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We investigate the buckling and post-buckling behavior of an elastic rod injected into a horizontal, fric-
tional, cylindrical constraint through experiments, numerical simulations, and scaling analyses. Particular
emphasis is given to the onset of helical buckling which can lead to lock-up and prevent further injection.
This problem is of timely importance to the petroleum industry due to the prevalence of Coiled Tubing
(CT) technology in horizontal wells. An experiment is developed at the desktop scale to allow for a precise
exploration of parameter space, including the important effects of radial clearance and natural curvature
of the injected rod. In parallel, we perform computer simulations derived from first principles, imple-
menting a dynamic Kirchhoff rod model that includes the frictional interaction between the rod and con-
straint. Our numerical simulations allow a direct comparison with experiments, as well as a systematic
exploration of the parameter space. Moreover, a scaling analysis is performed to identify the key dimen-
sionless parameter(s) that justifies using these findings at the field scale, thereby enabling the direct
application of the results from our desktop experiments and numerical simulations to a problem of
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industrial relevance.
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1. Introduction

Drilling methods for hydrocarbon production have evolved dra-
matically over the last century (Brusco et al., 2004), particularly
with the development and adoption of directional drilling (drilling
at an angle from vertical) during the second half of the twentieth
century (Williams, 2004). This technology has been critical in
enabling recent developments in the gas-shale market, especially
in North America, by allowing for greater contact between the pro-
ducing formation and the well (G.W.P. Council, 2009). As a result,
horizontal drilling (well axis is within 10° of horizontal) now
accounts for over half of the active wells being drilled in North
America (Hughes, 2014). This ability to drill the well according to
a specified trajectory has also led to the access of offshore fields
from onshore sites worldwide (Bennetzen et al., 2010). By way of
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example, the recently drilled Z-42 Chayvo well in Russia set world
records for both measured depth (12,700 m) and horizontal dis-
placement (11,739 m) (Gupta et al., 2014).

After a horizontal well has been drilled and production has
commenced, it may become necessary to access the entire length
of the downhole environment for a variety of purposes, including
cleaning out produced sand, acidizing (to remove near-wellbore
damage), data logging, or mechanical actuation of valves (Acock
et al., 2004; Afghoul et al., 1994). A device consisting of a single
length of continuous, stainless steel tubing, called “Coiled
Tubing” (CT), has been developed (ICoTA, 2005) for these interven-
tion operations in horizontal wells which is more efficient and
cost-effective than using the original drilling rig (see Fig. 1 for a
representative example of a CT rig). The rig consists of a length
of tubing spooled around a reel (hence, the origin of the name
Coiled Tubing). For insertion into the wellbore, the tubing is passed
through a guiding channel (often called a “gooseneck”) and down
through an injector head that pushes the tubing through the well
head and into the well (underground).

The insertion of CT into horizontal sections can be challenging
(Bhalla, 1995), because the CT lies at the bottom of the borehole,
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Fig. 1. (a) Photograph of a typical coiled tubing rig (Courtesy of Schlumberger-Doll
Research). (b) Schematic representation of a horizontal well.

which leads to the development of frictional forces opposing inser-
tion (resulting in a buildup of compressive axial load in the pipe in
the horizontal section). After an initial, benign, sinusoidal buckling
mode, the tubing undergoes localized helical buckling near the
beginning of the horizontal section of the wellbore (Wicks et al.,
2008). The helical configuration results in a rapidly increasing con-
tact force between the pipe and the well wall, setting a limit to the
amount of tubing that can be injected (sometimes also referred to
as ‘run in’) into a horizontal well, known as the lock-up length
(Wicks et al., 2008). Currently, the lock-up length for Coiled
Tubing is not sufficient to service all extended-reach wells.

This lock-up length is determined by geometry, material prop-
erties, and, to a lesser extent, the force available at the injector
head to continue injecting Coiled Tubing. At the theoretical
lock-up limit (when insertion force becomes unbounded and heli-
cal pitch decreases to zero), the maximum bending strains far sur-
pass the ultimate yield strain of steel, which would cause the
tubing to rupture. However, as shall be discussed further in
Section 5.4, just after the initiation of helical buckling, maximum
strains can be calculated with typical CT properties (Wicks et al.,
2008; Lubinski and Althouse, 1962; Chen et al.,, 1990), and are
approximately still an order of magnitude lower than the yield
strain of a high-grade steel (Gere, 2006) and two orders of magni-
tude lower than that required for local buckling of the tubing
(Brazier, 1927; Palmer and King, 2008). Up to the initiation of heli-
cal buckling, we can therefore consider the buckling process as an
elastic problem, and is the primary regime of interest for this
study.

Efforts to numerically simulate CT lock-up (van Adrichem and
Newman, 1993; Bhalla, 1994), as well as discussions of mitigation
techniques (Bhalla, 1995; Al-Dhufairi et al., 2010) can be found in
the literature, although typically in a case-study format. There is,
however, a timely need for a more predictive mechanical under-
standing of the problem to identify and explore the effect of the
key physical parameters that control the buckling processes in
order to explore novel reach extension technologies.

Here, we combine precision desktop experiments and numeri-
cal simulations to study the buckling of a slender rod injected into
a horizontal cylindrical constraint. Our experiments permit precise
control of the system geometry and injection speeds, as well as
allow for direct measurement of the reaction force associated with
injection. Our numerical simulations use an extensible, shearable
Kirchhoff rod model to solve for the dynamics of the rod injected
into the cylindrical constraint, subject to Coulombic friction.
Excellent agreement is found between the two, with no fitting

parameters. In both cases of experiments and numerical simula-
tions, we focus on the elastic process of the initiation of helical
buckling, with the aim of porting as much physical insight and
understanding as possible to the field-scale problem. We also com-
ment on the role of plasticity (not included in our framework) by
quantifying the effect that the injection of a naturally curved rod
has on horizontal reach.Finally, a scaling analysis is performed to
identify the governing dimensionless parameters and allow for a
substantiation of the relevance of our desktop-scaled experiments
to the oilfield-scale problem.

Our paper is organized as follows. In Section 2, we begin by
reviewing existing theoretical work. In Section 3, we present our
desktop-scale experimental apparatus used to investigate the
buckling of a cylindrically constrained rod. The parameter space
is systematically studied, with an emphasis on the relative size
of the cylindrical constraint, for both naturally straight and curved
elastic rods. The simulation framework is presented next,
Section 4, where particular care is taken for the contact model to
accurately capture the frictional interaction between the rod and
the surface of the horizontal constraint. The key dimensionless
parameters of the system are identified through a scaling analysis
done in Section 4.3. Results of our experiments and numerical sim-
ulations are directly compared in Section 5, first giving a direct
comparison of injected length-reaction force curves (Section 5.1)
before moving on to discuss the effect of radial clearance
(Section 5.2) and the injected rod’s natural curvature
(Section 5.3) on the length of rod injected before helical buckling.
Finally, we discuss our results in the field scale context with
regards to plasticity and a broad exploration of dimensionless
parameter space with our numerical simulations (Section 5.4) to
confirm our scaling analysis of Section 4.3.

