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platform for flexible devices[25–32] and mor-
phing structures.[33–36] Their interesting 
behaviors have been activated using a 
variety of strategies, including mechanical 
forces,[28,37,38] magnetic fields,[39] light,[40] 
heat,[41,42] prestressed substrates[43,44] and 
external pneumatic actuators.[30,31] Differ-
ently, here we introduce a kirigami com-
posite that can be used to create airtight 
inflatables (i.e., kirigami balloons). Our 
system comprises a kirigami plastic sheet 
(Figure 1a) embedded into a thin layer of 
elastomer (Figure 1b) and can be actuated 
pneumatically by injection of compressed 
air into the composite balloon. We show 
that the deformation of such balloons 
can be guided toward a target shape upon 
inflation by optimizing the geometry of 
the kirigami cuts. Remarkably, since we 
have control of the geometric features 

for each unit cell, the deformation of the inflatable can be pro-
grammed at the “pixel” level. This enables the realization of 
inflatables that mimic the target shape at different scales when 
guided by robust algorithms to optimize their design. While a 
few strategies have been proposed to control the deformation 
of kirigami,[25,38] these are lacking an inverse design approach. 
On the other hand, optimization strategies have been suc-
cessfully developed for the design of shape-morphing origami 
structures.[45–47] Unfortunately, these cannot be employed when 
designing kirigami structures as their degrees of freedom are 
different. Regarding kirigami, although a few approaches have 
been recently proposed for their optimization,[34,48,49] these all 
focused purely on geometry and did not consider elasticity in 
the systems. Differently, in our approach we fully account for 
the elasticity of the material and demonstrate how this results 
in an enlarged design space.

Kirigami, the Japanese art of paper cutting, has recently enabled the design 
of stretchable mechanical metamaterials that can be easily realized by 
embedding arrays of periodic cuts into an elastic sheet. Here, kirigami 
principles are exploited to design inflatables that can mimic target shapes 
upon pressurization. The system comprises a kirigami sheet embedded 
into an unstructured elastomeric membrane. First, it is shown that the 
inflated shape can be controlled by tuning the geometric parameters of the 
kirigami pattern. Then, by applying a simple optimization algorithm, the best 
parameters that enable the kirigami inflatables to transform into a family 
of target shapes at a given pressure are identified. Furthermore, thanks to 
the tessellated nature of the kirigami, it is shown that we can selectively 
manipulate the parameters of the single units to allow the reproduction of 
features at different scales and ultimately enable a more accurate mimicking 
of the target.

Very popular among children in the form of party balloons, 
inflatables have also been employed in science and engi-
neering to enable the design of a variety of systems, including 
temporary shelters,[1–3] airbags,[4,5] soft robots,[6–11] and shape-
morphing structures.[12–15] To design shape-changing inflat-
able structures, two main strategies have been pursued. 
On the one hand, load-bearing inflatable structures have 
been realized using inextensible membranes.[1–3,16] On the 
other hand, complex shape changes have been achieved by 
exploiting the flexibility of stretchable membranes with either 
optimized initial deflated geometry[15,17–19] or embedded rein-
forced components.[8,9,20–24]

Here, we use kirigami as a powerful tool to realize shape-
shifting structures that can mimic target shapes upon inflation. 
Kirigami metamaterials, realized by embedding arrays of cuts 
in elastic sheets, have recently shown great promise as design 
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To fabricate our kirigami balloons, we first embed a com
putationally designed array of cuts into a polyester plastic sheet 
(Artus Corporation, NJ, with thickness t  ≈ 76.2  µm, Young’s 
modulus E  = 4.33  GPa and Poisson’s ratio ν  = 0.4). Although 
our approach can be applied to any kirigami geometry, we 
consider a pattern of mutually orthogonal slits of width b 
(Figure 1d) since this particular pattern provides a wide range 
of tunability for the unit cell’s Poisson’s ratio (Figure S17, Sup-
porting Information). The selected unit cell has width L and 
height H and comprises four rectangular domains connected 
by hinges of width δ1 and δ2 (in the horizontal and vertical 
direction, respectively). Throughout the study we consider  
L  = 12 mm and δ2/L  = 0.03 as fixed parameters and tune the 
mechanical response of the unit cells by varying H/L ∈ [0.5 − 2.0] 
and δ1/L  ∈ [0.02 − 0.18]. To turn the kirigami sheet into an 
inflatable, we first roll it into a cylindrical shell and glue acrylic 
caps to both ends. Then we slowly rotate the kirigami shell in 
a bath of uncured silicone rubber (Ecoflex 00-50, Smooth-On, 
with initial shear modulus μ = 40.5 kPa) for 20 min. This forms 
a uniform coating with thickness t ≈ 0.5 mm that embeds the 
kirigami sheet completely (Figure 1c; Section S1 and Movie S1, 
Supporting Information). Once the elastomer is fully cured, we 
inflate the system by providing pressurized air and record the 
deformation with a digital camera (SONY EX100V).

To demonstrate the potentials of kirigami inflatables in 
Figures  1e,g we report experimental snapshots for three kiri-
gami balloons comprising nz = 20 and nφ = 8 unit cells in the 
axial and circumferential direction, respectively. In the first 
design, all unit cells are identical and characterized by δ1/L  = 
0.03 and H/L  = 0.5. As one would expect, upon inflation, this 
structure deforms homogeneously along its soft axis and mostly 
elongates (Figure 1e). However, by increasing δ1/L to 0.18 for a 

single column of unit cells, we transform the deformation mode 
from extension to bending and obtain a curved profile upon 
inflation (Figure 1f). Further, thanks to the tessellated nature of 
the kirigami, we can choose to distribute the unit cells with δ1/L 
= 0.18 on different columns within the structure and achieve 
a complex coupled bending-twisting deformation (Figure  1g; 
Movie S2, Supporting Information).The variation of the struc-
tures’ deformation over multiple loading cycles has also been 
tested and found negligible (Figure  S6, Supporting Informa-
tion). As such, these results highlight not only the flexibility and 
potential of our approach, but also the richness of the design 
space. In the remainder of this paper, we combine finite element 
(FE) analyses and optimization to efficiently explore the myriad 
of possible designs and identify spatially varying distributions of 
geometric parameters resulting in target shape changes upon 
inflation.

We start by focusing on the design of kirigami balloons that 
mimic target axisymmetric profiles upon inflation, such as the 
jar shown in Figure 2b. First, we use FE simulations to charac-
terize how local changes in hinge width δ1 and unit cell height H 
affect the macroscopic deformation of the system. Since the defor-
mation of our axisymmetric inflatables (for which all unit cells 
in each row are identical) can be obtained by superimposing the 
responses of the individual rows (Figure S11, Supporting Informa-
tion), we simulate a single unit cell with suitable boundary condi-
tions applied on its edges (Section S3.1, Supporting Information). 
In Figure  2a, we report the numerical evolution of the homo
genized axial (εz) and circumferential (εφ) strains as a function of 
H/L and δ1/L for unit cells with initial curvature κ = 2π/(nφL) =  
π/(4L) subjected to a pressure P  = 20 kPa. The contour plots 
indicate that εz is inversely proportional to both δ1/L and H/L, 
whereas εφ is mainly affected by H/L and increases monotonically 

Figure 1.  Kirigami inflatables. a) A kirigami sheet exhibits large deformation when stretched. b) Deformation of an elastomeric balloon upon inflation. 
c) Fabrication process. A kirigami shell is rotated in an uncured elastomer bath. Then, the uniformly coated kirigami shell is kept rotating until the 
elastomer is fully cured. d) Schematic of the kirigami pattern used in this study. e–g) Deformation of kirigami balloons with 20 × 8 unit cells when 
subjected to P = 20 kPa. Three design are considered with: e) all identical unit cells (with δ1/L = 0.03 and H = L/2); f) a single column of unit cells with 
δ1/L = 0.18; g) unit cells with δ1/L = 0.18 distributed on different columns. Scale bars = 30 mm.
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as H/L becomes larger. It is worth noticing that although  
these results were obtained with a fixed number of unit cells along 
the circumference, we can show that they also describe the defor-
mation of unit cells with arbitrary curvature κ subjected to a nor-
malized pressure P P κ= /  which equals to P  = 305.6 kPa mm for 
our selected parameters. In fact, unit cells with same δ1 and H but 
different curvature κ experience the same state of deformation if 
subjected to the same normalized pressure P  (Section S3.3, Sup-
porting Information).

