that describes 

various dihedral angle preferences in hydrocarbon configurations. The detailed expressions for 

���	
�� and �������	���� are given in the original paper 2.  

We apply a NVT ensemble to ensure constant volume and temperature for all simulations and the 
temperature of each simulation is controlled by a Nose-Hoover thermostat. Moreover, each 
combination of initial geometry and loading condition on the boundary is investigated by an 
independent simulation.  
Energy minimization of 10000 steps by using the conjugate gradient algorithm is applied to the 

system prior to dynamics simulation. We compute the root-mean-square deviation and total energy 
of the system during dynamics simulation for equilibrium calculation for 500 ps (with 1 fs timestep) 
and ensure their convergence before the end of each simulation. By doing so, we confirm that the 
simulation is sufficiently long to capture the equilibrated conformation of wrinkled graphene. We 
record the coordinates of all the atoms at equilibrium and count the number of wrinkles. We have 

tried different thermostat temperatures and random velocity distributions (initial temperature) to 
confirm that the result is not sensitive to those factors.   
 

Geometry and boundary conditions 
Two geometries are used here to investigate the effect of wrinkling:  

(i) A graphene annulus (with inner and outer radii Ri  and Ro, respectively ) subjected to 
torsion (see Fig. 1a) 

(ii) A rectangular graphene sheet (with edges Lx and Ly) under shearing (see Fig. 4c) 
For all simulations, we start by displacing all atoms in such a way that the desired level of 
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displacement is applied to the boundaries and then use MD to equilibrate the structure. For the 

annulus all atoms are given an initial angular displacement ∆� ��	�
	��	�, where � is the distance of 

the atom to the center of the annulus and ∆� is the applied torsion angle applied to the inner 
boundary. Differently, for the rectangular sheet all atoms are given an horizontal displacement ��, 
where � is the amount of applied strain and y is the distance of the atom from the boundary. 
Note that all the atoms within a distance d=2 Å from the boundaries where the displacements are 
applied (i.e. inner and outer perimeter of the annulus and bottom and top edges of the rectangle) are 

fixed throughout the entire equilibration process.  
 

 

Figure S1. Out-of-plane deformation of a graphene annulus subjected to torsion. Out-of-plane 

displacements along circumferential paths at different distance from the center (in this case  !/ �=3 and  � = 1.5	nm) for ∆θ=6° in a and ∆θ=10° in b. The results are obtained using MD. 
 

Surface area calculation for the full atomistic model 

To compute the total surface area of graphene at different levels of deformation we use the 

equilibrated structure. in and the Delaunay triangulation algorithm8 to generate a triangular mesh 
based on the location of the atoms. We carefully select the cut-off distance (3 Å as the longest 
distance within an aromatic ring) to generate the triangle mesh, to make sure that we do not 
overestimate the atomic area at the boundaries.  The total surface area is then calculated as the 
sum of the area of each triangle, which is given by 

) = *+�,,- . +�,,,-*,  

where +�,,- and +�,,,- are the vectors spanning two edges of the triangle. 

Geometric model of wrinkle patterns in an annulus 

Since our MD results indicate that the out-of-plane displacement (/) along the � direction can be 
well approximated by a sinusoidal function, we assume that /0�, �1 for an atom with coordinate 
0�, �1 is given by 

/0�, �1 = 20�,  �,  !1sin	56� + 70��	�1
�0	��	�18                                (S2) 

where 20�,  � ,  !1 is the height of the wrinkle at a distance r from the annulus center,  � and  ! 
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define the inner and outer radii of the annulus, and 6 is the number of wrinkles.  
Moreover, the MD results reported in Fig. 2c of the main text suggest that the height of the 
wrinkles can be captured using a log-normal function,  

20�,  � ,  !1 = 29:;exp	?@ Aln C ��	�	��	� + DE @ FG� �
��HI                     (S3) 

Where 29:; is the maximum out-of-plane displacement of all the carbon atoms, and A, B and C 
are constants determined by fitting the equation to our MD results, as summarized in Table S1. The 

wrinkle patterns obtained using this simple geometric model are shown in Fig. S2 for graphene 

annuluses with internal radius Ri ranging from 0.75 to 4.5 nm (all models are characterized by 