2. Review of existing literature

Coiled Tubing is typically manufactured in continuous lengths
of up to 9 km, with outer diameters in the range of 2-10cm
(ICoTA, 2005). By contrast, drilling tubing is of similar length, but
has larger diameters of ~12-20 cm (Wicks et al., 2008). Given
the extreme slenderness of CT (and drillstrings), its behavior is well
described in the framework of the mechanics of thin, inextensible
and unshearable rods (Love, 1892; Audoly and Pomeau, 2010); an
isotropic linear elastic constitutive description is assumed, and the
primary nonlinearities that govern the mechanical behavior arise
due to geometric effects. Next, we review a series of results from
the literature that are relevant to our study, first for a fixed length
of rod compressed inside a horizontal cylindrical constraint and
then for a rod that is injected inside a horizontal pipe.

2.1. Axial loading of a fixed-length constrained rod

The buckling of a rod inside a cylindrical constraint was first
studied within the context of drillstrings by Lubinski (1950),
Lubinski and Althouse (1962), who identified both the sinusoidal
and helical buckling modes of a fixed-length rod using equilibrium
and energy methods. We shall refer to this fixed-length configura-
tion as the classic case. An important distinction to make for this
case is that axial load is assumed to be approximately constant
along the length of the compressed rod, instead of the axially vary-
ing frictional loading discussed in the Introduction. Subsequent
studies on this topic have mostly followed the assumptions of
the compressed rod being initially straight, with a continuous
and frictionless contact with the constraint.

When the constraint is horizontal, the critical axial load at
which the rod transitions from the initially straight into a sinu-
soidal configuration is (Paslay and Bogy, 1964)
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W (s,t)

Fig. 2. (a) Side view of the experimental apparatus. The rod is injected from left to right. (b) Side view of the injection system. The elastic rod (1) is pulled over two feeder
rollers (2), through a slave injector (3), forms a slack loop (4), and then is pulled through a primary injector (5) into the constraining glass cylinder. Reaction forces are
transmitted over an air bearing slider (6) to the force sensor (7). (c) Bottom view of an injector. The rod is pulled through a channel (8) by an idler wheel (9) and a drive wheel
(10) that is driven by a servo-stepper motor (11). (d) Close-up of an acrylic clamp holding the pipe in place. (e) Left, the rod configuration is defined by the centerline position
r(s,t) and material frame triad d. At time t, the reaction force P(t) can be measured at the injection point, and the relevant lengths include the helical pitch, b, sinusoidal
wavelength, 4, and radial clearance, Ar. Right, discretized rod segment i with external contact and friction forces (which opposes the direction of velocity). The segment

communicates internal forces and torques via a spring constant K.

Po=2y/5 M
where El is the bending stiffness of the rod, w is its weight per unit
length, and Ar is the radial clearance (see schematic in Fig. 2e). This
result was derived following energy methods that take into account
the gravitational potential of the rod, in addition to its bending
strain energy and the work done by the external load, and assessing
the stability of the straight configuration. Buckling is resisted by the
combined effect of the bending stiffness of the rod and the cost in
potential energy to lift its weight up the curvature of the constrain-
ing cylinder. The corresponding buckling wavelength, /;, at the
onset of the sinusoidal configuration is (Dawson and Paslay, 1984)

1/4
o= 2m (E’vfr) . 2)

Further axial loading in the post-buckled regime results in the rod
transitioning from a sinusoidal into a helical configuration. The load
at which this transition occurs, P, is most commonly agreed to be
(Chen et al., 1990)

Py = V2Ps, (3)

and the pitch of the resulting helix at onset is b, = 4;/2"/*. Even
though Eq. (3) is widely accepted in the literature for the prediction
of Py, there is some disagreement as to the /2 prefactor, with some
authors arguing for values twice as large (Wu and Juvkam-Wold,
1993; Miska, 1995; Miska et al., 1996; Mitchell, 1997; Deli et al.,
1998; Mitchell, 2002; Mitchell, 2008).

At even higher loads, P, > Py, the pitch of the helix decreases
with load according to Lubinski and Althouse (1962)

8T2El

=

(4)

For a sinusoidally buckled rod, the normal contact force per unit
length, W), has been found to not deviate significantly from the
self-weight of the rod (Miska et al., 1996; Qiu, 1998). By contrast,
after helical buckling, W, increases quadratically with the axial load
(Mitchell, 1986)

ArP i+
4El - ()

The effect of torsional loading on the critical buckling loads, Ps; and
Py, has also been studied (Qiu, 1998; Deli et al., 1998). Gao and
Miska (2009, 2010) examined the case of finite friction, and argued

that amplification factors, y¢ and " should be introduced in Egs. (1)
and (3), respectively, to account for an increased resistance to lat-
eral buckling. In both studies, friction was assumed to act primarily
in the lateral direction due to negligible axial velocities. These
amplification factors have recently been found to improve the
agreement between the predicted buckling loads of Eq. (3) and both
experiments and numerical simulations (Miller et al., 2015). As will
be discussed in Section 5.2, these amplification factors may be inap-
propriate for this study due to the presence of an axial velocity.
Next, we review how the above results for the compression of a
rod with fixed length have been adapted to the case of continuously
injecting the rod into the cylindrical constraint, where axial loads
arise due to the frictional rod-pipe contact.

W, =

2.2. Progressive injection of a rod into a constraint

Studies of progressively injecting a rod into a horizontal cylin-
drical constraint have emerged over the past decade, primarily in
the context of CT operations in the oil and gas industry. We shall
refer to this configuration of the problem as the injection case.
The main focus of these investigations has been on characterizing
the total length of rod, I, that can be inserted into the constraining
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pipe before the initiation of the helical configuration and the sub-
sequent lock-up length, at I, where the system jams.

Towards predicting both of these quantities, recent models by
Wicks et al. (2008) and McCourt et al. (2002, 2004) have assumed
that the axial load in the inserted rod that eventually leads to buck-
ling arises from frictional resistance to the injection velocity, v,
while neglecting the rod-constraint lateral friction. Similar to pre-
vious work outlined in Section 2.1, the injected rod was assumed
to be inextensible, unshearable, and to remain in perfect contact
with the constraint throughout the process. In order to predict crit-
ical length scales in the injection case, both groups assumed that
Eqgs. (1)-(5) remained applicable, despite violating some of the pre-
conditions of these classic case results; namely the assumptions of
negligible axial velocity, frictionless interaction, and constant axial
load in the rod. As will be discussed in Section 5.2, non-negligible
axial velocity will result in frictional resistance to injection that is
directed primarily in the axial direction. This, in turn, leads to neg-
ligible resistance in the lateral direction, suggesting that there is
not the need to consider the amplification factors ¢ and lp’c" and
bringing the analysis closer to the case with zero lateral friction.
The applicability of the results reviewed in Section 2.1 for a rod
with non-constant axial load as in the injected case is not as clear.
Both groups assume the validity of Eq. (3) without formal rationale,
although it could be argued that the axial load varies slightly over
the length of a single helical pitch, which is the lengthscale of
importance. As will be shown in Section 5, the predictions obtained
from these ad hoc models perform well when compared against
our experiments and numerical simulations. As such, porting the
results from the classic case into the injection case appears to be
appropriate.

