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This paper presents an analytical and numerical study on the dispersion properties of an
Euler–Bernoulli beam immersed in a steady fluid flow with periodic arrays of airfoil-
shaped vibration absorbers attached to it. The resonance characteristics of the airfoils
generate strong attenuation of flexural waves in the beam occurring at frequencies

and numerical tools are developed to investigate the effects of the incident flow on
the dispersion properties and the bandgaps of the system. Both steady and unsteady
aerodynamic models are used to model the lift force and the pitching moment acting on
the resonators and their effect on the dispersion relations of the system is evaluated.
Finally, an effective medium description of the beam is developed to capture its behavior
at long-wavelengths. In this regime, the system can be effectively considered as an acoustic
metamaterial with adaptive dispersion properties.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of wave propagation in periodic structures is receiving increasing attention because of the ability of these
systems to effectively filter elastic waves [1]. This is commonly achieved through the generation of bandgaps (or stop bands) –
frequency ranges of strong wave attenuation - which can be formed either by Bragg scattering [2–4] at high impedance
mismatch zones, or by introducing resonating units in a host structure [5–7]. While Bragg-type bandgaps typically occur at
wavelengths of the order of the unit cell size [8,2], locally resonant bandgaps arise in the vicinity of the natural frequency of
the resonating units [5] and are modestly affected by the spatial periodicity of the system. Because of this interesting property,
locally resonant structures have been proposed as acoustic barriers [9,10], vibration isolators [11] and noise suppression
devices [12,13] with particular emphasis on low frequency applications [14].

Motivated by all these applications, the response of structural elements such as rods [15,16], beams [17–19], and plates/
shells [20–22] with arrays of spring–mass resonators with single [23–25] or multiple [26–28] degrees of freedom has been
studied both numerically and experimentally [29], showing that remarkable wave attenuation characteristics can be
achieved. However, most of the configurations proposed so far operate at fixed frequency ranges and it is often impractical,
if not impossible, to tune and control their bandgaps after the assembly of the system.
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In an effort to design tunable materials, it has been shown that locally resonant bandgaps can be controlled using either
the applied deformation [46] or electro-mechanical resonators consisting of resistive-inductive shunted piezoelectric
patches [20,30,31] bonded to a host structure. Moreover, it has been recently demonstrated both experimentally and
numerically that fluid–structure interactions can also be exploited to design systems capable of self-regulating their
dynamic response [32]. In fact, an elastic structure with a periodic array of airfoil-type mechanical resonators is
characterized by bandgaps at frequencies determined by the resonances of the airfoils. Interestingly, when an air flow
impinges on the airfoils, the resonators behave as aeroelastic systems subjected to modal convergence [33], so that their
resonance frequencies – and consequently the corresponding bandgaps of the primary structure – shift as a function of the
fluid speed.

The main purpose of this paper is to expand on the previous investigation [32] by presenting a detailed analytical and
numerical study on the influence of the fluid speed on the dispersion properties and bandgaps of a beam with a periodic
array of airfoil-shaped resonating units bonded along its length. Both steady and unsteady aerodynamic models are used to
describe the fluid-coupled dynamic response of the resonators, as detailed in Section 2. The response of the airfoils and the
elastic beam is then coupled in Section 3, yielding a simple formulation which enables us to investigate analytically the
propagation of elastic waves in the system as a function of the flow speed. The results of this analysis are presented in
Section 4, where the effect of various parameters defining the system on the dispersion properties of the beam is evaluated.
Finally, in Section 5 an effective medium description of the beam is developed to capture its behavior at long-wavelengths.
This study demonstrates how the proposed concept can be utilized to affect and tune the equivalent mechanical properties
of the beam, which can be considered as an example of an adaptive metamaterial.
2. Fluid-coupled dynamic response of the resonator

In this study we consider an Euler–Bernoulli beam with a periodic array of resonating units (vibration absorbers)
attached along its length (see Fig. 1a). Each resonator consists of a rigid airfoil-shaped mass ma (with polar moment
of inertia Ia), supported by a linear and torsional spring with stiffness kh and kθ respectively (see Fig. 1b). The airfoil is
symmetric with respect to its chord (of length 2b) and characterized by a static unbalance xθ � e�a, where a and e are
dimensionless parameters that define the location of the pivoting point and center of gravity, respectively (see Fig. 1b).

An incompressible and inviscid fluid flow impinges on the system with an asymptotic speed V1. The aerodynamic loads
generated by the flow on the surface of the airfoils are described in terms of a concentrated lift force (L) and moment (M),
as shown in Fig. 1b. Note that in our analysis (i) because of its small thickness and width, we neglect the effect of the fluid on
the response of the beam, and (ii) for the sake of simplicity, we do not consider any aerodynamic interactions between
adjacent airfoils.