Ro/Ri=3, Ro denoting the outer radius). For all cases the wrinkle patterns are calculated at ∆θ = 8°. 
Finally, the total surface area can be easily calculated as  

J0 !,  �, Kθ1 = L L �MC NO
� NPE

� + CNON�E
� + 1�π

Q
	�	� ∙ S�S�                      (S4) 

 

Figure S2. Wrinkle pattern predicted by the geometric model. a. Wrinkle patterns predicted by 

the geometric model (Eq. (S2) and Table S1) for graphene annuli with  !/ �=3 and  � =0.75, 1.5, 3 and 4.5 nm subjected to a torsion angle of ∆θ=8°  . b. Amplitude of out-of-plane 
displacement (H) for atoms at different distance (r) from the annulus center ( !/ �=3 and 

 � = 0.75 nm). Markers and continuous lines correspond to MD results and geometric model 

predictions, respectively. θ.  
 
Simulations using Koiter’s non-linear plate theory via dynamic relaxation 

In this section, we give a very brief summary of the theory and methods underpinning the 
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continuum simulations. Detailed information can be found in9. We note that in applying a 
continuum model to graphene an important assumption is made. That is, we assume the mechanism 

of bending resistance in a graphene mono-layer is reasonably well-described by the mechanism that 
characterizes bending resistance in a thin continuum shell. The nature of these mechanisms is, in 
fact, quite different as a continuum shell derives its bending resistance from having a finite 
thickness through which a portion is in tension and the rest is in compression during a bending 
deformation10. Graphene, being one atomic layer thick derives its bending stiffness directly from 

stretching of atomic bonds. The concept of thickness, in a continuum sense, of a single atom is not 
well defined. 
 

Plate model 

The equilibrium equations of the midsurface, Ω, of an initially flat sheet are given by, SWX	TTTT = 0000	Z�	[�\,\ = 0,                                               (S5) 

where the 1st Piola-Kirchoff stress, T, has components 

[�\ = 6�\ @]�\^,^ ,                                                  (S6) 

with Greek indices ranging from 1 to 2 and Roman indices ranging from 1 to 3. For this work, we 

assume that graphene is reasonably well-approximated by assuming isotropy in plane. In this case, 

6�^ = F��,\_`�aab\^ + 01 @ `1�\^c @ ]�deΓ^de                          (S7) 

and 

]�\^ = fg�_`haab\^ + 01 @ `1h\^c                                    (S8) 

where ��,\ are components of the surface metric tensor, �\^ are components of the Lagrange 

strain tensor, Γ̂ de  are the Christoffel symbols, b\^ are components of the Kronecker delta, g� 
are components of the deformed surface unit normal vector, and h\^ are components of the 

surface curvature tensor. The ]�\^ term represents the bending part of the stress, while the 6�^  

term comprises both the membrane stretching part of the stress and an additional term (]�deΓ^de) 

arising from the use of mixed bases. 
 

Materials in a continuum shell are characterized by Poisson’s ratio, `, in-plane rigidity, F =
ℎ�/01 @ `�1, and flexural rigidity f = ℎk�/01201 @ `�11, where E is the Young’s modulus and h 
is the sheet thickness. Since thickness in graphene is not well-defined, we characterize the material 

by specifying effective values for `, F, and f directly. In all of our simulations, we take 
` = 0.398 and F = 288.74	6/p 11. The values chosen for the flexural stiffness, D, are discussed 
in the main text. 
 

Boundary Conditions 

For the annulus problem, we consider the outer and inner boundaries to be pinned. This 
corresponds to assigning position and specifying the applied couple per unit length, 

q� = ]�\^`\`^,                                                     (S9) 
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to be zero. The `\ are the components of the outward unit normal vector of the reference midplane 
edges. In the rectangular shear problem, the top and bottom edges are considered pinned, and are 

thus treated analogously to the annulus problem. On the initially vertical sides both the couple per 
unit length and the force per unit length, 

r� = [�\`\ @ _]�\^`\s^c,t,                                           (S10) 

are set to zero. The s\ are the components of the unit tangent vectors of the reference midplane 
edges and the subscript s denotes differentiation with respect to arc-length. 
 