In both of these studies, the injection velocity is considered to
be the progenitor of axial frictional load, and inertial effects are
neglected such that the process is treated as quasi-static. The con-
tact force per unit length between the straight and sinusoidally
buckled rod sections and the pipe is assumed to be the weight
per unit length of the rod, i.e.,, W, = w, such that prior to helical
initiation, the injection force for a rod of length I is (Wicks et al.,
2008; McCourt et al., 2004)

P = uwl. (6)

This linear relationship is assumed to hold for P < P,, where Py, is
the critical helical buckling load defined in Eq. (3). Solving for [, pro-
vided that the injection force is equal to the critical helical buckling
load (Wicks et al., 2008; McCourt et al., 2004), yields the length of
rod at which helical initiation occurs

_2V2 [ H

h="

7)
For I > I, Eq. (6) is no longer valid and the contact force becomes

nonlinear with the injection force according to Eq. (5). The injection
force is then solved from Wicks et al. (2008), McCourt et al. (2004)

% = UWn(s), (8)

where s is the arc length along the rod’s centerline, with s = 0 at the
free tip. Eq. (8) assumes that the radial clearance is much smaller
than the pitch of the helix (Ar < b), which is a valid assumption
throughout this paper. Using Eq. (5) for W, P diverges at the finite
injected length (Wicks et al., 2008; McCourt et al., 2004)

32 (7

ll U ma

9)

which is referred to as the theoretical lock-up length. At lockup, the
reaction load diverges and the helical pitch length tends to zero.

McCourt et al. (2002), McCourt et al. (2004) conducted the only
laboratory-scale experiments in the existing literature, where they
monitored the injection load during insertion and found good
agreement with their predictions. In these tests, the rod-glass
dynamic friction coefficient was treated as a fitting parameter,
which was found to lie in the range 0.6 < u < 1.2. When translat-
ing the results to the field scale, they used the aspect ratio between
the diameters of the rod and constraint as the primary geometric
scaling factor, an alternative to which we shall provide in 4.3.

Finally, referring back to the photograph of a typical CT unit
shown in Fig. 1, one can see that the Coiled Tubing is spooled.
This spooling does plastify (i.e., deforms irreversibly) the steel pipe,
thereby imparting a natural curvature, k, (Newman and Newburn,
1991; Bhalla, 1994). Even though CT rigs sometimes include a pipe
straightener, especially in operations where maximizing horizontal
reach extension is a priority, the tubing still exits the injector head
into the wellbore with a finite value of residual curvature in the
range 0.1 < k,[m'] < 0.26 (Zheng and Sarmad, 2005; Bhalla,
1995). Zheng and Sarmad (2005) considered the effect of x, on [,
assuming that the rod adopted a helical shape throughout injec-
tion, and proposed

P2, <1+ZE'K“>, (10)

ll ArPy

where P, was provided in Eq. (3) and all other parameters have also
been defined above. In the case of a naturally straight rod (x, = 0),
Eq. (10) recovers Eq. (9). To date, Eq. (10) has not yet been compared
against experimental results. Eq. (10) predicts a decrease in [, with
increasing x,, and field-scale tests have indeed confirmed that
straightening CT prior to insertion helps extend the maximum reach
before lock-up occurs (Bhalla, 1995).

3. Experimental methods

We now introduce the experimental apparatus and protocol
used to explore and characterize the buckling progression of a
rod injected into a cylindrical constraint. The prominence of geo-
metric instead of material nonlinearities in this problem makes it
a good candidate for a systematic mechanical investigation at the
desktop scale. Still note that the scaling is not one-to-one, as we
shall see in more detail in Section 4.3. There are a number of
advantages in focusing on precision model experiments instead
of direct field-scale testing. These include a greater flexibility to
systematically explore a wide range of the parameter space, the
ability to directly visualize progression of tests, precise control
over the governing parameters, and the relative low cost of the
experimental tests.

3.1. Apparatus

In Fig. 2a we present a photograph of our experimental appara-
tus, which comprises an injection system and a horizontal pipe
that was mounted onto a custom-built rigid aluminum frame by
five equally spaced acrylic clamps (detailed photograph in
Fig. 2d). The constraining pipe was made out of borosilicate glass
with total length of L=2.46 m. The inner diameter of the pipe
was varied (8 values) in the range 6.6 < Dimm] < 33.6.

The rod injection system (detailed photograph in Fig. 2b) was
located on one of the extremities of the pipe, and its vertical posi-
tion was adjustable to allow for the rod to be injected in contact
with the bottom surface of the constraining pipe. The injection
speed was controlled in the range 0 < vjcm/s] < 20. In parallel
during each test, the reaction force was recorded using a
4.5-N-capacity load cell (0.01-N resolution, taking into account
system losses, as described below). This injection force, P, could
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therefore be expressed as a function of elapsed time, t, or injected
rod length, | = vt. During injection, a set length of excess rod was
temporarily spooled in a plastic container (lower left corner of
Fig. 2b), brought over two feeder rollers, and fed first through the
slave injector and then the master injector. A small segment of
rod (referred to as the slack loop) was suspended between the slave
injector and the master injector, and then injected into the con-
straining glass pipe.

The injection force was transmitted from the master injector
into the load cell, across a horizontal linear air bearing to minimize
frictional resistance. The load cell measured the sum of the reac-
tion force, the tension in the rod fed into the master injector, and
the frictional losses of the air bearing. The air bearing exhibited
low frictional losses (<0.01 N), and the slack loop provided a con-
stant tension (measured before each test) that could be balanced
out of the recorded force signal from a control test.

The slave and master injectors were aligned perpendicularly
but were identical in design, which was modified from the
Makerbot Cupcake filament drive mechanism (MakerBot, 2013)
(see Fig. 2c). For each injector, the rod was inserted into a channel
that was sandwiched between acrylic plates, then gripped between
an idler and drive wheel. Injection was activated by rotating the
drive wheel at a set speed using a computer-controlled stepper
motor, while the idler wheel was free to rotate. The grip of the
two wheels prevented the rod from slipping or twisting at either
injector. Calibration of the two injectors ensured identical operat-
ing speeds, and hence a constant-tension slack loop.

During each test, the injection load signal was digitized at 1 kHz
and synchronized (to within 0.02 s) to a digital video camera. The
camera recorded the top view of the (transparent) constraining
pipe in the 30 cm neighborhood of the injector at 59.94 frames
per second. A more detailed account of the experimental apparatus
can be found in Miller (2014).