We start by deriving the equations governing the dynamic behavior of the resonating unit shown in Fig. 1b, which can be
written as

bM €qþ bKq¼ br (1)
Fig. 1. (a) Beam with periodic array of airfoil-shaped resonators attached to it. (b) Details of the airfoil-shaped vibration absorber (side view).
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where

bK ¼
kθ 0 0
0 kh �kh
0 �kh kh

264
375 and bM ¼

Ia �mabxθ 0
�mabxθ ma 0

0 0 0

264
375; (2)

are the mass and stiffness matrices of the system, and

q¼ ½θ; h; u0�T ; br ¼ ½Mþbð1=2þaÞL; L; f 0�T (3)

are vectors containing the degrees of freedom of the system and external loads acting on the airfoil, respectively. In the
above, θ and h denote the pitch and plunge degrees of freedom of the airfoil, u0 is the displacement of the point attached to
the beam and f0 is the reaction force transmitted from the beam.

Here, the aerodynamic lift force L and the pitching moment M acting on the resonator are modeled using both steady
and unsteady flow theories [34,35]. While the former provides a simpler representation of the aerodynamic loads and
enables us to derive closed-form expressions of dispersion relations and effective properties, unsteady flow models, such as
the one proposed by Peters et al. [35], need to be used when the characteristic time of oscillation of the airfoil is comparable
to the time a fluid particle interacts with the airfoil [34].

Regardless of the specific adopted aerodynamic model, by substituting the expressions for L and M into Eq. (1) the
dynamic equations of motion of the resonator can be recast as

M €qþC _qþKq¼ r; (4)

where r¼ ½0; 0; f 0�T and the explicit expressions for M, C, and K depend on the specific aerodynamic theory being used.
Furthermore, assuming harmonic motion at frequency ω (i.e. q¼ q0e

iωt , and r¼ r0eiωt , i¼
ffiffiffiffiffiffiffiffi
�1

p
being the imaginary

unit) Eq. (4) can be rewritten as

ðKþ iωC�ω2MÞq0 ¼ r0; (5)

which can be dynamically condensed, yielding

u0 ¼D0ðω;V1Þf 0; (6)

D0ðω;V1Þ denoting the condensed dynamic stiffness of the resonator, which in Section 3 will be used to explicitly derive the
dispersion relations for a beam with an array of fluid-coupled resonators.

2.1. Steady aerodynamic model

Assuming a steady-flow aerodynamic approximation, the external loads acting on a symmetric airfoil-shaped mass can
be expressed as [34]

L¼ 2πbρ1V2
1θ

M¼ 0 (7)

Substituting Eq. (7) into Eq. (1), the dynamic equations governing the response of the resonator can be recast as in Eq. (4)

with M¼ bM, C¼ 0, and K¼ bK�Kam, Kam denoting the flow-induced stiffness term [34]

Kam ¼ 2πbρ1V2
1

ð1=2þaÞb 0 0
1 0 0
0 0 0

264
375: (8)

Despite its simplicity this aerodynamic model captures the aeroelastic coupling between the airfoil and the fluid flow, since
the effective stiffness matrix K is a function of the incident fluid speed (V1). Using this aerodynamic model a closed-form
expression for D0 in Eq. (6) can also be obtained

D0

kh
¼ 1� 1

1�ζ2þ bxθζ
2ðbkhxθζ2 �2πbρ1V2

1Þ
2πρ1ðaþ1=2Þb2V2

1 þ Iaω2
h
ζ2 �kθ

; (9)

in which the following non-dimensional parameters have been introduced

ζ � ω
ωh

and ωh �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=ma

q
: (10)

2.2. Quasi-steady aerodynamic model

To capture the effect of the motion of the airfoil on the relative wind direction and the time dependence of the angle
of attack without compromising on the simplicity of the formulation, we then consider a quasi-steady aerodynamic
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model [34], so that

L¼ 2πbρ1V2
1 θþ

_h
V1

 !
M¼ �πb3ρ1V1 _θ (11)

where the second term in the lift equation accounts for the variation of the angle of attack along the chord-wise direction
and provides damping to the plunge motion. Substitution of Eqs. (11) into Eq. (1) yields Eq. (4) with M¼ bM, C¼ �Cam, and
K¼ bK�Kam, where Kam is given in Eq. (8) and

Cam ¼ 2πbρ1V1

�b2=2 �ð1=2þaÞb 0
0 �1 0
0 0 0

264
375: (12)

2.3. Unsteady aerodynamic model

A more realistic description of the unsteady effects associated with the oscillatory motion of the airfoil is provided by the
finite-state, induced-flow theory for inviscid, incompressible flow of Peters et al. [35]. According to this model the lift force
and the pitching moment are given by

L¼ πρ1b2 €hþV1 _θ�ba €θ
� �

þ2πρ1V1b _hþV1θþb
1
2
�a

� �
_θ�1

2
bTλ

� �
;