Once we understand how the geometrical features affect 
the deformation of the unit cells upon inflation, we can search 
for arrangements that minimize the mismatch between the 
shape of the kirigami balloon inflated at a normalized pressure 
P = 305.6 kPa mm and a target surface of revolution defined by 
a profile  (Figure 2b). To identify the optimal height of the ith 
row of unit cells, Hi, and the corresponding ligament width, iδ1, 
we minimize

z H d r z
H

n

i

n
i i

i i

z

z

Z AA ∑= − +  
δ

{ }arg min | | ( , ),
,1 �

(1)

where H is the total height of the target profile and d xx [ , ] 
represents the distance between a point with coordinates xx  
and the closest point on the target profile.[50] Moreover, ri and 
zi denote the radial and axial coordinates of the center point of 

the ith row of unit cells in the inflated configuration, which are 
given by

r
n Li i

π
ε= +φ

φ
2

(1 )
�

(2)

and

z
H

Hi
i

z
i

j

j

i

z
j∑ε ε=

+
+ +

=

−(1 )

2
(1 )

1

1

�
(3)

Note that iεφ and z
iε  are the homogenized circumferential and 

axial strain the unit cells undergo in the ith row upon inflation, 
which, for each evaluation of the objective function, are obtained 
by linearly interpolating the FE results of Figure 2a. Finally, we 
solve the optimization problem described by Equations (1)–(3) 
using a Matlab implementation of the Nelder–Mead simplex 
algorithm with bounds applied to all variables (i.e., we impose 
Hi/L ∈ [0.5 − 2.0] and Liδ ∈ −/ [0.02 0.18]1 ).[51]

In Figure 2c, we show an inflatable kirigami designed with 
nz = 10 and nφ = 25 that mimics the jar of Figure 2b when sub-
jected to a pressure P = 6.4 kPa (resulting in P = 305.6 kPa mm). 
Note that the parameters nz and nφ define the resolution of the 
programmed deformed shape. We explore different combina-
tions of nz and nφ (Figure S12, Supporting Information), and 
choose the one that provide a small mismatch from the target 

Figure 2.  Targeting axisymmetric profiles. a) Evolution of the axial strain, εz, and the circumferential strain, εφ, as a function of δ1/L and H/L for unit 
cells with initial curvature κ = 2π/(nφL) = π/(4L) subjected to a pressure P = 20 kPa. b) A jar is selected as target profile. c) Schematic of axisymmetric 
profile optimization model. d) Optimal design for an inflatable with nz = 10 and nφ = 25 that mimics the jar when subjected to a pressure P = 6.4 kPa 
(Table S1, Supporting Information). e–f) Snapshots of the optimized design after pressurization. The orange line indicates the target profile. Both  
FE (e) and experimental (f) results are shown. Scale bars = 30mm.
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shape without complicating the fabrication process. As shown 
in Figures  2d, the solution identified by the algorithm for 
nz  = 10 and nφ  = 25 comprises unit cells with large height H 
between the third and sixth rows (to maximize the radial expan-
sion) and with large δ1 in the seventh, eighth and ninth row (to 
minimize both axial and circumferential strains). We find that, 
using the optimized set of parameters, both the FE simulations 
and the physical samples closely mimic the target shape upon 
inflation (Figure 2e,f; Movie S3, Supporting Information), con-
firming the validity of our approach.

Next, we demonstrate how to design kirigami balloons that 
mimic a planar curvilinear path   upon inflation. A bending 
deformation requires unit cells with different geometric features 
to be arranged in the same row of the kirigami pattern. There-
fore, guided by the results of Figures  1f and 2a, we design the 
ith row of the kirigami to include one unit cell with H/L = 0.5 
and δ1/L = 0.18 (shown in purple in Figure 3a) and (nφ − 1) unit 
cells with the same height (i.e., with H/L = 0.5) and variable Liδ /1  
(shown in green in Figure  3a). However, since the coexistence 
of different unit cells on the same row of the kirigami causes 
non-negligible coupling between these units in the circumferen-
tial direction, we cannot directly use the results of Figure 2a to 
predict the effect of iδ1 on the bending deformation (Figure S13, 
Supporting Information). Instead, we simulate a full ring with 
nφ = 8 when subjected to P = 20 kPa (Section S3.2, Supporting 
Information) and extract the axial strain εz and the bending 
angle Δθ (Figure  3a). In Figure  3b, we show the evolution for 
both εz and the Δθ as a function of δ1/L. The results indicate 
that, as the hinge width δ1 increases, both εz and Δθ monotoni-
cally decrease (i.e., the bending deformation become smaller).

To identify the design of a kirigami balloon that mimics a 
prescribed planar curvilinear path   upon inflation (Figure 2c), 
we assume that the final shape of the inflated kirigami struc-
ture can be captured by linearly combining the response of nz 
rings. We then determine both the optimal iδ1 for the ith row 
and the location of the stiffer unit cell (with δ1/L = 0.18) in the 
ring by using the Melder–Nelson algorithm with bounds.[51] 
Specifically, we minimize
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Note that the angle φi points at the location of the stiffer cell 
within the ith ring (Figure 3a). It is worth noticing that in the 
case of 2D curvilinear paths (as those considered here), this 
angle can only assume two values: φi = 0 or φi = π. In fact, our 
model outputs φi  = 0 if, for the ith ring, the bending angle 
Δθ defines a positive curvature (e.g., the third segment in 

Figure 3.  Targeting curvilinear paths. a) Schematic of a kirigami ring comprising one unit cell with H/L = 0.5 and δ1/L = 0.18 (shown in purple) and 
nφ – 1 = 7 unit cells with H/L = 0.5 and δ1/L < 0.18 (shown in green). The deformation of the ring can be characterized by the axial strain εz and the 
bending angle Δθ. b) Evolution of axial strain εz and bending angle Δθ as a function of the normalized hinge width δ1/L for a ring with initial curvature 
κ = π/(4L) subjected to a pressure P = 20 kPa. c) A hook is chosen as target shape. d) Schematic of curvilinear path optimization model. e) Optimized 
design for an inflatable with nz = 50 and nφ = 8 that mimics the hook when subjected to a pressure P = 20 kPa (Table S2, Supporting Information).  
f,g) FE and experimental snapshots of the optimized inflatable kirigami structure when subjected to a pressure P = 20 kPa. Scale bar = 30 mm.
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Figure  3d) and φi  = π if defines a negative curvature (like the 
first and second segments in Figure 3d).

In Figure 3e, we consider an inflatable design with nz = 50  
and nφ  = 8 that mimics the shape of the hook shown in 
Figure  3c when subjected to a pressure P  = 20 kPa (resulting 
in P = 305.6 kPa mm). As shown in Figures  3f and 3g, using 
the optimized design, both the FE simulation and the experi-
mental model morph from a cylinder to the target hook path 
upon inflation (Movie S4, Supporting Information).