3.2. Fabrication of the rods

The elastic rods employed in the experiments were
custom-fabricated using an injection molding procedure out of
vinyl polysiloxane (VPS, Zhermack Elite Double 32). This
two-part silicone-based rubber can be cast to provide control over
the material and geometric properties, including the natural
curvature.

The two-part VPS polymer was injected into a polyvinyl chlo-
ride (PVC) tube (inner diameter, D; = 3.16 mm, and outer diameter,
D, = 5.00 mm) that was laid straight along a rigid track. The sys-
tem was allowed to set for at least one hour to ensure full curing
and the PVC tubing was then cut to release the inner VPS elastic
rod. The diameter of the resulting rod was set by the inner diame-
ter of the PVC tubing; d = 3.16 + 0.05 mm. Rods manufactured with
this process were naturally straight (i.e., x, = 0), and were used for
all results presented except those in Section 5.3. The Young’s mod-
ulus of the elastomer was measured to be E = 1290 & 12 kPa, the
Poisson ratio was v~~0.5, and the volumetric mass was
p =1210 + 8 kg/m3.

To fabricate rods with natural curvature, the PVC tubes were
first wound around a cylindrical object of diameter, D,,, after which
the molding process was similar to that described above. Upon cur-
ing, the natural curvature of the resulting elastomeric rod was
Kn = 2/(D, + Dyy) and varied in the range 0 < x,[m~!] < 65. More
information regarding this technique can be found in Lazarus
et al. (2013), Lazarus et al. (2013), Miller et al. (2014), Jawed
et al. (2014).

Particular care was taken to condition the surface of the rod, in
order to ensure a frictional rod-constraint interaction that was
both homogeneous along the arc length and reproducible across

multiple tests. The rod was coated with loose chalk powder
(Irwin brand chalk for snap-lines, primarily composed of calcium
carbonate) and excess chalk was then wiped off with a cloth by
applying a constant normal pressure while moving it across the full
length of the rod. Moreover, the inner surface of the constraining
pipe was cleaned prior to each series of tests by pulling a cotton
cloth through the pipe to remove any chalk that may have been
deposited in the previous test.

This protocol resulted in a consistently repeatable coefficient of
dynamic friction that was measured to be y=0.54 +£0.11 across
all injection speeds and constraining pipes. From now on, we shall
assume a dry Coulomb frictional interaction between rod and pipe.

3.3. Protocol for the experimental tests

Each experimental run comprised the following sequence of
steps: (i) cleaning the pipe; (ii) conditioning the rod; (iii) preparing
the injection subsystem; (iv) injecting the rod; and finally (v) with-
drawing the rod. A single test included repeating steps (iv) and (v)
10 times for statistical purposes. Prior to the injection stage step,
the tension in the slack loop was recorded for approximately 5 s
to allow for a balancing of the injection reaction, and the digital
video camera was switched on to later synchronize the reaction
force signal and the recorded video. Data from both the load cell
and the video camera were also acquired during the withdrawal
stage. After the series of 10 experimental runs (a test) was con-
cluded, the rod was removed from the injection subsystem for
cleaning, and the constraining pipe was replaced for a different
clearance, if desired.

4. Modeling and simulation methods

Our modeling approach is based on Kirchhoff’s description of a
thin elastic rod that includes the constraint (Section 4.1). This
model forms the basis of the numerical simulations that we have
developed (Section 4.2). The Kirchhoff rod model is also used for
a scaling analysis (Section 4.3) that identifies the primary dimen-
sionless parameters of the system and allows for an interpretation
of our desktop-scale experimental results, in the context of the
original application of lock-up of CT, at the field scale.

4.1. Kirchhoff rod inside a cylindrical constraint

The mechanics of a thin elastic rod are often described using
Kirchhoff's model (Love, 1892; Kirchhoff, 1859; Clebsch et al,,
1862; Maddocks, 1984; Antman, 2005), which has the ability to
capture geometric nonlinearities, dynamics, and the presence of
natural curvature (Goriely and Tabor, 1998; Goyal et al., 2008).
We use a sheareable and extensible version of Kirchhoff’s model
(Shi and Hearst, 1994) and assume a linearly elastic material con-
stitutive relation.

A Kirchhoff rod is characterized by both its centerline position,
r(s,t), and a material triad, d;(s,t) (i = 1,2,3), attached to every
cross section that follows the twist along the rod (schematic in
Fig. 2e). Both fl] and &2 lie on the cross section plane, whose unit
normal is ds, and the parameterization is done as a function of
the undeformed rod arc length coordinate, s, with the free end of
the rod located at s = 0. The dynamics are captured by the velocity
of the centerline, v(s,t), and the angular velocity of the material
frame, (s, t), both defined relative to the global inertial frame, &;
(i=1,2,3). The global frame is assumed to have its origin at the
bottom tangent of the pipe at the injection site such that €, is ori-
ented along the pipe’s long axis. The bending and twisting strains,

K(s,t) (with K3 =k -d; denoting the twisting strain), can be

http://dx.doi.org/10.1016/j.ijsolstr.2015.07.025

Please cite this article in press as: Miller, J.T., et al. Buckling-induced lock-up of a slender rod injected into a horizontal cylinder. Int. J. Solids Struct. (2015),



http://dx.doi.org/10.1016/j.ijsolstr.2015.07.025

6 J.T. Miller et al./International Journal of Solids and Structures xxx (2015) XxX-Xxx

obtained from fl; = k x d;. Throughout, prime represents differen-
tiation with respect to arc-length, e.g., ' = 9r/9s, and dotted quan-
tities are differentiated with respect to time, e.g., r = Jr/ot. Note
that ds is not necessarily tangent to the centerline given that ten-
sile and shear strains, (s, t) = r' — ds (with V3=7- d; representing
tensile strain), can be non-zero.

The internal forces, (s, t), are related to the strains through lin-
ear elasticity, such that f(s, t) = By(s, t), where B = diag(GA, GA, EA)
in the local d; frame and G and A are the shear modulus and
cross-sectional area of the rod, respectively. Similarly, the internal
moments, q(s,t), are related to bending strains through
q(s,t) = Gk(s, t), where G = diag(EI,EI,GJ) in the local d; frame
and I and J are the second moment of inertia and polar moment
of inertia of the rod, respectively.

The dynamics of the rod are then described in the non-inertial
reference frame d; through the conservation of linear and angular
momentum, respectively,

(mv) +w x (mV) =f +rxf+ mgé3 + Feontact + Ffrictionv (1])
and
(10) + o x (10) =@+ % x g+ (y+d3) X F+ Qo (12)

where m = pA is the linear density of the rod of volumetric density
p and cross-sectional area A, and I is its mass moment of inertia. The
normal contact force between the constraining pipe and rod at
points of contact per unit rod reference length is represented by
Feontact; Friiction 1S the friction exerted by the constraint on the rod
(per reference length), and Q. is the externally applied moment
(also per unit rod reference length). The forms of Fcontact, Frriction,
and Q. are specific to our case of injecting a rod into a cylindrical
constraint and are discussed in more detail below.

