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Soft mechanical metamaterials can support a rich set of dynamic responses, which, to date, have received
relatively little attention. Here, we report experimental, numerical, and analytical results describing the
behavior of an anisotropic two-dimensional flexible mechanical metamaterial when subjected to impact
loading. We not only observe the propagation of elastic vector solitons with three components—two
translational and one rotational—that are coupled together, but also very rich direction-dependent
behaviors such as the formation of sound bullets and the separation of pulses into different solitary modes.
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Ongoing advances in digital manufacturing technologies
are enabling fabrication of systems with an unprecedented
level of compositional and structural complexity [1–3].
This remarkable control of geometry has stimulated major
advances in the design of mechanical metamaterials—
designer matter with unique mechanical properties that
are dictated by their engineered structure [4,5]. While initial
efforts in the field have focused on systems with unusual
linear properties, such as negative Poisson’s ratio [6–8],
negative stiffness [9,10], and negative thermal expansion
[11,12], large deformation and nonlinearities have been
recently embraced as a means toward new functionalities,
including programmability [13], energy absorption [14],
and shape transformation [15]. Moreover, it has been
shown that highly deformable mechanical metamaterials
can be designed to support the propagation of a variety
of nonlinear waves with large displacement amplitudes
[16–19], providing a convenient platform to study non-
linear wave physics. However, to date the investigation of
the nonlinear dynamic response of flexible metamaterials
has been limited to one-dimensional (1D) systems.
Here, we investigate the nonlinear dynamic response

of a 2D flexible mechanical metamaterial comprising a
periodic arrangement of squares connected at their vertices
by thin ligaments [18,20,21]. Remarkably, our experiments
and analyses reveal that several new physical phenomena
emergewhen subjecting the structure to low-energy impacts.
First, our system supports the propagation of elastic vector
solitons with three polarization components—two transla-
tional and one rotational. Second,we investigate the effect of
the anisotropy of the medium on the 2D nature of the soliton
and find that such anisotropy plays a crucial role, leading to
rich new nonlinear effects. For example, for propagation at
45° from the symmetry axis, a distinct focusing effect is

observed. The pulse does not spread along either direction,
suggesting that sound bullets may exist in our system.
Moreover, we find that for most other propagation angles
the wave separates into two distinct solitary modes, each
following a principal direction of symmetry. While 2D
nonlinear elastic waves have been previously studied in
granularmedia [22–25], themonolithicity and printability of
our system allow facile control of the architecture, and hence
control of the system’s nonlinear dynamic response, provid-
ing a powerful platform to explore, visualize, and engineer
new wave phenomena.
We start by studying experimentally the response of a 2D

circular sample with 30 squares along its diameter when
excited with an impactor [see Fig. 1(a)]. Our sample is
fabricated out of polydimethylsiloxane using direct ink
writing, an extrusion-based 3D printing approach [26].
Steel spheres with a diameter of 4.35 mm are embedded in
the middle of the squares to modify their inertial properties.
All squares are rotated by offset angles of θ0 ¼ 25°, have
center-to-center-distance of a ¼ 9.27 mm, and are con-
nected to one another by ligaments approximately 5 mm in
width [see Fig. 1(b)]. In our experiments, we impact the
sample at different points along its circumference to initiate
pulses that propagate along different directions defined as

êk ¼ cosϕêx þ sinϕêy; ð1Þ

where êx and êy denote the two directions of periodicity of
the system, and impact angle ϕ is the angle between the
normal to the impactor and êx [see Fig. 1(a)]. Finally, we
record the impact event with a high speed camera, allowing
measure of local vectorial displacement and velocity via
digital image correlation [27,28] (see the Supplemental
Material [29] for additional information).
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In Figs. 1(c)–1(f), we report contour plots of the velocity
along êk, vk, at t ¼ 5.5 ms after impact for ϕ ¼ 0°, 15°,
30°, and 45°. Moreover, for each impact angle we also show
the spatial-temporal evolution of vk along the propagation
direction (focusing on the region delimited by the yellow
dashed lines in the snapshots), allowing extraction of pulse
speed (details in the Supplemental Material [29]). Three
key features emerge from these plots. First, for impact
angle ϕ ¼ 0° the pulse propagates in a solitary fashion (i.e.,
it maintains both its shape and velocity), as the velocity
profile is characterized by a single peak with nearly
constant width. Second, for ϕ ¼ 15° and 30° the excitation