While in Figures  2 and 3, we focused on inflatable that 
purely expand or bend, the combination of these two classes of 
deformations enables the mimicking of a multitude of shapes. 
As an example, let us consider the squash shown in Figure 4a 
as target shape. First, we focus on top portion of the fruit, 
which predominantly bends, and use Equation (4) to identify 
the optimal geometric parameters for the corresponding part of 
the kirigami balloon (Figure 4b, top). Second, we consider the 
bottom part of the squash, which follows an axisymmetric pro-
file, and use Equation (1) to design the corresponding kirigami 
pattern (Figure  4b, bottom). However, the resulting optimized 
design does not closely match the target shape (Figure  4c). 
Specifically, while the top part of the fruit is successfully 
reproduced by the optimized inflatable, this fails to mimic  
the localized bulges near the tip. Moreover, the expansion of the 
optimized balloon in the lower part is physically limited in the 
radial direction, resulting in an unsatisfactory transformation.

Nevertheless, we can overcome both limitations by manipu-
lating the geometrical features of the unit cells even more. For 
example, by removing entire unit cells from the top part of the 
kirigami pattern (see region highlighted in blue in Figure 4d), 
we are able to obtain localized regions that bulge upon infla-
tion, mimicking the real features of the fruit (Figure  4d, top). 

Following the same strategy, we can also improve the circum-
ferential stretchability of the bottom part of the structure by 
selectively removing strips from the kirigami sheet. To deter-
mine the width of these sacrificial portions, we first quan-
tify the circumferential strain that a strip of elastomeric 
material undergoes at a pressure of P  = 10 kPa (resulting in  
P = 305.6 kPa mm, since in our design nφ = 16). We assume that 
such strip behaves as an inflated thin elastomeric cylindrical 
balloon with axial expansion constrained by the kirigami and 
obtain its circumferential strain, εφ

e, by solving[52,53] (Section S4,  
Supporting Information)
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where λ ε= +φ φ 1e e  and εz is the axial strain of the kirigami (which 
is provided in Figure  2a). Moreover, t and r denote the thick-
ness and radius of the strip in the undeformed configuration 
(for our design r = nφL/(2π) = 30.56 mm and t = 0.5 mm) and 
Ŵ e is the strain energy function used to captured the response 
of the rubber (in this study we use a Gent model[54]). Once εφ

e 
is obtained, the circumferential strain εφ

tot of a kirigami unit cell 
with a removed elastomeric strip of width we can be estimated 
as
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where εφ is the circumferential strain of the kirigami unit cell, 
also provided in Figure 2a.

To find the optimum we for our balloon, we focus on 
the kirigami row that is closest to the squash’s maximum 

Figure 4.  Targeting complex shapes. a) A squash is chosen as target shape. The flowchart instructs on the steps to follow in order to optimize for both 
non-axisymmetric and axisymmetric parts. b) Optimized design for an inflatable with nz = 39 and nφ = 16 that mimics the squash when subjected to a 
pressure P = 10 kPa (Tables S3 and S4, Supporting Information). The geometric parameters for the top 23 rows are identified using Equation (1), while 
those for the bottom 16 rows are obtained using Equation (4). c) Numerical snapshot of the optimized design after pressurization. The shape of the 
fruit is not fully captured. d,e) To improve the design we further manipulate the unit cell and remove portions of the kirigami pattern. The bulges can 
be obtained by removing entire unit cells at the desired location and the circumferential strain in the bottom part can be increased by removing strips. 
Both FE (d) and experimental (e) snapshots of the kirigami inflatable show improved mimicking of the target. Scale bar = 30 mm.
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circumference (7th row with H  = 24 mm and δ1/L  = 0.03). 
For this specific unit εz  = 0.054 and εφ  = 0.428, which results 
in ε =φ 3.59e  according to Equation (7). Further, since we must 
reach ε =φ 1.094tot  in the 7th row upon inflation, we obtain  
we = 2.53 mm from Equation (8). Guided by these calculations, 
we use FE simulations to predict how the response of a kiri-
gami unit cell is affected by the removal of a kirigami strip of 
width we = 2.53 mm. We find that the deformation of the inflat-
able in the axial direction is strictly coupled with the location of 
the removal within the unit cell (Figure S15a, Supporting Infor-
mation). Since our objective is to achieve the target εφ

tot without 
compromising εz, we next consider two neighboring unit cells 
and remove a strip of width 2we from one, while leaving the 
other intact. The results for this case improve considerably 
(Figure S15b, Supporting Information). However, if the width 
of the elastomeric strip is kept constant in all rows, the inflated 
balloon fails to match the squash profile as the radial expansion 
is almost constant along the length (Figure S16c, Supporting 
Information). To further improve the response of our balloon, 
we choose we to vary in each row. Specifically, we assume that 
w Li iδ= −2 /2 2e 1 (note that w = 2.64e

7  mm, which is very close to 
the analytically calculated value), since this enables us to incor-
porate the information from our optimization algorithm and 
fabricate the inflatable by simply removing the hinges high-
lighted in blue in Figure  4d. Results for this final design are 
shown in Figures  4d and 4e and show that our design nicely 
mimic the target shape upon inflation—including the local-
ized bulges on the top part of the bending balloon—in both 
the FE model and the physical prototype (Movie S5, Supporting 
Information). Further, to demonstrate that our approach is gen-
eral and can be used to mimic a range of shapes, we report an 
optimized design for a cylindrical structure that morphs into a 
calabash in Figure S19, Supporting Information.

To summarize, in the present work we introduced the con-
cept of kirigami inflatables, shape-morphing systems that 
combine a kirigami shell and an elastomeric membrane. We 
showed that the kirigami shell drives the global deformation of 
the inflatable and that we can control this deformation by care-
fully designing its geometric features. We demonstrated this by 
creating inflatable kirigami balloons that can mimic a variety of 
axisymmetric shapes and curvilinear trajectories and also cap-
ture local features such as bulges. This multiscale mimicking 
is enabled by the tessellation nature of the kirigami metamate-
rial, which allows to easily tweak the local parameters—or even 
remove parts of the design—to boost the deformation locally. 
Although our approach enable us to reproduce a variety of tar-
gets, there are limitation to the shapes one can mimic. First, 
the maximum radial expansion of the kirigami balloons upon 
inflation is limited to 1.43 times the initial radius, using the 
data set shown in Figure  2a. This limitation can be enlarged 
by using the removal approach through the semi-analytical 
model. Additionally, the maximum axial extension upon infla-
tion is 1.46 times of the initial length. It is worth noticing that 
a bending kirigami balloon present a upper limit on the max-
imum achievable curvature (e.g., 14.4 1/m for rings with 8 unit 
cells with L = 12 mm). However, increasing the number of unit 
cells per unit length of the target provides more feasibility to 
mimic curvilinear path with larger curvature. Furthermore, 
the kirigami structure can not mimic convex surfaces in the 

circumferential direction (e.g., the ridges on the squash). In 
principle, inflatable structures are not able to form ridges upon 
inflation without additional constraints (e.g., internal strings or 
braces). Last, it should be noticed that we only used cylinders 
as starting deflated shape for our structures. This limits our 
approach to the mimicking of shapes within the same “family,” 
compatibly with the mechanical limitations of the structures. 
However, the approach is expandable to other initial shapes, 
conditionally to the rerunning of the database of solution for 
the new unit cells and super cells. As such, our work pro-
vides a new platform for shape-morphing devices that could 
support the design of innovative medical tools, actuators and 
reconfigurable structures.
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Supporting Information is available from the Wiley Online Library or 
from the author.
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S1. Fabrication

Our kirigami balloons comprise a thin kirigami sheet embedded into an
elastomeric cylindrical shell.