M¼ �πρ1b3
1
2
€hþV1 _θþb

1
8
�a
2

� �
€θ

� �
; (13)

where ρ1 is the free stream air density, and λ is a vector containing the Np induced flow terms λn (n¼ 1;…;Np). Note that
Np¼6 has been used in this study, since a higher number of induced flow terms did not appreciably alter the results. The
evolution of the state vector λ is expressed in terms of Np first-order ordinary differential equations as

A _λþV1
b
λ¼ c €hþV1 _θþb

1
2
�a

� �
€θ

� �
; (14)

where A, b and c denote arrays of known coefficients reported in Appendix A. Although in this case the system has 3þNp

degrees of freedom, by substituting Eqs. (13) into Eq. (1) and by adding Eq. (14) the dynamics of the airfoil can still be recast
as in Eq. (4) with q¼ ½θ; h; u0; λ�T , r¼ ½0; 0; f 0; 0�T , and

K¼
bK�Kam �ham

0
V1
b

INp

264
375; C¼ � ~Cam 0

�β A

" #
; M¼

bM�Mam 0
α 0

" #
; (15)

where Kam is given in Eq. (8) and

~Cam ¼ 2πbρ1V1

ab2ð1�2aÞ=2 �ð1=2þaÞb 0
bð1�aÞ �1 0

0 0 0

264
375;

Mam ¼ πb2ρ1

�b2ða2þ1=8Þ �ab 0
�ab �1 0
0 0 0

264
375;

ham ¼ 2πbρ1V1½�bð1=2þaÞbT ; �bT ; 0�T ;

α¼ �c½bð1=2�aÞ; 1; 0�T ; and

β¼ V1c½1; 0; 0�T : (16)

3. Wave propagation in an infinite beam with airfoil resonators

The aeroelastic behavior of the airfoil-shaped vibration absorbers described in the previous section is exploited here to
alter the dispersion relations and the bandgaps of an Euler–Bernoulli beam characterized by bending stiffness EI and mass
per unit length ρA with a periodic array of such resonators uniformly distributed along its length. In particular, we focus on
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an infinitely long beam, consider a unit cell of length L (see Fig. 2a) and investigate the propagation of elastic waves using
the Euler–Bernoulli spectral stiffness matrix [36] and the transfer matrix approach [1,37].

Denoting by uL ¼ ½wL θL� and uR ¼ ½wR θR� the generalized displacements at the left (L) and right (R) boundaries of the cell
(see Fig. 2b), the dynamic response of the system can be described as

KDðωÞuðωÞ ¼ fðωÞ; (17)

where u¼ ½uL; uR�T is a vector of generalized displacements at the two ends of the beam, and f ¼ ½fL; fR�T is the
corresponding vector of external loads. In Eq. (17), the dynamic stiffness matrix of the beam is given by [18]

KD ¼
K11 K12

K21 K22

" #
; (18)

where the sub-matrices Kij (i; j¼ 1;2) are defined as

K11 ¼
EI

L3
a1 c2L

c2L b1L
2

" #
;

K12 ¼KT
21 ¼

EI

L3
�a2 c1L

�c1L b2L
2

" #
;

K2 ¼
EI

L3
a1 �c2L

�c2L b1L
2

" #
: (19)

and

a1 ¼ sin κbL cosh κbLþ cos κbL sinh κbL
	 
ðκbLÞ3

Δ
;

a2 ¼ sinh κbLþ sin κbL
	 
ðκbLÞ3

Δ
;

b1 ¼ sin κbL cosh κbL� cos κbL sinh κbL
	 
κbL

Δ
;

b2 ¼ sinh κbL� sin κbL
	 
κbL

Δ
;

c1 ¼ cosh κbL� cos κbL
	 
ðκbLÞ2

Δ
;

c2 ¼ sinh κbL sin κbL
ðκbLÞ2
Δ

;

Δ¼ 1�cosh κbL cos κbL; (20)

κb ¼ ½ρAω2=ðEIÞ�1=4 denoting the wavenumber of flexural waves propagating in the beam [36].
The dynamic equations of motion of the unit cell comprising both the beam and the airfoil-type resonator attached to its

left end (Fig. 2) can then be obtained as

DðωÞu¼ f; (21)
Fig. 2. (a) Front view of the undeformed unit cell comprising a portion of the beam (of length L) and an airfoil resonator attached to its left end. (b) Front
view of the deformed unit cell showing the degrees of freedom used in the analysis.
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where

D¼
DLL DLR

DRL DRR

" #
¼

K11þD0 K12

K21 K22

" #
; (22)

and

D0 ¼
D0ðω;V1Þ 0

0 0

� �
; (23)

with D0 denoting the dynamic stiffness of the resonator defined in Eq. (6).
Wave propagation in the infinite periodic system is investigated by imposing Bloch periodic boundary conditions [38,39]

at the left (L) and right (R) ends of the cell

uR ¼ eμuL; and fR ¼ �eμfL; (24)

where μðωÞ is the complex propagation constant. Substitution of Eqs. (24) into Eq. (21) yields the well-known quadratic
eigenvalue problem [18]