For the boundary conditions, we assume that the strains at the
free end (s = 0) vanish,

y(0,t) =0, Kk(0,t)=0. (13)

We also assume that, at the injector (s = vt), the rod is injected at
the velocity, v, parallel to the axis of the constraining pipe with zero
angular velocity,

v(vt,t) = vé;, (vt t)=0. (14)

Returning to the conservation of linear momentum, Eq. (11), we
now discuss the external forces, Feontace and Fiiction, iN mMore detail.
Firstly, the normal contact force is in the radial direction of the con-
straint when rod-channel contact occurs. It consists of an elastic
and an inelastic part,

Fcontact = _(Nelastic + Ninelastic)ﬁ~ (1 5)

The magnitude of the elastic contact force per unit length Nejasiic can
be determined by the radial penetration ¢ of the rod into the con-
straint (if penetration occurs)

. 2 A Nelasti
5 = B3+ log (g ) | + e, (16)
elastic

where B and k are two constants computed using the geometry of
the rod and the constraint, and Ar is the radial clearance of the
rod inside the constraint. On the other hand, the magnitude of the
inelastic part of the contact force Nijelastic is determined by the radial
velocity of the rod v, at the point of contact,

Ninelastic = Cvnv (17)

where C is a constant computed using the coefficient of restitution
of the contact. Both the elastic and inelastic parts of the contact
force act normal to the inner surface of the constraining pipe if,

and only if, it is in contact with the pipe wall. For more information
of the contact model, we refer the readers to Roark and Young
(1975), Pabon et al. (2009), Pabon et al. (2010), Pabon et al. (2011).

Segments of the rod in contact with the constraint result in a
frictional interaction modeled as a Coulomb friction that opposes
the direction of motion of the rod

\4
Ffriction < *,U|Fcontact‘ M . (18)

In our simulations, we do differentiate between static and dynamic
values of u. The numerical implementation of Eq. (18) will be dis-
cussed in detail in Section 4.2, but at this stage, it is important to
note that friction is modeled as acting on the surface of the rod, a

distance r from its centerline. When Fgpact - dg # 0, this results in
an external torque

Qexe = M x Fiction.- (19)

that must be considered in Eq. (12) for the balance of angular
momentum. Note that for the purposes of the scaling we shall dis-
cuss in Section 4.3, we do not differentiate between static and
dynamic coefficients of friction, using only one value.

4.2. Numerical procedure

In our numerical simulations, we solve for the dynamics of an
elastic rod being injected into a cylindrical constraint, following
the approach that has been successfully applied to the transient
dynamics of drillstrings (Pabon et al., 2009; Pabon et al., 2011).
First, the rod is discretized into segments, each of which is charac-

terized by its position and orientation, r; and d;, respectively (see
schematic in Fig. 2e). Extra segments are added at the injection
point with a velocity that is imposed at these new elements.

At each computational time step, strains (including extension,
bending, twisting, and shear strains) for each segment are com-
puted using the current position and orientation of the rod follow-
ing the Kirchhoff model described above. The stresses along the rod
are computed from these strains, making use of an isotropic linear
elastic constitutive law (justified by small material strains despite
large displacements and rotations). From these stresses, we calcu-
late the internal forces acting between adjacent segments that,
combined with the external forces (e.g., gravity and the normal/-
tangential frictional contact forces with the constraint), yield the
total force on each segment. The acceleration of the segments
can then be determined, allowing for rod configuration and orien-
tation to be updated in the subsequent time-step. Buckling would
not occur in the simulation if the rod were perfectly straight. To
correct for this, a small lateral perturbation force is applied on ran-
domly selected segments at each computational step. The magni-
tude of this perturbation force decreases exponentially as time
increases.

The friction force is applied on the surface of the rod instead of
on its centerline. Therefore, it can lead to an external moment on
the rod centerline. Moreover, in each computational time step,
we ensure that the friction force is always dissipative. We account
for both static and dynamic coefficients of friction (measured
experimentally), and have the capability to simulate cases where
friction in the axial and transverse directions are not equal. In all
cases discussed in this paper, however, the friction coefficient is
set to be isotropic.

Finally, a Newton-Raphson iteration scheme is used to inte-
grate the equations of motion and update the rod configurations.
The time step in the simulation is chosen to be smaller than (usu-
ally 90% of) the time for an elastic axial wave to travel through one
discrete segment. The segment length was tailored for different
radial clearances based on convergence analyses.
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4.3. Scaling analysis

To establish a quantitative connection between the results from
our precision desktop-scale experiments and the field-scale prob-
lem, we now turn to a dimensional analysis of Eqs. (11), (12) and
(15)-(19) towards identifying the relevant scaling factors. We first
simplify our contact force model, replacing Eq. (15) with a linear
contact force-penetration relationship,

0 (if R < Ar),

—k(R—Ara  (if R = Ar), (20)

Fcontact = {
where 11 is the unit normal vector on the constraint surface, R is the
radial displacement of the rod from the centerline of the constraint,
and k is a linear spring constant. This simplification of the contact
force is performed to reduce the number of unknown parameters,
while retaining the interaction between rod and constraint as a fun-
damental ingredient of the problem.

Our description then involves nine independent variables -
r, p,E, G, Ar, k, i, v,, and g — with three dimensional units - [kg],
[m], and [s]. We now assume, for simplicity, that the static and
dynamic coefficients of friction are both equal to p. The
Buckingham IT theorem (Buckingham, 1914) establishes six inde-
pendent dimensionless parameters that are listed in Table 1. In this
non-dimensionalization procedure, we have taken the sinusoidal
buckling wavelength, 4, as defined in Eq. (2), and the speed of
sound of the rod, vsouna = +/E/p, to be the characteristic physical
length and velocity scales, respectively. The equations of motion
of the rod can thereby be readily rewritten in dimensionless form
using the parameters in Table 1. For the sake of simplicity, we
instead now follow a scaling approach that will be supported by
the numerical results in Section 5.4. We start by determining the
dominant dimensionless parameter in Table 1. In both the labora-
tory and the field cases, the constraint stiffness, ¢, and the ratio
between inertial and elastic effects, #, are small, with # — 0 and

¢~10 —107°, and can be ignored in our analysis. Moreover,
the Poisson’s ratio is only found to vary over a narrow range,
0.3 < v < 0.5, for typical engineering materials such that it can also
be neglected in this scaling comparison. This leaves three dimen-
sionless parameters to be considered. The first is a measure of
the rod slenderness, &, which can be used to compare strains
between the laboratory and field cases by recognizing that the
sinusoidal buckling strain, €, of a cylindrically constrained fixed
length of rod (Paslay and Bogy, 1964) can be directly related to
our dimensionless parameters through €; = 272¢2. This reinforces
the fact that material strains are low (< 1%) at the onset of buck-
ling, with geometric nonlinearities giving rise to the large deforma-
tions of the rod.