splits into two separate pulses. This is apparent both from the
asymmetric velocity profile and from the two peaks seen in
the spatial-temporal evolution of vk, each with constant
velocity and pulsewidth. Third, forϕ ¼ 45° we again have a
single pulse propagating through the sample, but this time
the wave front keeps its shape in both the ek and e⊥
directions. As a matter of fact, the pulse transversal width
is the same as the impactor width (see the Supplemental
Material [29] for more details). This suggests that for
ϕ ¼ 45° the wave has a transversal self-focusing effect,
balancing the linear beam diffraction and stabilizing the
pulse lateral width. This potentially leads to the generation
of compact sound bullets of very large amplitudes, which
may dramatically impact a variety of applications, such as
biomedical devices, nondestructive evaluation, and defense
systems [30–32].
To better understand our experimental results, we

numerically model the system as an array of rigid squares
connected at their vertices via a combination of linear axial
(with stiffness ks ¼ 8180 N=m and kl ¼ 16360 N=m) and
rotational springs (with stiffness kθ ¼ 0.0312 Nm=rad)
[18,33,34]. Moreover, we assign to the ½i; j�th square three
degrees of freedom (DoF): the displacement in the êx
direction, u½i;j�x , the displacement in the êy direction, u½i;j�y ,
and the rotation around the z axis, θ½i;j�. Using these
definitions, the equations of motion for the ½i; j�th square
are given by

mü½i;j�γ ¼
X4
p¼1

Fγ½i;j�
p ; Jθ̈½i;j� ¼

X4
p¼1

M½i;j�
p ; ð2Þ

where γ ¼ x, y, and m ¼ 0.797 g and J ¼ 5.457 gmm2

are, respectively, the mass and moment of inertia of the

rigid units. Moreover, Fx½i;j�
p and Fy½i;j�

p are the forces along
the êx and êy directions generated at the pth vertex of

the ½i; j�th unit by the springs, and M½i;j�
p represents the

corresponding moment (see the Supplemental Material [29]
for their explicit expressions).
By numerically solving Eq. (2) via the fourth order

Runge-Kutta method, we find that the physical phenomena
observed in our tests (i.e., solitonlike pulses, mode sepa-
ration for ϕ ¼ 15° and 30°, and self-focusing for ϕ ¼ 45°)
not only persist, but actually become more accentuated
when considering a larger model with 60 squares along the
diameter (see Fig. 2 and the Supplemental Material [29]).
Furthermore, in our numerical analysis we also excite
planar waves on square-shaped samples and again observe
solitonlike pulses and separation of modes (see Fig. S11 of
the Supplemental Material [29]). As such, our numerical
results indicate that the phenomena observed in the experi-
ments are not artifacts introduced by either edge effects,
damping or excitation, but rather emerge because of the
bulk properties of the medium.
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FIG. 1. (a) Schematic of the system. (b) Definition of velocity
of squares. (c)–(f) Contour plots of parallel velocity vk and t-d
contour plots of velocity along indicated direction for impact
angles of ϕ ¼ 0°, 15°, 30°, and 45°. The magenta squares are
those to which the displacement is applied. The full time
evolution is available in Movie S1 of the Supplemental
Material [29].
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Since our numerical results reveal that the phenomena
observed in our experiments are a robust feature of the
system, we next explore deeper insights into the nonlinear
dynamic properties of our system by simplifying Eq. (2) to
derive analytical solutions for the case of planar waves. To
this end, we assume that the wavelength of the propagating
waves is much wider than the cell size a and that θ½i;j� ≪ 1.
We then take the continuum limit of Eq. (2) and retain
nonlinear terms up to the third order to obtain the
continuum governing equations