½DRLþðDLLþDRRÞeμþDLRe2μ�uL ¼ 0; (25)

from which two pairs of propagation constants 7μ1 and 7μ2 can be calculated, each pair representing waves traveling in
opposite directions. While the real part of μ, known as attenuation constant, represents the amplitude decay rate that the
wave experiences as it propagates from one cell to the next, the imaginary part of μ, known as phase constant, relates
the phase change of a wave at the two ends of the unit cell. Therefore, wave propagation is possible within frequency
bands where either μ1 or μ2 is purely imaginary (i.e. Realðμ1Þ ¼ 0 or Realðμ2Þ ¼ 0), while bandgaps occur at frequencies
characterized by non-zero attenuation constants (i.e. Realðμ1Þa0 and Realðμ2Þa0).
4. Results and discussion

We now show how the aeroelastic behavior of the considered resonating units affects the dispersion properties of the
system. In this study we consider a configuration defined by the following set of non-dimensional parameters:

ℓ¼ L
b
¼ 4:5; ψ ¼Mbeam

ma
¼ 2; δ¼ EI

L3kh
¼ 20;

r2 ¼ Ia
mab

2 ¼ 1:3; σ ¼ωh

ωθ
¼ 1:1; U ¼ V1

bωθ
; (26)

where ωh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=ma

p
and ωθ ¼

ffiffiffiffiffiffiffiffiffiffiffi
kθ=Ia

p
are the uncoupled natural frequencies of the airfoils at zero airspeed, Mbeam ¼ ρAL is

the beam mass, and U represents a non-dimensional flow speed parameter.

4.1. Aeroelastic response of the resonator

We start by considering an airfoil resonator with the plunge spring (kh) rigidly connected to the ground (i.e. u0 ¼ 0). The
aeroelastic response is investigated by solving Eq. (5) for the complex natural frequencies of the system (ωn) by setting the
right hand side term to zero [34]. In Fig. 3 we report the variation of the imaginary (Ω¼ ImagðωnÞ) and real (Γ ¼ RealðωnÞ)
part of the natural frequencies of the airfoil as a function of the flow speed parameter (U) obtained using the three
aerodynamic models previously introduced. As expected, the results reveal that the pitch frequency monotonically increases
for increasing values of U, while the opposite trend is observed for the frequency associated with the heave (plunge) mode.
Moreover, after a critical value of the speed parameter, commonly known as flutter speed (Uf), the real part of the natural
frequency associated with the pitch mode becomes positive indicating the onset of a dynamic instability. Above this critical
speed Uf the dynamics of the system becomes highly nonlinear [40] and the study of this regime falls outside the scope of
the present investigation.

Results reported in Fig. 3 also show that all three aerodynamic models considered in this study provide similar
predictions for the variation of the natural frequency of the airfoils as a function of the flow speed. In particular, the
agreement between the three models is excellent at low speeds, while their different aerodynamic damping terms lead to
slightly different values of flutter speed Uf and frequency Ωf , as shown in Table 1.

To further gain insights into the aeroelastic behavior of the resonating unit, the steady aerodynamic model is exploited to
investigate the variation of the flutter speed Uf and frequency Ωf for different values of parameters. In particular, we focus
on the non-dimensional mass ratio ψ ¼Mbeam=ma, inertia ratio r2 ¼ Ia=mab

2 and the airfoil frequency ratio σ ¼ωh=ωθ ,
which have been identified as the most relevant parameters governing the aeroelastic response of the airfoils. In Fig. 4a we
report the evolution of both Uf and Ωf as a function of ψ . The results indicate that for increasing values of ψ – obtained by
reducing the mass of the airfoil ma – Uf is significantly reduced, while Ωf remains unaltered. Since the flutter instability
defines an upper limit for the operation of the proposed device, this suggests that lighter resonators are best suited for low
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Table 1
Flutter speed (Uf) and frequency (Ωf ) predicted by the steady and unsteady aerodynamic models.

Steady model Quasi-steady model Unsteady model

Uf 5.306 5.090 6.100
Ωf =ωθ 1.205 1.089 1.167

Fig. 3. Effect of the flow speed U on the pitch (blue) and plunge (red) resonance frequencies of the airfoils. (a) Imaginary part of the natural frequencies,
Ω¼ ImagðωnÞ. (b) Real part of the natural frequencies, Γ ¼ RealðωnÞ. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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speed applications. On the other hand, the results reported in Fig. 4b show that higher values of the inertia ratio r2 lead to a
decrease of both Uf and Ωf . However, the results also indicate that the effect of r2 on the flutter speed and frequency is less
pronounced than that of the mass parameter ψ . Finally, in Fig. 4c we show the effect of the airfoil frequency ratio σ, which
characterizes the separation between the pitch and plunge resonance frequencies. As expected, higher values of σ inevitably
lead to higher flutter speeds, since it will generally take longer for the two modes to coalesce.