S1.1. Kirigami sheets

The kirigami sheets are fabricated by laser cutting an array of cuts into
polyester plastic sheets (Artus Corporation, NJ) with thickness ∼ 76.2µm,
Young’s modulus E = 4.33 GPa and Poisson’s ratio ν = 0.4. In this study we
consider a pattern of orthogonal rectangular cuts which introduces a network
of rectangular domains connected by hinges of width δ1 and δ2 (see Fig. S17).
In all our analyses and experiments, we consider a unit cell with width L = 12
mm, vertical hinges with width δ2 = 0.03L and cuts with width b = 1.5 mm.
We tune the mechanical response of the system by varying the height of the
unit cell (we consider H ∈ [0.5 ∼ 2.0]L) and the width of the horizontal
hinges (we consider δ1 ∈ [0.02 ∼ 0.18]L). Note that in our design the cuts
are considerably wider than in classic kirigami cuts. This is necessary in
order to allow the elastomer to infiltrate in the slits and thereby generate a
membrane that can support large deformations during inflation.

Figure S1: Kirigami unit. Schematic of our kirigami pattern with geometric parameters.

S1.2. Kirigami balloons

To make our kirigami cylinders inflatable, we embedd them into an elas-
tomeric shell made out of Ecoflex (EcoflexTM 00-50, Smooth-On, PA) pre-
pared by mixing the two components provided in the package in a 1:1 weight
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ratio with a centrifugal mixer (ARE 310, Thinky, CA). In this Section, we
first describe our method for fabricating balloons with kirigami sheets that
are fully connected and then focus on the case of kirigami sheets with dis-
connected islands.

Balloon based on fully connected kirigami sheets. To fabricate a
balloon based on a fully connected kirigami sheet we start by rolling the
kirigami sheet to form a cylinder and use needles to facilitate the alignment
of the two opposite edges (Figures S2a and b). The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S2c).
Once the shell is ready, two acrylic caps are glued to the cylindrical ends
using the same glue (Figure S2d). Finally, the elastomer is poured in a tray
to form a shallow bath in which the kirigami shell is manually rotated in the
elastomeric for 20 mins in order to assure a uniform coating of the plastic
surface ( Figure S2e). The kirigami balloon is kept on constant rotation for
∼ 4 hours until the elastomer is completely cured (Figure S2f). Note that
the entire fabrication process is shown in Supporting Movie S1.

Figure S2: Fabrication of inflatables based on fully connected kirigami sheets.
(a) The kirigami pattern is laser cut into the polyester sheet. (b) The two edges of the
sheet are brought together using needles to facilitate alignment. (c) The two edges are
glued together using ethyl 2-cyanoacrylate glue. (d) Two acrylic caps are glued to the
cylinder ends. (e) The kirigami shell is manually rotated in a elastomeric bath for 20
mins. (f) The kirigami shell is mechanically rotated until cured.

Balloon based on kirigami sheets with disconnected islands. To
fabricate a balloon based on a disconnected kirigami sheet with islands, we
start by casting an elastomeric layer with thickness of about 0.3 mm. In
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Figure S3: Fabrication of inflatables based on disconnected kirigami with is-
lands. (a) The first elastomer layer is created. (b) The kirigami pattern is laser cut into
the polyester sheet positioned on top of the elastomer layer. (c) The cut-out pieces are
removed. (d) The second plastic frame is applied and the second elastomer layer is added.
(e) After the curing process is completed, the kirigami inflatable structure is obtained. (f)
The two edges of the sheet are brought together using needles to facilitate alignment and
glued together using ethyl 2-cyanoacrylateglue. (g) A layer of elastomer is deposited on
the inside of the cylindrical shell at the connection between the two edges. (h) The same
is repeated on the outside of the cylindrical shell. (i) Two acrylic caps are glued to the
cylinder ends and sealed with a layer of elastomer.
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order to achieve this, a plastic frame (0.4 mm thick) is clamped on a thicker
acrylic sheet (6.35 mm thick) and it’s positioned on a flat surface. The
elastomer is then poured inside the plastic frame and it equally distributes
under gravity filling the frame up to the border (Figure S3a). After the
elastomer has cured, the frame is placed in the laser cutter and a polyester
plastic sheet is positioned on top of it. At this point an array of cuts is
laser-cut into the plastic sheet to form the kirigami structure (Figure S3b).
Note that the laser does not cut through the elastomer and that, since the
polyester sheet adheres to the elastomer, all the kirigami cells stay in place
once cut. For this reason, the cut-out pieces have to be removed by hand
after the cutting (Figure S3c). Afterwards, a second plastic frame (0.4 mm
thick) is clamped on top of the previous one (locking the kirigami sheet in
place) and a second layer of elastomer is casted on top of the kirigami sheet
(Figure S3d). After the second layer is cured and the kirigami plastic sheet is
completely embedded in the elastomer, the framing is removed (Figure S3e).
The composite sheet is then rolled into a cylindrical shell using needles to
facilitate the alignment of the two opposite edges. The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S3f). This
is possible since no elastomer is present on the two edges, since the edges of
the kirigami sheet got clamped between the two plastic frames to prevent
deposition of elastomer on them. Once the gluing process is completed a
layer of elastomer is deposited on the inside of the cylindrical shell where
the two edges are connected (Figure S3g). To assure a uniform thickness in
this area, the elastomer is levelled by scraping off the superfluous material
that overflows outside the groove created by the previously cured elastomer.
The same process is repeated on the outside of the cylindrical shell (Figure
S3h). Once the shell is ready, two acrylic caps are glued to the cylindrical
ends Figure S3i). The two ends are also covered by an additional layer of
elastomer to assure that they are air-tight.

S2. Experiments

In our experiments we use both air and water to inflate the kirigami
balloons. Specifically, the shape mimicking experimental results reported in
Figures 1e-g, 2f, 3g and 4e are obtained by inflating the structures with air,
whereas the experimental validations shown in Figure S4 are obtained by
inflating them with water to avoid compressibility of air.
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Inflation with air. For the shape morphing mimicking, we use air to in-
flate the kirigami structure to a target pressure. Specifically, we connect
our inflatable system to an air line through a tube and use a pressure reg-
ulator (B74G-4AK-AD3-RMN, IMI Norgren Inc) to regulate the air pres-
sure. The pressure inside the structure is monitored by a pressure sensor
(MPXV7025DP, Freescale Semiconductor Inc) and slowly increased until the
target pressure is reached. During the tests the deformation of the structures
is recorded by a high-resolution camera (SONY EX100V) at a frame rate of
30 fps.

Inflation with water. When using water to inflate the balloon, we sub-
merge the entire structure in a water tank to eliminate the influence of gravity
and compressibility of air. We first fill the balloons with the amount of wa-
ter corresponding to the initial volume of the cavity. Then, we use a syringe
pump (Pump 33DS, Harvard Apparatus) to displace an additional volume of
water ∆V into the balloons at 20 mL/min and record the pressure using a
pressure sensor (MPXV7025DP, Freescale Semiconductor Inc). During these
tests we record the motion of the structures using a high-resolution camera
(SONY RX100V) at a frame rate of 30 fps and extract their local defor-
mation using an open-source digital image correlation and tracking package
[1]. Specifically, we track the position of 9 markers uniformly placed along
the length of the cylindical balloons (Figure S4a and e) and use these data
to characterize both the evolution of the axial strain and the curvature as a
function of ∆V. Focusing on the i-th and (i+1)-th markers (with i = 1, ..., 8),
the axial strain εz (of the central line) is calculated as

εz =
zi+1 − zi
Zi+1 − Zi

− 1, (S1)

where zi and Zi denote the coordinate in z-direction of the i-th marker in the
deformed and undeformed configuration, respectively. As for the curvature
of the structures, we obtain it by fitting a circle to the (xi, zi) data points
(with i = 1, ..., 9 - xi denoting the coordinate in x-direction of the i-th marker
in the deformed configuration) via a direct least-square algorithm[2].