Recalling from Section 1 that we are primarily interested in
exploring the length of injected rod for helix initiation, I, which
ensures that we remain in the elastic regime of the problem (dis-
cussed in further detail in Section 5.4), the remaining dimension-
less parameters can be combined to rewrite Eq. (7) as
h vz 1 1)
Ao 2m2 Uy

Therefore, a relevant comparison between the results at the lab-
oratory and field scales requires matching p and ¢&,,. Given that
friction is highly dependent on the specific field conditions and
also typically lies in a narrow range (similar to our statement on
v, above), we opt to compare ¢,,. In the field, this parameter lies
in the range 0.002 < &,, < 0.003, whereas in our experiments we
have 0.015 < &4, < 0.076. Typically, there is therefore at least an
order of magnitude difference for ¢,, between the field and the lab-
oratory. Beyond the lack of an exact overlap in &,, between the two
cases, there are other factors that also preclude a direct emulation

Table 1
List of dimensionless parameters constructed from the dimensional quantities in Egs.
(11) and (12).

Parameter Definition
Coefficient of Friction n

Poisson’s Ratio v=E/(2G) -1
Constraint Stiffness ¢ = pg/(kAr)
Inertia vs. Elasticity 1 = V/Vsound
Rod Slenderness & =1/
Constraint Slenderness Ear = AT/2

and matching of the field scenario in the laboratory, in particular
the exact geometry of boreholes in the field (including vertical sec-
tions and doglegs). Still, we conjecture that the same physical pro-
cesses are at play in the two cases. A quantitative support for this
assertion will be provided in Section 5.4 where we shall use the
numerical simulations (once they have been validated against
experiments) to show that Eq. (21) holds in the full range
0.001 < &, < 0.8 that encompasses the laboratory and the field
cases.

5. Results
5.1. Phenomenology

In Fig. 3a, we show representative photographs of the rod near
the injector during a typical test, as the rod is progressively
inserted into the  horizontal cylindrical  constraint
(D=12.0mm, Ar =4.42 mm, v = 0.1 m/s). During the test, we
record the reaction force at the injector, P, as a function of the
injected length of rod, I, which is plotted in Fig. 3b for the experi-
mental run (filled circles) and the corresponding simulation (open
circles).

During the early stages of the injection process (e.g., Fig. 3a,i,
[ =0.22 m), the rod lies in a straight configuration along the bot-
tom surface of the constraining pipe since frictional forces are
not yet sufficiently large to induce buckling. During this regime,
there is an approximately linear relationship between [ and P.
Upon further injection, however, a sinusoidal buckling mode is
observed near the injector, where the rod climbs up alternate sides
of the pipe (Fig. 3a,ii, [ = 0.73 m). This buckling mode is localized
near the injector and the rod is straight near the tip; the configura-
tion of the rod is spatially heterogeneous. Still, immediately after
this transition, there is not an appreciable change in the relation
between P and L. As the test progresses, the amplitude of the sinu-
soidal segment increases, until portions of the rod reach approxi-
mately halfway up the constraining pipe. At this stage, a helically
buckled configuration emerges near the injector (Fig. 3aiiii,
[ = 0.79 m). We shall refer to the moment when the rod first con-
tacts the top of the constraining pipe as the helical initiation. The
total arc length of injected rod at helical initiation is denoted as
I, (solid vertical line in Fig. 3b). Past helical initiation, P increases
rapidly (and nonlinearly) with increasing [, as new pitches form
on the helical portion that hamper injection. The locally periodic
structure in the P — [ signal for | > I, corresponds to the formation
of new helical pitches. The pitch length decreases while P increases
in a way consistent with Eq. (4) for the fixed-length case.
Eventually, lock-up occurs once the pitch size approaches the rod
diameter, and the rod self-contacts in a region close to the injector,
such that the pitch angle there becomes approximately perpendic-
ular to the axial direction of the constraint (see region highlighted
by the dashed oval in Fig. 3a,iv). Beyond this point, no further injec-
tion is possible due to jamming and injection is stopped (Fig. 3a,iv,
I=0.98 m).

In Fig. 3b we superpose the P-I signal for experiments and sim-
ulations with [, indicated with vertical lines (solid and dashed,
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Fig. 3. (a) Side-view photographs of rod configurations for a rod injected into a
constraining pipe with D=12.0 mm at v=0.1 m/s: (i) purely straight, (ii) sinu-
soidally buckled, (iii) helical initiation, and (iv) lock-up (note the near vertical pitch
angle inside the region highlighted by the dashed red oval). (b) Reaction force at the
injector as a function of injected length for the run in (a) for experiments (solid
circles) and simulations (hollow circles). (c) Reaction force vs. [ for three different
sized cylindrical constraints with radial clearances of Ar = 1.72,5.42, and 9.27 mm.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

respectively). Both signals terminate at lock-up. In the experi-
ments, lock-up is defined by the moment when injection ceases
(the tip of the rod stops moving). In the simulation, lock-up is
defined by the onset of self-contact in the helical region of the
rod. Good agreement is found between the two, with helical initi-

ation lengths at I* ~ 0.55 m for the experiments and '™ = 0.7 m
for the simulations. However, lock-up in the simulations
(I,Si"1 ~ 1.75 m) occurs significantly later than in the experiments

(I ~ 0.75 m). After I, a greater amount of helix rearrangement
and collapse of helical pitches away from the injector was observed

in simulations than in experimental runs, possibly due to the fact
that material damping was not included in our simulations. A
material model including damping was not implemented to avoid
specificity, i.e. rubber and steel exhibit different damping behavior.
However, the fact that we observe high strain rates (of the order of
0.1s71) in the numerically simulated rod near the injector between
helix initiation and lockup (the region of disagreement between
our experiments and simulations) indicates that material damping
may lead to non-negligible effects during the lockup process.
Furthermore, high strain values (on the order of 3%) in the simu-
lated rod near the experimentally observed lockup lengths sug-
gests that our linear elastic assumption may no longer be valid
beyond [,. We speculate that a combination of these two factors
is the cause of the discrepancy in [, between the two methods.
Thus far, we have focused on results for Ar = 4.42 mm (diame-
ter of the constraint was D = 12.0 mm). Similar behavior was
observed for all other radial clearances explored. In Fig. 3¢, we plot
the experimental reaction force as a function of injected length for
three other radial clearances (Ar = 1.72,5.42, and 9.27 mm). The
same sequence of configurations (straight, sinusoidal, helical,
lock-up) was observed for all clearances. However, the lock-up
length increases with decreasing Ar, which is discussed next.

5.2. Effect of radial clearance

We now investigate the effect of radial clearance on the total
length of rod that can be injected prior to helical initiation, which
is a precursor of lock-up. The primary focus is to compare our
experimental and numerical results against one another and the
existing theories reviewed in Section 2. All quantities are made
dimensionless according to the parameters presented in Table 1
that resulted from our scaling analysis in Section 4.3.