4.2. Dynamic response of a beam with a periodic array of resonators

Next we investigate the effect of the fluid speed on the dynamic response of an elastic beam with a periodic array of
airfoil-type resonators uniformly distributed along its length. We compute analytically the dispersion relations using the
approach described in Sections 2 and 3 and considering all the three aerodynamic models introduced there. Furthermore,
the analytical solutions are compared with numerical results obtained through the finite element (FE) method. For the
numerical calculations the main beam is modeled using Euler–Bernoulli beam elements, while the interaction of the flap
with the surrounding fluid is described by either the steady or unsteady aerodynamic models described in Section 2. Bloch–
Floquet quasi-periodic conditions [38,39] and the transfer matrix approach [37] are then used to calculate the complex
propagation constant μðωÞ of the system.

4.2.1. Dispersion relations
We start by computing the dispersion relations of the system in the absence of air flow (i.e. U¼0), so that both the lift

force L and the pitching moment M vanish. In this case D0 ¼ 0 in Eq. (23) and the two propagation constants μ1 and μ2 can
be analytically calculated from Eq. (25). The results are presented in Fig. 5 showing the variation of the phase constants (i.e.
Imagðμ1Þ and Imagðμ2Þ in Fig. 5a) and attenuation constants (i.e. Realðμ1Þ and Realðμ2Þ in Fig. 5b) as a function of the non-
dimensional frequency parameter ω=ωθ . In the figure both analytical (red and blue lines) and FE (circular markers) results
are reported, showing an excellent agreement. In Fig. 5a we also include the dispersion relation of a uniform Euler–Bernoulli
beam (see black dashed line). While at low frequencies the phase constants of our periodic system closely resemble
the dispersion properties of a uniform Euler–Bernoulli beam, the results indicate the presence of two regions of negative
group velocity and strong dispersion centered at ω=ωθ ¼ 0:76 and ω=ωθ ¼ 1:44. In these ranges, both wave modes are
characterized by positive real part (Fig. 5b), indicating the presence of a bandgap (or stop band) in which waves are strongly
Please cite this article as: F. Casadei, & K. Bertoldi, Wave propagation in beams with periodic arrays of airfoil-shaped
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Fig. 4. Effect of (a) the non-dimensional mass ratio ψ, (b) the inertia ratio r2, and (c) the airfoil frequency ratio σ on the flutter speed Uf and frequency
Ωf =ωθ .

Fig. 5. Dispersion relations of the propagation constants μ1 (solid blue line), and μ2 (dashed red line) in the absence of flow (U¼0). The analytical solution
(lines) is compared with the FE results (○ markers) showing excellent agreement. (a) Imaginary part. (b) Real part. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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attenuated. The lower-frequency bandgap (denoted as bandgap #1 in Fig. 5b) is induced by the pitch resonance of the airfoil,
while the higher-frequency gap (bandgap #2 in Fig. 5b) is associated with the vertical (plunge) motion of the mass. Finally, it
is worth noticing that the bandgaps occur in the vicinity of the pitch and plunge resonance frequencies of the corresponding
airfoils shown in Fig. 3a at U¼0, confirming their locally-resonance nature.

4.2.2. Fluid-coupled dispersion relations
Next, we investigate the effect of the incident fluid on the dispersion properties of the beam, and compare the results

obtained using different aerodynamic theories. Since the wave attenuation properties inside the bandgaps are mostly
quantified by the smallest attenuation constant of the system Ξ ¼minðRealðμ1Þ, Realðμ2Þ), in Fig. 6 we show the evolution
of Ξ as a function of ω=ωθ for different wind speeds using the three aerodynamic models previously introduced.

Results shown in Fig. 6a indicate that for small values of the flow speed (U¼1) the bandgaps’ frequency ranges predicted by
the three modes are almost identical. However, while the steady aerodynamic theory predicts sharp and narrow attenuation
regions, the attenuation constant peaks predicted by the quasi-steady and unsteady models are slightly wider and smoother. This
is attributed to the fact that the quasi-steady and unsteady models account for the presence of aerodynamic damping induced by
the relative motion of the airfoil with respect to the fluid. In fact, the presence of energy dissipating elements within the
resonating unit is known to generate wider attenuation regions and to reduce the peak amplitude of the attenuation constant
[41,30]. For larger values of flow speed we still find a good agreement between the band gaps predicted using the three different
aerodynamic models (see results reported in Fig. 6b for U¼4), although the discrepancies become more accentuated. The results
presented in Fig. 6 have also been validated by comparison with FE calculations, showing excellent agreement. For the sake of
brevity, the comparison between the analytical and numerical solutions is shown in Appendix B.