In Figure S4 we show experimental results for two kirigami balloons. In
the first design, all unit cells are identical and characterized by δ1/L = 0.03
and H/L = 0.5. As one would expect, this structure deforms homogeneously
upon inflation and mostly elongates. In particular, we find that the axial
strain linearly increase with the applied pressure (see Figure S4d). However,
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by increasing δ1/L to 0.18 for a single column of unit cells (purple unit
cell in Figure S4e), we transform the deformation mode from extension to
bending and obtain a curved profile upon inflation (Figure S4f). Further,
by monitoring the deformation of the actuator, we find that the curvature
increases almost linearly with the applied pressure (see Figure S4h).

Figure S4: Deformation of kirigami balloons. a-d) Axisymmetric deformation of a
structure that consists of identical unit cells (H = 0.5L, δ1 = 0.03L and nφ = 8). e-h)
Non-axisymmetric deformation of a structure that consists of 7 columns of unit cells with
H = 0.5L and δ1 = 0.036L and 1 column of unit cells with H = 0.5L and δ1 = 0.18L. The
plots in d) and h) report the axial strain and the curvature against pressure, respectively,
for the experiments, the unit cell/super-cell simulations and the full structure simulations.
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Figure S5: Ecoflex 00-50. From left to right: Experimental and numerical snapshots
of the uniaxial test conducted to characterize the mechanical response of Ecoflex 00-
50. Comparison between the force - strain curves measured in our experiments (solid
line) and predicted by our FE simulations when using a Gent model with µ = 40.5 kPa
and Jm = 20.5 (dashed line). The material parameters are derived by fitting the force-
displacement curves of experiments and FE simulations via the least square method.
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The variation of the structures’ deformation over multiple loading cycles
has also been tested in Figure S6. The results show the resilience of the
kirigami balloons to multiple cycles. We cyclically inflated an extending
actuator and tracked the axial strain over different cycles. We noticed a
negligible change in the strain value when P = 20 kPa, from 0.43 in the
first cycle to 0.47 after 70 cycles. We also cyclically inflated the structure in
Figure 2a (main manuscript) and show that the profile variation over multiple
cycles is negligible (with P = 6.4 kPa).

Figure S6: Examples of cycling tests on kirigami balloon. a) Cycling testing of
an extending kirigami balloon with nz = 20, nφ = 8, H/L=0.5 and δ1/L=0.03. The
axial strain εz at P = 20 kPa is reported per number of cycles. b) Cyclic testing of the
optimal design for an inflatable with nz= 10 and nφ = 25 that mimics a chosen jar when
subjected to a pressure P = 6.4 kPa. Experimental snapshots and profiles of the structure
are reported for different cycles at P = 6.4 kPa.
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S3. Finite Element analyses

To get a better understanding of how the inflatable kirigami actuators
deform upon inflation, we conduct finite element (FE) simulations using the
commercial package ABAQUS 6.14/Standard [3]. In all our analyses, we
model the inflatable kirigami structure as a cylindrical shell and discretize
the portion of the shell on which there is the plastic sheet (used to realize the
kirigami sheet) with four-node general-purpose shell elements with reduced
integration and hourglass control (S4R element type) and that where there
is only elastomer (i.e. the gaps of the kirigami) with three-dimensional, four-
node membrane elements (M3D4 element type). Guided by experiemntal
mearments, the thickness of the shell and membrane elements are set as
76.2µm and 0.5mm, respectively. Moreover, since the plasticity of the sheet
has little effect on the behavior of kirigami balloon, the response of the
kirigami sheet is captured using a linear elastic material model (with E =
4.33GPa and ν = 0.4). For the elastomer instead we use an incompressible
Gent material model [4] with strain energy density function W given by

W = −µJlim
2

ln

(
1− I1 − 3

Jlim

)
, (S2)

where µ and Jlim represent the small strain shear modulus and a material
parameter related to the limiting stretch, respectively, and I1 = tr(FTF),
F being the deformation gradient. We find that the response of Ecoflex is
accurately captured using µ = 40.5 kPa and Jlim = 20.5 (Figure S5). An in-
house ABAQUS user subroutine (UHYPER) is used to define the hyperelastic
material behavior given by Eq. [S2] in the FE simulations.

The response of the structures is simulated conducting non-linear static
simulations (*STATIC module in ABAQUS with NLGEOM on). To facilitate
convergence we also add volume-proportional damping to the model (using
the option STABILIZE in ABAQUS) and set the dissipated energy fraction
equal to 2e-4 and the maximum ratio of stabilization to strain energy equal
to 0.05.

We start by conducting full 3D FE simulations of our kirigami structure.
To remove rigid body translations and rotations, we fix all nodes located
on the top surface. Further, since all the kirigami inflatables considered
in this work (except the one reported in Figure 1g of the main text) are
symmetric with respect to the x-z plane, we only simulate half structure
and apply symmetric boundary conditions to all node on the two vertical
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edges (i.e. we impose U2 = UR1 = UR3 = 0, where U2 is the displacement
in y direction and UR1 and UR3 denote the rotational degrees of freedom
in x and z directions, respectively). All 3D models are inflated via a fluid
cavity interaction with an hydraulic fluid (of density ρ = 1000 kg/m3 and
bulk modulus B = 2.2 GPa). The volume-controlled inflation is driven by a
fictitious thermal expansion of the hydraulic fluid, relating to the change in
volume ∆V in the cavity through

∆V

V cav
0

= 3αT∆T, (S3)

where ∆T is the change in temperature, αT is the coefficient of thermal
expansion of the fluid and V cav

0 is the initial volume of the cavity. In the
simulations, we set αT = 1 [1/K] and gradually increase the temperature
∆T until 0.1.

To validate the FE models we simulate the two designs shown in Figure
S4a and e, and compare the predicted axial strain-pressure (Figure S4e) and
curvature-pressure relations (Figure S4e) with those measured in our exper-
iments. The great agreements between experiments and simulations confirm
the accuracy of our model. However, since the full structure simulations are
computationally expensive, to characterize the design space we use simula-
tions based on unit cells and super-cells. The details of these simulations are
presented below.

S3.1. Kirigami inflatables that mimic axisymmetric profiles

In this Section we provide details for the simulations that we conduct to
facilitate the design of kirigami inflatables that mimic axisymmetric profiles.

Unit cell analysis. To reduce the computational cost, we consider a curved
unit cell (see Figure S7) and apply the following periodic boundary conditions
on its four edges

uLi
α = uRi

α ,

θLi
α = θRi

α ,

uTiα = uBi
α + uOα ,

θTiα = θBi
α , i = 1, 2, ...N (S4)

where ujα and θjα (α = ρ, φ, z and j = Li, Ri , Ti, Bi) are respectively the
displacement and rotational degrees of freedom in the radial (ρ), circumferen-
tial (φ) and axial (z) directions of the i-th pair of nodes periodically located
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Figure S7: Schematic of the unit cell.

on the right (R), left (L), top (T) and bottom (B) edges of the unit cell.
Moreover, uOα denotes the displacement in α-direction of a reference point
O that is used to apply the loading and N is the number of pairs of nodes
periodically located on the boundary of the unit cell.