In Fig. 4, we present the dependence of the dimensionless helix

initiation length, I, = I,/ as a function of dimensionless radial
clearance, &,, = Ar/J, for a rod injected at » = 0.1m/s into con-

straining pipes over a range of diameters. Both I, and ¢,, have been
normalized by the sinusoidal buckling wavelength defined in Eq.
(2). Good agreement is found between experiments (filled sym-
bols), numerics (open symbols) and the theoretical prediction
(solid line) of Eq. (21). The theoretical prediction includes an envel-
ope (in between the two dashed lines) that accounts for the exper-
imental uncertainty in the dynamic friction coefficient,
u=054+0.11, that was measured independently (see
Section 3.2). We confirm that helical initiation is delayed for tigh-

ter clearances according to I, ~ 1/¢,,, and this result also serves as
the validation of our numeric simulations.

As a general trend in Fig. 4, the numerical results are consis-
tently above the experimental results by ~ 20%, which in turn
are generally in better agreement with Eq. (21). This small but sys-
tematic discrepancy between simulations and experiments can be
attributed to the presence of imperfections in the fabricated rods,
which lower the critical buckling load that is directly related to
injected length through Eq. (6) (Timoshenko et al., 1961). On the
other hand, the derivation of Eq. (21) assumed a naturally straight
injected rod (without imperfection) but did not consider any lat-
eral frictional effects. This may account for the fact that the pre-
dicted values are lower than the numerical results, and
coincidentally closer to the experiments.

The good agreement that we have found between Eq. (21) and
both the experimental and numerical results was, a priori, not to
be expected. In order to arrive to this prediction, the results from
Section 2.1 - which assumed constant axial load, negligible axial
velocity, and frictionless contact — were applied in an ad hoc man-
ner to the problem at hand. However, the axial velocity that ensues
from injection implies that friction acts predominantly in the axial
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Fig. 4. Normalized helix initiation length as a function of normalized radial
clearance for experiments (solid circles with error bars), simulations (hollow
squares), and theoretical predictions (lines - Eq. (21)). Theoretical predictions and
simulations use the experimentally measured dynamic friction coefficient
n=054+0.11.

direction (provided that the injection speed is greater than the
local, lateral velocities of the reconfiguration due to buckling),
making frictional resistance to lateral motion negligible.
Furthermore, as discussed in Section 4.3, the axial velocities are
well below the speed of sound in the injected rod, which supports
that fact that inertial effects can still be neglected.

Turning to the injection load at the onset of helix initiation, Py,
i.e., when | = I, in Eq. (6), we first make it dimensionless,

— A
Ph=Ph\/ﬁ=2\/i (22)

and find that it is expected to be independent of &,,. In Fig. 5 we test
this prediction (horizontal solid line) against both experiments and
simulations. The experimental and numerical values of P, were
acquired over the injection period | I, —l|< 2 cm to average out
noise of the load cell and fluctuations in the numerics. The standard
deviation of P, over this range is represented by the error bars in
Fig. 5, and is large in the numerical simulations, presumably, due
to a lack of material damping. Elastic waves travel along the rod
when it loses contact with the cylindrical constraint to form a helix,
which in turn increases the variation in reaction force at the injec-
tor. Both experiments and simulations (within considerable uncer-
tainties) exhibit a relatively constant level of P, as expected from
Eq. (22), with simulation results consistently above experimental
values by ~ 77%. Once again, the agreement between Eq. (22)
(without the inclusion of the amplification factor, ") and both
the experimental and simulation data was unexpected but supports
the appropriateness of the underlying assumptions and the simplic-
ity of our approach.

We have also explored the effect of dimensionless injection
speed, § = v/ VUsouna ON helical initiation, for two different values
of the radial clearance, Ar =4.42 and 9.27 mm (D =12.0 and
21.7 mm). This test was essential to check that the experimental
apparatus did not induce additional frictional effects due to the
buildup of electrostatic charge on the constraining pipe (McCourt
et al., 2004). In dimensional terms, the injection speed was varied
in the range 1 < » [cm/s] < 20. In Fig. 6, we find that I, is indepen-
dent of #, for both values of the radial clearance tested, which is
indicative of a consistent coefficient of friction throughout the
experimental runs. Again, we see good agreement between the

T12, = p
a® ® Experiment

8“ 10 o Simulation |
g Eq. (22)
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Fig. 5. Normalized reaction force at the injector at I, Py, as a function of &,,, for
experiments (solid points), simulations (hollow squares), and theoretical predic-
tions (solid line) from Eq. (22).

experiments and Eq. (21), even if the latter underpredicts the data
by ~ 12% for all injection speeds tested. Similarly to the results of
Fig. 4, we attribute this small discrepancy to the fact that the the-
oretical prediction only includes axial friction and no lateral
friction.

5.3. Effect of natural curvature

All experimental and numerical results described so far were
obtained for a naturally straight rod. We proceed by investigating
the case of injecting a rod with natural (i.e., intrinsic) curvature,
Kn. We are particularly interested in assessing the effect that x,
has on the lock-up length, [, of the injected rod. This line of inquiry
is motivated by recent studies involving naturally curved thin elas-
tic rods in geometrically nonlinear configurations (Lazarus et al.,
2013; Lazarus et al., 2013; Miller et al., 2014; Jawed et al., 2014)
where there is a threshold value for x,, below which the rod
behaves as if it was naturally straight and above which the
mechanical response of the system can be modified both qualita-
tively and quantitatively. The values of this critical natural curva-
ture are typically dependent on the system. In the context of the
current study, buckling of Coiled Tubing inside a cylindrical con-
straint, x, has been predicted to reduce the lock-up length, I,
(Qiu et al., 1997; Zheng and Sarmad, 2005) but to the best of our
knowledge, this result has not been tested experimentally.

In our experiments, we are able to fabricate naturally curved
rods (see Section 3.2 for the protocol details), in a way that x,
can be systematically varied as a control parameter. Above, we
focused on the length for helical initiation, I, as a measure for hor-
izontal reach. We now choose to quantify the lock-up length, I, to
allow for a direct comparison for the predictions in Zheng and
Sarmad (2005), where it was assumed that the injected naturally
curved rod immediately adopts a helical shape.

In Fig. 7, we plot the dimensionless lock-up length, [, = [;/4, as a
function of the dimensionless natural curvature, %, = Ky,
obtained from both experiments and simulations. The rod was
injected at »=0.1m/s into a constraining pipe with
D = 18.5 mm (Ar = 7.67 mm). For low values of the natural curva-
ture, %, < 1,1, is approximately constant in both experiments and
simulations. By contrast, for ¥, > 1 natural curvature significantly
reduces the lock-up length. There is good agreement between
experiments and simulations, without the systematic offset that
was found in the Section 5.2. We believe that this is due to the fact
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that here, x, becomes the dominant geometric imperfection
instead of the manufacturing imperfections for the case of a
straight rod, which further supports the rationale provided to
interpret the discrepancies in Figs. 4 and 5. Interestingly, we find
that our results are in disagreement with Eq. (10) that was pro-
posed in Zheng and Sarmad (2005), which predicted an immediate
decrease in I, with increasing %, and significantly overpredicts I, for
large values of %,

These findings have two important potential implications for
industrial applications of Coiled Tubing. Firstly, our results suggest
that there is a threshold at ¥, ~ / (even if this is not sharp), below
which improved fabrication or straightening techniques do not
yield significant improvements in .. This could be used to guide
design tolerances for injected Coiled Tubing and the operational
setting of the straightener and ‘goose neck’ in CT rigs (Fig. 1).
Secondly, the rapid decrease in [, for increasing x, past this thresh-
old curvature draws attention to this oft-neglected parameter as an
area of potential improvement in CT operations, and highlights the
possible benefit of more routinely including pipe straighteners on
rigs.