Remarkably, the results shown in Fig. 6 also indicate that for increasing values of the wind speed U the two bandgaps’
frequencies gradually approach each other. The progressive coalescence of the two bandgaps is associated with
the aeroelastic convergence of the two resonance frequencies of the airfoil shown in Fig. 3a [32]. To further explore the
coalescence of the two bandgaps, in Fig. 7 we directly compare the dispersion relations of the system for different values of
the incident flow speed, U ¼ 0:0; 4:0; 5:0 and 5.3. For the sake of simplicity we only present results computed using the
steady aerodynamic, but very similar trends are found when using the other two aerodynamic models. The results clearly
illustrate the progressive convergence of the two bandgaps, which interestingly merge in a single broad attenuation region
centered at ω=ωθ � 1:1 when U approaches the flutter limit. Interestingly, Fig. 7 also shows that the complete coalescence of
the two bandgaps occurs only at the flutter speed, since two separate bandgaps are observed for flow speeds only slightly
below such limit (i.e. U¼5.0 case in Fig. 7).

To further study the effect of the flow speed on the bandgaps of the system, we calculate the relative bandgaps’ size
defined as the ratio between the gap width and its midfrequency [42,43]

Δω� ωupper�ωlower

ðωupperþωlowerÞ=2
; (27)

where ωupper and ωlower denote the frequencies of upper and lower edges of the bandgap, respectively. Note that, when
the quasi-steady and unsteady models are used to describe the aerodynamic loads generated by the flow, because of the
damping ωupper and ωlower are defined as the upper and lower frequencies at which the attenuation constant is smaller than
1.0 percent. It has been previously shown thatΔω is an important design parameter and that a large relative size of the band
gap is preferable for many applications [42,43].
Fig. 6. Variation of the smallest attenuation constant Ξmin ¼minðRealðμ1ÞÞ as a function of the frequency parameter ω=ωθ for (a) U¼1 and (b) U¼4. Results
obtained using all the three aerodynamic models introduced in Section 2 are shown.
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Fig. 8. Relative bandgap size Δω associated to (a) bandgap #1 and (b) bandgap #2 as a function of the fluid speed U computed using the three aerodynamic
models introduced in Section 2.

Fig. 7. Variation of the smallest attenuation constant Ξmin ¼minðRealðμÞÞ as a function of the frequency parameter ω=ωθ for increasing values of the
incident speed U.
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The dependence of Δω on the flow speed U is shown in Fig. 8 for both bandgaps of the system. The results indicate that
the size of the lower-frequency bandgap (bandgap #1) tends to decrease for increasing values of U, while the opposite trend
is found for bandgap #2. This behavior is a direct consequence of the progressive convergence of the mid-frequency of two
bandgaps which has the effect of increasing/decreasing the denominator of Eq. (27). This trend is further accentuated by the
broadening of the plunge bandgap and the corresponding shrinking of the pitch gap as seen in Fig. 7. Fig. 8 also reveals that
the relative bandgap size predicted by the quasi-steady and unsteady models is slightly larger than the one computed with
steady aerodynamics. This is attributed to the broadening of the two bandgaps’ width induced by the aerodynamic damping
included in these models.
4.2.3. Effect of the system parameters on Δω
Having demonstrated through analytical calculations that the flow speed can be exploited to alter the bandgaps of our

periodic system, we now proceed to investigate the effect of variations of the parameters defining its behavior on the
relative bandgap size Δω. After extensive investigations, we found that the response of the system is mostly affected by the
non-dimensional mass ratio (ψ ¼Mbeam=ma), the inertia ratio (r2 ¼ Ia=mab

2) and the airfoil frequency ratio (σ ¼ωh=ωθ).
Therefore, we evaluated the effect of ψ , r2 and σ, on Δω for U ¼ 0; 2 and 3. For the sake of simplicity, these calculations
are conducted using the steady aerodynamic model which, despite its simplicity, has been shown to provide accurate
predictions of the aeroelastic and wave propagation characteristic of the beam-airfoil system.
Please cite this article as: F. Casadei, & K. Bertoldi, Wave propagation in beams with periodic arrays of airfoil-shaped
resonating units, Journal of Sound and Vibration (2014), http://dx.doi.org/10.1016/j.jsv.2014.07.008i

http://dx.doi.org/10.1016/j.jsv.2014.07.008
http://dx.doi.org/10.1016/j.jsv.2014.07.008
http://dx.doi.org/10.1016/j.jsv.2014.07.008


F. Casadei, K. Bertoldi / Journal of Sound and Vibration ] (]]]]) ]]]–]]] 11
Effect of the mass ratio ψ : In Fig. 9 we show the effect of ψ ¼Mbeam=ma, which defines the amount of mass added to the
beam by the resonating unit, onΔω. The results indicate that higher values of ψ (i.e. lower values of ma) lead to significantly
smaller bandgap sizes. This trend is expected, since it is well known that resonators with small mass result in less control
authority on the primary system they act upon [44]. Fig. 9a also indicates that for the low-frequency gap induced by the
pitch resonance (bandgap #1) this effect is exacerbated by the incident flow speed U, while the opposite trend is found in
Fig. 9b for the high-frequency (plunge) gap (bandgap #2). This trends clearly correlate to the aeroelastic convergence of the
two vibrational modes of the airfoils, which affect the central bandgap frequency and thus the denominator of Eq. (27).