The unit cell is loaded by applying a pressure P (with P ∈ [0, 20] kPa)
directly on its inner surface. Moreover, to account for the pressure acting on
the two caps of the balloons, a concentrated force in axial direction is applied
to the reference point O with magnitude

Fz = AP, (S5)

where A is the cross-sectional area of the circular sector defined by the unit
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

In Figure S4d we compare the predictions of our unit cell analyses (for
a unit cell with H = L/2 and δ1/L = 0.03) with the corresponding results
obtained when simulating the entire structure. The great agreement between
the two sets of data confirm the validity of our unit cell analyses.

Super-cells comprising nz × 1 unit cells. To validate the results of our
optimization algorithm, we consider super-cells comprising nz × 1 unit cells
and apply the following periodic boundary conditions to their left and right
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edges

uLi
α = uRi

α ,

θLi
α = θRi

α , i = 1, 2, ...N (S6)

where N denotes the number of pairs of nodes periodically located on the
boundary of the unit cell and ujα and θjα (α = ρ, φ, z and j = Li, Ri) are
respectively the displacement and rotational degrees of freedom in the radial
(ρ), circumferential (φ) and axial (z) directions of the i-th pair of nodes
periodically located on the right (R) and left (L) edges of the strip. Further,
we completely fix the bottom edge of the super-cell, whereas we allow the
top edge to move uniformly in axial direction (this is achieved by coupling all
degrees of freedom to a reference point O through a multi-point constraint).

As for our unit cell simulations, the super-cells are loaded by applying a
pressure P (with P ∈ [0, 20] kPa) directly on their inner surface. Moreover, to
account for the pressure acting on the two caps of the balloons, a concentrated
force in axial direction is applied to the reference point O with magnitude

Fz = AP, (S7)

where A is the cross-sectional area of the circular sector defined by the super-
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

S3.2. Kirigami inflatables that mimic curvilinear paths

In this Section we provide details for the simulations that we conduct
to facilitate the design of kirigami inflatables that mimic target curvilinear
paths.

Super-cells comprising 2 × nφ/2 unit cells. Since the coexistence of
different unit cells on the same row of the kirigami causes non-negligible cou-
pling between these units in the circumferential direction, we cannot directly
use our unit cell FE results to predict the effect of the kirigami geometry
on the bending deformation. Instead, we simulate a substructure compris-
ing 2 × nφ/2 unit cells (Figure S8) and a rigid cap connected to the top
(highlighted in blue in Figure S8). Note that the rigid cap is introduced in
order to capture the axial extension introduced by the applied pressure and
that we use two rings to minimize boundary effects (we extract the bending
deformation from the bottom ring).
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Figure S8: Schematic of our super-cells comprising 2 × nφ/2unitcells. Each ring
comprises two types of unit cell: cell I (shown in green - with H/L = 0.5 and δ1/L = 0.03)
and cell II (shown in purple - with H/L = 0.5 and δ1/L = 0.18). a) Schematic of our
model. b) Definition of the bending angle θ. c) Schematic of path B from which we extract
the curvature κb.

We define symmetric boundary conditions on all edges of the structure
(i.e. we impose U2=UR1=UR3=0 on the vertical edges and U3=UR1=UR2=0
on the bottom ones). To pressurize the super-cell, we apply a pressure load
P (0-20 kPa) directly on the inner surface of the structure.

Finally, from each simulation we focus on the bottom unit cell and extract
the axial strain, εz, and curvature, κb, of the central axis of the cylinder.
However, since we cannot extract the deformation of the central axis directly,
instead we focus on the path B defined as the intersection between the ring
and the bending symmetry plane plane y-z (see Figure S8c). We extract the
x and z coordinates of the path B before and after inflation and use them
to calculate its length in the deformed (h) and initial (H) states. We then
obtain the nominal axial strain εz as

εz =
h−H
H

. (S8)

Finally, to obtain the bending curvature κb upon inflation we fit the deformed
path B to a circle using the Pratt method [2]. Afterwards, the bending angle
of each ring is calculated as (see Figure S8b)

∆θ = (1 + εz)Hκb. (S9)

In Figure S4h we compare the predictions of our super-cell analyses (ring
with H = L/2, comprised by one unit cell with δ1/L = 0.18 and all other unit
cells with δ1/L = 0.03, nφ = 8) with the results obtained when simulating
the entire structure. The agreement between the two sets of data confirms
the validity of our super-cell analyses.
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S3.3. Effect of curvature on the results reported in Figures 2a and 3b

In all our parametric studies (whose results are reported in Figures 2a
and 3b of the main text) we consider nφ = 8 unit cells arranged along the
circumference of the cylinder. However, it is important to note that they
also describe the deformation of kirigami balloons with arbitrary curvature
κ subjected to a normalized pressure P̄ = P/κ = 4PL/π.

To demonstrate this important point, we first focus on kirigami balloons
that deform axisymmetrically. According to the theory of thin-walled pres-
sure vessels [5] the average stresses of these structures in axial (σ̄z) and
circumferential (σ̄φ) direction are given by

σ̄z =
πr2P

2πrt
=
P

κ

1

2t
,

σ̄φ =
2rHP

2Ht
=
P

κ

1

t
, (S10)

where t and r are the thickness and radius of the kirigami balloon, respec-
tively, and κ = 1/r denotes its curvature. Eqs. (S10) clearly indicate that
two inflatables with identical thickness t but different curvature κ experience
the same state of deformation if subjected to the same normalized pressure
P = P/κ. In Figure S9 we report the evolution of the axial strain (Figure
S9b) and circumferential strain (Figure S9c) as a function of the normal-
ized pressure P for kirigami balloons with H = 0.5L, L, 2L, δ1=0.03L and
nφ = 8, 12, 16. The results confirms the validity of our analysis since the me-
chanical responses of structures with the same kirigami pattern but different
curvature overlap.

Next, we focus on kirigami balloons that bends upon inflation. In Figure
S10 we report the evolution for both κb/κ and εz for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder
with nφ = 8 comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and
(nφ − 1) unit cells with the same height and variable δ1/L = (we consider
δ1/L = 0.03, 0.05 and 0.07) along the circumference. Differently, the struc-
ture with nφ = 16 comprises two neighbouring unit cells with H/L = 0.5 and
δ1/L = 0.18 and (nφ − 2) unit cells with the same height and variable δ1/L
(i.e. δ1 = 0.03, 0.05 and 0.07). Also in this case we find that the inflatables
with different curvatures κ (i.e. with different nφ) deform almost identically
for any given values of normalized pressure P̄ . Such good agreement indi-
cates that the results provided in Figure 3b of the main text provides a good
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Figure S9: Effect of curvature on kirigami balloons that deform axisymmetri-
cally. a) Schematic showing the average stresses in axial (σ̄z) and circumferential (σ̄φ)
direction.. b) Axial strain εz and c) circumferential strain εθ of unit cells with δ1/L = 0.03
and different curvatures κb = 2π/(nφL) as a function of the normalized pressure (P̄ ) for
H/L =0.5, 1 and 2.
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approximation to guide the design of structure with different number of cells
in the circumferential direction.