5.4. Relevance of our results to the field scale

Thus far, we have performed precision model experiments at
the desktop scale and contrasted these results against numerical
simulations. Throughout, we tested theoretical predictions with
our physical and numerical experiments. The geometric and mate-
rial properties of our apparatus were not scaled down one-to-one
from the field case, but instead were chosen in order to still repro-
duce the phenomena within the constraints of a laboratory-scale
experiment. Exactly scaling the field problem onto the desktop
would have been impractical, but having validated the simulations
with our own experiments, this is something that can now be
probed numerically.

In Eq. (21) above, we provided an expression for I, as a function
of i and &,,. According to our scaling analysis in Section 4.3, the
dimensionless results reported above (e.g., the variation of I, on
&ar) should be unmodified for a wide range of materials and clear-
ances. To test this, we have performed 42 additional simulations in
the ranges 0.005 < &, < 0.068 and 0.002 < &, < 0.068. In Fig. 8,
we plot these numerical results of I, versus &, (squares) and
superpose the previous experimental and simulation results from

Fig. 4. From the dimensional analysis (Section 4.3) we expect I,
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Fig. 7. Normalized lock-up length, I;, as a function of normalized natural curvature,
Kn, for experiments (solid points) and simulation (hollow squares) for a constrain-
ing pipe D = 18.5 mm. The dashed line is Eq. (10) proposed by Zheng and Sarmad
(2005).
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Fig. 8. Results of 8 experimental averages (solid points) and 42 simulations (hollow
squares) with different combinations of (¢, &;) parameters. We plot I, normalized
by / against &,,, showing small changes in I,/ despite changing &, over the range of
0.005 < &, <0.068 in simulations. This agrees with our scaling analysis of
Section 4.3 which concluded that I, = f(&,,), with no dependence on ¢&,.

to be a function of ¢,,, but independent of &, such that all the
results should collapse onto a single curve provided by Eq. (21).
This collapse is indeed observed for the data in Fig. 8, which further
supports our scaling analysis and our modeling approach.

We recall that in our experimental data, the dimensionless
radial clearance lies in the range 0.015 < &5, < 0.076, whereas in
the field this parameter lies within 0.002 < &,, < 0.003 (shaded
region in Fig. 8). On the other hand, the simulations presented in
Fig. 8 vary across 0.002 < &,, < 0.076, which includes both the
field and laboratory cases. Given that excellent agreement is found
with Eq. (21), throughout, we conclude that what we have learned
through the laboratory experiments is directly relevant to the field
scale.

We have focused on the initiation of helical buckling in both
experiments and numerical simulations, except in the study of
the effect of k,, where lock-up was also considered. This was done
in order to maintain as much material independence in our results
as possible, in particular with regard to plasticity. In the first study
that analyzed the helical buckling of tubular structures within a
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cylindrical constraint, Lubinski and Althouse (1962) derived and
discussed an equation for the force needed to plastically deform
a helically buckled pipe, which is reproduced here for convenience
(with notation altered to be consistent with this paper):

_ Pﬁ n ODATP}H_

T0="4 a

(23)
where gy is the stress along the outer fiber of the tubing (which is
the region of maximum stress when the Coiled Tubing does not
have a pressure differential between its inner diameter and bore-
hole annulus), and other terms have been previously defined. The
first term of Eq. (23) corresponds to the axial stress from the applied
load and the second term is the bending stress associated with a
helical shape (with a pitch length defined by P, and helical radius
Ar).

If we consider Py, = P, = 2v2,/E% to be an estimate for the

axial load for Coiled Tubing in a horizontal wellbore (discussed
in Section 5.2), we can estimate the maximum stress in the
Coiled Tubing at the onset of helical buckling using typical material
properties and geometries of the oilfield (taken from Wicks et al.,
2008). We consider Coiled Tubing fabricated with a low-alloy car-
bon steel with OD=0.14m, ID=0.222m, Ar=0.041m,
=997 x 10°* m* A=0.0048 m?, E =207 GPa, and w=315N/m,
giving P,=356.2 kN, or ¢y = 125 MPa (corresponding to a maxi-
mum strain of € =0.06%). This stress is well below the yield
strength for steel used in Coiled Tubing, which is typically specified
to be in the range 379 < o, [MPa] < 620MPa (API, 1996), meaning
that the material remains linear elastic up to the initiation of heli-
cal buckling.

6. Conclusions

In summary, inspired by Coiled Tubing operations in the oil and
gas industry, we have developed a scaled model system to explore
the mechanical behavior of a rod injected into a horizontal cylin-
drical constraint, in the elastic regime, prior to plasticity effects
becoming important. Our efforts were centered on helical buckling,
with a focus on describing the total length of rod, I, that can be
injected into the horizontal constraint prior to helix initiation.
Helix initiation was chosen as a comparison due to the elastic nat-
ure of the buckling process up to that point, even in the field case.
The investigation combined experimental, numerical, and analyti-
cal approaches. The experimental results were found to be in good
agreement with existing theories, in particular regarding the
dependence of I, on radial clearance, despite the ad hoc nature of
the application of these theoretical predictions. We have also
demonstrated that the natural curvature of the rod can have a
strong effect on the lock-up length, past a critical value that is
yet to be fully rationalized.

The experimental results were also reproduced through
detailed computer simulations that involved no fitting parameters.
These simulations solved the dynamic Kirchhoff rod equations that
took into account twisting, bending, stretching, and shearing of the
rod and a careful treatment of the frictional contact between the
injected rod and cylindrical constraint.

Good agreement was found between simulations and experi-
ments, which indicated that the analytical model and the underly-
ing simplifying assumptions captured the essential ingredients of
the problem. A scaling analysis based on our dimensional dynamic
equations identified six dimensionless parameters that character-
ize the system. Furthermore, the dimensionless parameter
&ar = Ar/2, which compares the radial clearance with the buckling
wavelength, was identified as key to scaling the buckling geometry
from the field case to the desktop.

Future work should test how the proposed scaling analysis for
the field data compares with experiments and simulations.
Moreover, although this paper has addressed characterizing the
lock-up process, we hope that a similar approach may help
rationalize recent experiments (Miller et al., 2015) in which vibra-
tion was used to destabilize frictional contacts and delay lock-up.
This suggests opportunities for substantial gains in reach in hori-
zontal wellbores, which is of timely importance for the oil and
gas industry.
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