Numerical implementation 

In order to use this plate theory to solve for equilibrium deformations, we embed Eq. (5) into a 
fictitious damped dynamical system, 
[�\,\ = u�v� + q�w�,                                                   (S11) 

where	�� are components of the position vector, u is a mass parameter, and c is a damping 
parameter. The long-time limit of this system is the equilibrium configuration of the sheet.  This 
method, called dynamic relaxation, has long history of successful application to a variety of 
nonlinear elasticity problems involving sheets and cables 12-15. The mass and damping parameters 

are set purely to ensure stability and enhance the rate of convergence.  
 
To solve the system Eq. (S11) numerically, we require both spatial and temporal discretizations.  
To discretize the equations in space, we use Green’s theorem to derive finite difference 
approximations of the required derivatives (see, e.g., 13-15). In time, we use a basic central 

difference approximation, 

�w�x = �
� y�w�xz

{
H + �w�x�

{
H| ;	�v�x = �

∆~ y�w�xz
{
H @ �w�x�

{
H| ;	�w�x�

{
H = �

∆~ 0��x @ ��x��1,      (S12) 

where n is the time step and ∆� is the time step size. In this work, we use a particular variant of 
dynamic relaxation called kinetic damping 16, 17. In this approach, the explicit damping term is set 
to zero and the kinetic energy of the entire system is tracked. When it reaches a peak, all of the 
nodal velocities are set to zero and the simulation is restarted. This can be more efficient than the 
standard viscous damping approach as it requires the regulation of two parameters (mass and time 
step size) instead of three. 

 
In all our simulations, the timestep is set to 1, and all simulations are run for 100000 steps as that 
led to configurations very close to equilibrium. The mass is varied manually in each simulation to 
maintain stability. For the annular problem, we use a mesh with 500 nodes circumferentially and 82 
nodes radially distributed and logarithmically biased so that more nodes are located near the inner 

boundary. For the rectangular problem, we use a rectangular mesh of 150 by 150 nodes uniformly 
distributed. The in-plane initial conditions are set to match as best as possible those in the MD 
simulations and described in the previous section. In addition, we use a smooth initial out-of-plane 
displacement perturbation of the form, 

//� = � sin0�7;� 1 sin0�7�� 1,                                           (S13) 

where x, y, and z represent nodal coordinate positions and L is a non-dimensionalizing term. For the 

annulus problem, we set � = 9 nm, � = 10��, and � = 2, while in the rectangle shear problem, 
we set � = 5 nm, � = 10��, and � = 1. These values are chosen somewhat arbitrarily, but with 
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the goal of facilitating convergence of the dynamic relaxation procedure.  
 

Computation of surface area 

The change in surface area of the deformed sheet is computed using an expression analogous to 
Nanson’s formula15, 

�g� = �
� �����\^��,\��,^ ,                                              (S14) 

where � is the areal stretch, ��,\ are components of the surface metric tensor, and ���� and �\^ 

are the components of the three- and two-dimensional unit alternator, respectively.  
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Table S1. Numerical values of the parameters entering in Eq. (S2). These values are obtained by 
fitting Eq. (S2) to the MD results. 

 

��/�� �� (Å) A C exp(A)-C B ���� (Å) N 

2 22.5 2.545 12.41 0.33 0.028 0.21∆θ-0.23, 

2°<∆θ<10° 

9.3±1.2 

3 7.5 1.93 6.59 0.30 0.046 0.2dθ-1, 
5°<dθ<12°  

5 

15 1.63 4.90 0.20 0.068 0.11∆θ+0.36, 
4°<∆θ<10° 

6.5±0.5 

22.5 -0.095 0.74 0.17 0.31 0.17∆θ-0.17, 
2°<∆θ<10° 

8±1 

30 -0.68 0.39 0.12 0.47 0.21∆θ-0.1, 
2°<∆θ<10° 

10.5±0.5 

37.5 0.35 1.37 0.05 0.26 0.23∆θ, 
2°<∆θ<10° 

11.5±0.5 

45 -0.62 0.45 0.09 0.44 0.35∆θ-0.38, 
2°<∆θ<8° 

12±1 

4 22.5 2.52 12.35 0.0 0.038 0.26∆θ-0.54, 

2°<∆θ<8° 

8.3±1.2 

5 22.5 2.59 13.44 -0.1 0.036 0.30∆θ-0.75, 
3°<∆θ<8° 

8.6±0.6 

 