Figure S10: Effect of curvature on kirigami balloons that bend). Evolution for
a) κb/κ and b) εz as a function of the normalized pressure P̄ for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder with nφ = 8
comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and (nφ − 1) unit cells with
the same height and variable δ1/L = (we consider δ1/L = 0.03, 0.05 and 0.07) along the
circumference. Differently, the structure with nφ = 16 comprises two neighbouring unit
cells with H/L = 0.5 and δ1/L = 0.18 and (nφ − 2) unit cells with the same height and
variable δ1/L (i.e. δ1 = 0.03, 0.05 and 0.07).
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S4. Analytical model to estimate εeφ

In Figure 4d of the main text we show that to improve the circumferential
stretchability of our inflatables we can selectively removing strips from the
kirigami shell. To determine the circumferential strain of these sacrificial
portions, εeφ, we assume that such strips behave as inflated thin elastomeric
cylindrical balloons with axial expansion constrained by the kirigami and
derive an analytical solution. For such a membrane

rc = λeφr, tc = λert. (S11)

where r and t are the radius and thickness of the membrane in the unde-
formed/reference configuration and rc and tc denote the radius and thickness
of the membrane in the deformed/current configuration. Moreover, λer and
λeφ = 1 + εeφ denote the radial and circumferential stretches, respectively.
Further, if the membrane is made of an incompressible elastomeric material

λerλ
e
φλ

e
z = 1, (S12)

and the Cauchy stress can be derived as

σrr = λer
∂W e

∂λer
− p,

σφφ = λeφ
∂W e

∂λeφ
− p,

σzz = λez
∂W e

∂λez
− p,

(S13)

where λez is the axial stretch, W e(λer, λ
e
φ, λ

e
z) denotes the strain energy function

used to captured the response of the rubber (in this study we use a Gent
model - see Eq. (S2)) and p is the hydrostatic pressure. Since the thickness
of kirigami balloon is very small compared to the radius of the structure, we
then assume that a vanishing stress in radial direction (i.e. σrr = 0), so that

p = λer
∂W e

∂λer
. (S14)

Further, equilibrium in circumferential direction requires

P =
tc
rc
σφφ, (S15)
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where P is the internal applied pressure. Substitution of Eqs. (S13) and
(S14) into Eqs. (S15) yields [6]

P =
tc
rc

(
λeφ
∂W e

∂λeφ
− λer

∂W e

∂λer

)
, (S16)

which taking account of the incompressibility constraint reduces to

P =
tc
rc
λeφ
∂Ŵ e

∂λeφ
, (S17)

with Ŵ e(λez, λ
e
φ) = W e(λez, λ

e
φ, (λ

e
zλ

e
φ)−1) (so that λer∂Ŵ

e/∂λer = 0). Further,
by making use of Eqs. (S11) and (S12), Eq. (S17) can be rewritten as

P =
t

r
λer
∂Ŵ e

∂λeφ
=
t

r
(λezλ

e
φ)−1∂Ŵ

e

∂λeφ
, (S18)

Finally, since we assume that the axial expansion of the elastomeric strip is
constrained by the kirigami (i.e. λez = 1 + εz, where εz denotes the axial
strain of the kirigami sheet, which is provided in Figure 2a of the main text
as a function of geometric parameters), εeφ can be found by solving

P =
t

r
((1 + εeφ)(1 + εz))

−1∂Ŵ
e

∂λeφ
. (S19)

In particular, for the Gent material model used in this study

Ŵ e = −µJlim
2

ln

(
1−

(λeφ)2 + (λez)
2 + (λeφλ

e
z)

−2 − 3

Jlim

)
, (S20)

and Eq. (S19) specializes to

P =
Jlimµt

(
(1 + εz)

2(1 + εeφ)4 − 1
)

(1 + εz)
−1(1 + εeφ)−2

r
(
(1 + εz)2(1 + εeφ)2

(
Jlim − (1 + εeφ)2 + 3

)
− (1 + εz)4(1 + εeφ)2 − 1

) .
(S21)

which we solve to obtain εeφ. To validate our assumptions, in Figure S18, we
compare the predictions of εeφ and εez with δ1/L = 0.03 and different H/L
with the average strain of the strip obtained by simulating two neighboring
unit cells.
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S5. Additional numerical results

Figure S11: Axial coupling of unit cells in axisymmetric inflatables. a) We consider
an axisymmetric design (for which all unit cells in each row are identical) comprising 14×8
unit cells. All unit cells have δ1/L = 0.03 and normalized height H/L = 1.0, 1.5, 2.0, 1.5,
1.0, 0.67, 0.5, 0.5, 0.67, 1.0, 1.5, 2.0, 1.5, 1.0 (from bottom to top). b) Numerical snapshot
of the kirigami balloon when subjected to a pressure P = 20 kPa as predicted by our
super-cell simulations. c) Numerical snapshots of the unit cells used as building blocks
in the kirigami balloon when subjected to a pressure P = 20 kPa. d) Deformation of
the inflatable obtained by superimposing the responses of the individual unit cells. e)
Comparison between the profile of the inflated structure as predicted by our super-cell
(dashed orange line) and unit cells (black line) simulations.
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Parameters of the jar
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 0.4 0.48 0.37 0.41 0.36 0.36 0.84 0.84 0.74 0.36
H i(mm) 6.0 7.6 11.6 15.8 20.0 13.0 6.0 6.1 6.3 6.0

Table S1: Geometric parameters defining the kirigami balloon that best mimic
the jar shown in Figure 2b of the main text. Parameters identified by our optimiza-
tion algorithm to minimize the target function Z defined in Eq. (1) of the main text when
considering a design with 10 × 25 unit cells. The total height and radius of the kirigami
structure before inflation are 98.4 mm and 47.7 mm, respectively. Note that the row are
counted starting from bottom.
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Figure S12: Optimal designs for inflatables with nz×nφ uni cells that mimic the
jar when subjected to a pressure P = 6.4 kPa. In each panel we report the target
profile (orange line) and the position of the center of each row of unit cells when inflated
(green markers). Moreover, we show the minimum value of the target function Z as well
as the optimal values for δ1 and H in each row. We present results for (nz, nφ)= a) (5,
25), b) (10, 25), c) (15, 25), d) (10, 20) and e) (10, 30). The kirigami balloon best matches
the jar when nz = 10 and nφ = 25.
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Figure S13: Coupling of unit cells in bending inflatables. We consider a kirigami
balloon comprising 20×8 unit cells with H/L = 0.5. Each row of the kirigami includes
one unit cell with δ1/L=0.18 and (nφ − 1) = 7 unit cells with δ1/L=0.03. Experimental
snapshopt of the structure when subjected to P=20 kPa. The blue and orange lines
correspond to the reconstruction of the center line as predicted by our FE simulations
when modeling the structure as a linear combination of 1×nφ (ring) super-cells and single
unit cells, respectively. Note that the bending deformation of a ring super-cell can be
calculated using the axial strain, εz, and bending angle, ∆θ, reported in Figure 3b of
the main text. Differently, to estimate the bending deformation from the unit cells we
calculate the axial strain and bending angle of a ring as

εz =
ε
(o)
z + ε

(i)
z

2
, ∆θ =

h(i) − h(o)

r(i) − r(o)
, (S26)

where
h(i) = (1 + ε(i)z )H, h(o) = (1 + ε(o)z )H. (S27)

denote the height in the inflated configuration of the two types of unit cells that form

the ring and ε
(i)
z and ε

(o)
z are the corresponding axial strain (reported in Figure 2a of the

main text). Moreover, r(i) − r(o) denotes the diameter of the deformed ring which can be
estimated as

r(o) − r(i) =
(nφ − 1)(1 + ε

(o)
φ )L+ (1 + ε

(i)
φ )L

π
, (S28)

where ε
(i)
φ and ε

(o)
φ are the circumferential strain of the two types of unit cells that form

the ring (reported in Figure 2a of the main text). Substitution of Eqs. (S27) and (S28)
into Eq. (S26)b yields