Effect of the inertia ratio r2: The inertia ratio r2 is directly proportional to the mass polar moment of inertia Ia of the airfoil
and is indicative of the mass distribution of the resonator along its chord-wise direction. Note that r2 is also directly
proportional to the pitch spring stiffness kθ ¼ω2

hIa=σ
2. Because of this, an increase of r2 does not significantly affect the pitch

natural frequency of the airfoil and consequently the mid-frequency of the associated bandgap. In fact, the results reported
in Fig. 10a indicate that r2 has a limited effect on Δω associated with bandgap #1. An increase in r2 slightly reduces the
bandgap width (i.e. ðωupper�ωlowerÞ and therefore leads to a modest decrease of Δω.

An opposite trend is instead observed in Fig. 10b, indicating that the relative size of bandgap #2 (associated to the plunge
mode) significantly increases with r2. This behavior is mostly associated with a decrease of the midfrequency (i.e.
ðωupperþωlowerÞ=2) of this bandgap, which gradually approaches the first one. Therefore, also the flow speed required for a
complete coalescence of the two gaps is found to decrease or increasing values of r2, as confirmed by the results reported in
Fig. 4b showing that higher values of r2 tend to lower the flutter speed of the resonator.
Fig. 10. Relative bandgap size Δω associated to (a) bandgap #1 and (b) bandgap #2 as a function of the non-dimensional inertia ratio r2. The results are
obtained using the steady aerodynamic model.

Fig. 9. Relative bandgap size Δω associated to (a) bandgap #1 and (b) bandgap #2 as a function of the non-dimensional mass ratio ψ. The results are
obtained using the steady aerodynamic model.
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Fig. 11. Relative bandgap size Δω associated to (a) bandgap #1 and (b) bandgap #2 as a function of the non-dimensional airfoil frequency ratio σ.
The results are obtained using the steady aerodynamic model.
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Effect of the airfoil frequency ratio σ: The airfoil frequency ratio σ ¼ωh=ωθ is defined as the ratio between the uncoupled
natural frequencies of the airfoils at zero speed (i.e. ωh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=ma

p
, and ωθ ¼

ffiffiffiffiffiffiffiffiffiffiffi
kθ=Ia

p
), and is indicative of the frequency

separation between the pitch and plunge resonances. Alternatively, the frequency parameter σ can also be interpreted as a
ratio between the stiffness of the plunge (kh) and pitch (kθ) spring. Therefore, the results shown in Fig. 11a indicate that the
size of the pitch bandgap (bandgap #1) decreases when the ratio between kh and kθ increases. The opposite trend is
observed for Δω associated with the plunge mode (see Fig. 11b), whose behavior is mostly dictated by the plunge spring
with stiffness kh.
5. Effective material description at long wavelengths

To further gain insights into the behavior of the system, we now obtain analytical expressions for the long-wavelength
regime (i.e. κbL-0). These will enable us to obtain an equivalent beam model with effective mechanical properties which
include the effects of the airfoil resonators.

Since the dynamic response of a unit cell comprising a beam and a fluid-coupled resonator attached to it is fully
described by the dynamic system matrix DðωÞ (see Eqs. (21) and (22)), the long-wavelength behavior can be easily obtained
by computing the limit of DðωÞ for κbL-0, namely

lim
κbL-0

DðωÞ ¼ lim
κbL-0

DLLðωÞ DLRðωÞ
DRLðωÞ DRRðωÞ

" #
: (28)

For the sake of simplicity, here we focus on the steady aerodynamic model for which a closed form solution of Eq. (28) can
be obtained. For this case we find that the limit in Eq. (28) yields the static stiffness matrix of the beam, but with the
bending stiffness EI replaced by an effective bending stiffness (EIn),

EIn ωð Þ ¼ EIþ L3

12
D0 ωð Þ; (29)

which, interestingly, depends on the static bending stiffness of the beam (EI), and the fluid-coupled dynamic stiffness of the
resonator (D0) defined in Eq. (6). For example, the limit of DLL in Eq. (28) yields

lim
κbL-0

DLL ¼
EInðωÞ
L3

12 6L
6L 4L2

� �
: (30)

The dependence of EIn=EI on the frequency parameter ω=ωθ is presented in Fig. 12 for different values of the incident
flow speed U. The resonant behavior of the vibration absorber is reflected in the equivalent mechanical behavior of
the waveguide which exhibits peaks in the vicinity of the pitch and plunge resonance frequencies of the corresponding
resonator. Interestingly, this behavior has also been observed in other internally resonating metamaterials and has been
interpreted as the result of an apparent negative stiffness at the internal resonance [25].