∆θ =
(ε

(o)
z − ε(i)z )Hπ

(nφ − 1)(1 + ε
(o)
φ )L+ (1 + ε

(i)
φ )L

. (S29)
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Parameters of the hook
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 2.04 0.55 0.36 0.62 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 11 12 13 14 15 16 17 18 19 20
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 21 22 23 24 25 26 27 28 29 30
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 31 32 33 34 35 36 37 38 39 40
δi1(mm) 0.36 0.36 0.36 0.37 0.36 0.43 0.36 1.45 1.46 0.37
φi 0 0 0 0 0 0 0 π π π

i-th row 41 42 43 44 45 46 47 48 49 50
δi1(mm) 0.37 0.55 2.04 0.37 0.37 0.36 0.45 0.93 0.53 1.02
φi π π π π π π π π π 0

Table S2: Geometric parameters defining the kirigami balloon that best mimic
the hook shown in Figure 3c of the main text. Parameters identified by our op-
timization algorithm to minimize the target function Z defined in Eq. (4) of the main
text when considering a design with 50× 8 unit cells. The total height and radius of the
kirigami structure before inflation are 300 mm and 15.3 mm, respectively. Note that the
row are counted starting from bottom.
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Figure S14: Optimal designs for inflatables with nz×nφ uni cells that mimic the
hook when subjected to a pressure P = 20 kPa. In each panel we report the target
profile (orange line) and the position of the center of each super-cell when inflated (green
markers). Moreover, we show the minimum value of the target function Z as well as the
optimal values for δ1 and φ in each row. We present results for (nz, nφ)= a) (45, 8), b)
(50, 8) and c) (55, 8). The kirigami balloon best matches the hook when nz = 50 and
nφ = 8.

Geometries of the squash (top part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 17 18 19 20 21 22 23
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0

Table S3: Geometric parameters defining the kirigami balloon that best mimic
the top part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(4) of the main text when considering a design with 23 × 16 unit cells. The total height
and radius of the bending part before inflation are 138 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Geometries of the squash (bottom part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 1.87 2.0 1.88 0.58 0.42 0.42 0.36 0.37
H i(mm) 6 6 6 14 24 24 24 24

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.53 1.23 1.94 1.78 2.02 2.0 2.0 1.53
H i(mm) 24 21.2 16 6 6 6 6 6

Table S4: Geometric parameters defining the kirigami balloon that best mimic
the bottom part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(1) of the main text when considering a design with 16 × 16 unit cells. The total height
and radius of the bending part before inflation are 219.2 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Figure S15: Effect on deformation of the the removal of a kirigami strip. a)
We consider a unit cell with H/L=2 and δ1/L=0.03 and use FE simulations to predict
how its response is affected by the removal of a kirigami strip of width we = 2.53 mm.
We report the circumferential and axial strain for three different locations of the removal
(highlighted in blue in the schematics on the left). b) We consider two neighboring unit
cells with H/L=2 and δ1/L=0.03 and use FE simulations to predict how its response
is affected by the removal of a kirigami strip of width 2we = 5.06 mm. We report the
circumferential and axial strain for three different locations of the removal (highlighted in
blue in the schematics on the right).
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Figure S16: Effect on deformation of the the removal of a kirigami strip. a) FE
snapshot of the bottom part of the kirigami balloon when we remove a kirigami strip with
constant width 2we in axial direction from two neighboring unit cells. b) FE snapshot
of the bottom part of the kirigami balloon when we remove a kirigami strip with width
2wie = L/2 − 2δi1 from two neighboring unit cells. c) Comparison between the profile
of the squash and that predicted by our FE simulations when removing a kirigami strip
with constant width 2we = 5.06 mm (orange line) and 2wie = L/2 − 2δi1 (black dashed
line). The results indicate our design nicely mimics the target shape upon inflation when
2wie = L/2− 2δi1.
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Figure S17: Evaluations of axial and circumferential strain as a function of ap-
plied pressure for different kirigami patterns. a) Triangular cut patterns with length
L = 12 mm and different height (left: H = 0.258L, right: H = L), the circumferential
strain εφ is small for both cases. b) Linear cut patterns with length L = 12 mm and
different height (left: H = 0.25L, right: H = L), the height of the unit cell has remark-
able effect on axial strain εz but little effect on circumferential strain εφ. c) Orthogonal
cut patterns with L = 12 mm, δ1/L = 0.03 and different height (left: H = 0.5L, right:
H = 2L), one can tune the axial and circumferential strain easily by changing the height
of unit cells. nφ = 8 for all patterns.

S29



Figure S18: Evolutions of a) εeφ and b) εez as a function of H/L for unit cells
with δ1/L = 0.03. The results of solid lines are derived from Equation (S21) with the
assumption εez = εz and the results of dashed lines are the average strain of the elastomeric
strip obtained by simulating two neighboring unit cells.

Figure S19: Shape mimicking of a calabash. a) The target calabash has a axisymmet-
ric feature. b) Optimized geometries of the kirigami structure are identified using Equation
(1) in main text. c) Numerical snapshot of the optimized design after pressurization. The
shape of the target is not fully captured. d) Numerical snapshot of the structure with
further kirigami removed: width of the removed strip we = 2.17mm (from 3rd row to 7th
row), which is calculated from Equation (8) with εφ = 0.428, εeφ = 3.59 and εtot = 1.0.
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S6. Description of Supporting Movies

Movie S1

Fabrication of a balloon based on a fully connected kirigami sheet. Firstly,
the kirigami design is laser-cut from a polyester plastic sheet with thickness
∼ 76.2. Afterwards the kirigami is rolled into a cylindrical shell and the two
opposite edges are glued together. Two acrylic caps are also glued to the
kirigami cylinder. Afterwards the kirigami shell is rotated in a elastomeric
bath until the curing process is complete. Fabrication of balloons based on
disconnected kirigami with islands. Firstly the elastomer layer is created.
Then, the kirigami pattern is laser cut into the polyester sheet positioned on
top of the elastomer layer and the cut-out pieces are removed. Afterwards,
the second plastic frame is applied and a the second elastomer layer is added.
Once the curing process is completed, the kirigami composite material is
obtained. The two edges of the sheet are brought together using needles to
facilitate alignment and glued together using ethyl 2-cyanoacrylateglue. A
layer of elastomer is deposited on the outside and inside of the cylindrical
shell at the connection between the two edges. Finally two acrylic caps are
glued to the cylinder ends and sealed with a layer of elastomer.

Movie S2

Inflation of three kirigami balloons comprising nz = 20 and nφ = 8 unit cells
in the axial and circumferential direction, respectively. In the first design, all
unit cells are identical and characterized by δ1/L = 0.03 and H/L = 0.5, and
the structure deforms homogeneously upon inflation and mostly elongates.
However, by increasing δ1/L to 0.18 for a single column of unit cells, the
deformation mode changes from extension to bending. Further, distributing
the unit cells with δ1/L = 0.18 on different columns within the structure one
can achieve more complex coupled bending-twisting deformations.

Movie S3

Mimicking of axisymmetric profiles. The profile of a jar is targeted. Proceed-
ing by row, the morphological algorithm selects from the computed database
the unit cells that minimize the mismatch between the targeted profile and
the final deformation of the kirigami balloon at a given pressure. Once the
optimization process is completed the algorithm instructs on the geometrical
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parameters for each row so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial profile.

Movie S4

Mimicking of curvilinear paths. The morphological algorithm is used for a
hook shaped object, but because of the coupling between the units cells in
the ring arrangement, in this case a super-cell has to be considered as the
minimum building block. The algorithm selects the super-cells from a second
database and concatenate them together in order to minimize the mismatch
between the targeted shape and the predicted deformation. Once the op-
timization process is completed the algorithm instructs on the geometrical
parameters for each ring so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial curvilinear path.

Movie S5

Mimicking of complex shapes, squash example. The axisymmetric and curvi-
linear paths morphological algorithms are used in combination with an an-
alytical model in order to mimic the target. In this video we report the
inflation of the final design.
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