The equivalent beam bending stiffness found through the derivations above is then used to estimate the equivalent
dispersion properties of the waveguide. For a beam with equivalent bending stiffness EIn the wavenumber of flexural waves
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Fig. 13. (a) Analytical dispersion relations computed through the equivalent properties (Eq. (31)) for different values of flow speed U. (b) Details showing
the variation of the high-frequency bandgap for increasing values of U.

Fig. 12. Equivalent bending stiffness of the beam normalized with respect to its static value EI as a function of the frequency parameter ω=ωθ .
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is given by [45]

κn

b ωð Þ ¼ mn

EInðωÞω
2

� �1=4

; (31)

where the effective mass per unit length

mn ¼mþma=L; (32)

has been introduced (given by the sum of the mass per unit length of the beam (m) and mass of the flap divided by the
length of the cell ðma=LÞ). The dispersion relations computed through the equivalent properties in Eq. (31) are shown in
Fig. 13. Interestingly, the results indicate that the equivalent properties’ formulation developed herein is able to identify the
attenuation bands induced by the pitch and plunge resonances of the airfoil, and their functional dependence on the speed
of the incident fluid.
6. Conclusions

In this paper we investigate the propagation of waves in a beam with a periodic distribution airfoil-shaped resonating
units (vibration absorbers). The system consists of a waveguide (beam) connected to a secondary system (airfoils) whose
resonant behavior generates strong dispersion and wave attenuation characteristics. Furthermore, the airfoil-like shape of
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the resonating masses enables the frequency ranges of wave attenuation (bandgaps) to be tuned by changes in the speed of
the surrounding fluid.

The dispersion characteristics of the fluid-coupled waveguide are derived analytically through the transfer matrix
approach, accounting explicitly for the aerodynamic coupling. Although both steady and unsteady aerodynamic models are
used to describe the evolution of the aerodynamic loads acting on the resonating masses, the results indicate that, despite
its simplicity, the steady-state aerodynamic model correctly captures the effect of the speed of the incident fluid on the
bandgaps. Moreover, the influence of the most relevant parameters defining the system on the dispersion properties of the
periodic beam is also evaluated.

Finally, further insights into the dynamic response of the waveguide is gained by determining its equivalent mechanical
properties at long wavelengths. The effective bending stiffness confirms the locally resonant nature of the bandgaps and can
be used to determine their dependence on the incident wind speed.

By harnessing fluid–structure interactions, we expand the capabilities of existing locally resonant metamaterials and
design systems capable of sensing the surrounding fluid environment and change their response accordingly. This concept
has the potential to dramatically impact a variety of applications, such as microfluidic devices, civil infrastructures, and
defense systems. For example, the proposed system can lead to the design of sustainable and self-regulating vibration
suppression devices capable of autonomously tracking and controlling the dynamic response of structures over a broad
range of operative conditions.
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Appendix A. Coefficients of Peter's unsteady model

According to Peters et al. [35], the evolution of the state vector λðtÞ containing the values of λn is given by (see Eq. (14) in
the manuscript)

A _λ tð ÞþV1
b
λ¼ c €h tð ÞþV1 _θ tð Þþb

1
2
�a

� �
€θ tð Þ

� �
; (A.1)

with the matrix A given by

A¼DþdTbþcTdþ1
2 c

Tb: (A.2)

while matrix D and vectors b, c, and d depend on the number of induced flow states Np and are defined as

Dij ¼

1
2i

for i¼ jþ1

� 1
2i

for i¼ j�1

0 for ia j71

8>>>><>>>>:

bi ¼
ð�1Þi�1ðNpþ i�1Þ!

ðNp� i�1Þ! �
1

ði!Þ2
for iaNp

ð�1Þi�1 for i¼Np

8><>:

di ¼
1
2

for i¼ 1

0 for ia1

8<:
ci ¼

2
i

(A.3)
Appendix B. Comparison between analytical and FE dispersion relations

In Fig. B1 we compare the dispersion relations computed analytically and through FE calculations using the quasi-steady
and unsteady aerodynamic models. Excellent agreement between the two sets of results is found, validating the implementation
of both methods.
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Fig. B1. Attenuation constants associated with μ1 (solid blue line), and μ2 (dashed red line) computed using the (a, b) quasi-steady and (c, d) unsteady
aerodynamic models for different values of the incident flow speed. Excellent agreement is found between the analytical (lines) and corresponding
FE (○ markers) results. (a) Quasi-steady model (U¼1.0). (b) Quasi-steady model (U¼4.0). (c) Unsteady model (U¼1.0). (d) Unsteady model (U¼4.0).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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