müx ¼ a2
�
kl∂xxux þ ks∂yyux þ

tan θ0a2kl
6

∂xxxθ

þ klðtan θ0 þ θ − tan θ0θ2=2Þ∂xθ

�
; ð3aÞ

müy ¼ a2
�
ks∂xxuy þ kl∂yyuy þ

tan θ0a2kl
6

∂yyyθ

þ klðtan θ0 þ θ − tan θ0θ2=2Þ∂yθ

�
; ð3bÞ

Jθ̈ ¼ a2ðks − kltan2θ0 − 4kθÞ∇2θ=4

− 2a2ðkltan2θ0 þ 4kθÞθ − 3a2kl tan θ0θ2

− a2klðtan θ0 þ θ − tan θ0θ2=2Þð∂xux þ ∂xuyÞ
− a2klð13 − 15tan2θ0Þθ3=12; ð3cÞ

where ∂γf ¼ ∂f=∂γ,∇2 ¼ ∂xx þ ∂yy, and ux, uy, and θ are
three continuous functions which interpolate the discrete
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FIG. 2. Numerical results for a circular model with 60 squares along its diameter. (a) Contour plots of vk at t ¼ 12 ms for all four
impact angles. (b) Spatial-temporal map of vk for all considered impact angles. The magenta squares in (a) are those to which the
displacement is applied. The full time evolution is available in Movie S2 of the Supplemental Material [29].
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FIG. 3. (a) Schematic highlighting the input signal Ain and the
translational amplitude of the excited soliton A. (b) Translational
amplitude A of the solitons excited by impacts of amplitude
Ain ¼ 7 mm for ϕ ∈ ½0; 45°�. The triangular and circular markers
correspond to the velocities extracted from our experimental and
numerical results. (c)–(f) Translational amplitude and associated
deformation for all solitary modes. Note that the displacements
and rotations are five times amplified, excited by input signals
with Ain ¼ 7 mm and (c) ϕ ¼ 0°, (d) ϕ ¼ 45°, (e) ϕ ¼ 15°, and
(f) ϕ ¼ 30°.
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variables u½i;j�x , u½i;j�y , and θ½i;j�, respectively (see the
Supplemental Material [29] for details).
To solve Eq. (3), we focus on planar waves propagating

along the êk direction and introduce the traveling coor-
dinate ζ ¼ x cosϕþ y sinϕ − ct, with c being the pulse
velocity. Introduction of ζ into Eq. (3), integration of
Eqs. (3a) and (3b) with respect to ζ and their subsequent
substitution into Eq. (3c), yields

dζζθ ¼ C1θ þ C2θ
2 þ C3θ

3; ð4Þ
with

C1 ¼ −4F½ðEx
1 þ Ey

1 − 2Þsin2θ0 − 2Kθ�;
C2 ¼ −3F sin 2θ0ðEx

1 þ Ey
1 − 2Þ;

C3 ¼ −Fð7 cos 2θ0 − 1ÞðEx
1 þ Ey

1 − 2Þ=3; ð5Þ
and

Ex
γ ¼

cos2αϕ

cos2ϕþ ks
kl
sin2ϕ − mc2

kla2
;

Ey
γ ¼ sin2αϕ

ks
kl
cos2ϕþ sin2ϕ − mc2

kla2
;

F ¼ 3klsec2θ0=2

a2½3ks
2
þ kltan2θ0ðEx

2 þ Ey
2 − 3

2
Þ� − 6ðkθ − klc2J

ma2 Þ
; ð6Þ

where γ ¼ 1, 2. Equation (4) can be directly derived from
the Klein-Gordon equation with quadratic and cubic non-
linearities [35,36], by substitution of the traveling wave
coordinate ζ. It admits well-known solitary wave solutions
of the form

θ ¼ 1

D1 �D2 cosh ðζ=WÞ ; ð7Þ

where

D1 ¼ −
C2

3C1

; D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2

9C2
1

−
C3

2C1

s
; and W ¼ 1ffiffiffiffiffiffi

C1

p :

ð8Þ
Finally, the solution for the translational components ux
and uy can be obtained by integrating Eqs. (3a) and (3b)
with respect to ζ (see the Supplemental Material [29] for
details).
Having obtained an analytical solitary wave solution, we

now use it to validate our experimental and numerical
observations. To begin with, we note that the analytical
solution confirms that the pulses propagating in our 2D
mechanical metamaterial are solitons. Specifically, it
reveals that they are elastic vector solitons with three
components—two translational and one rotational—that
are coupled together and copropagate without dispersion.
Note that although the springs used here are all linear, the

nonlinearity still emerges from the “þ1” rotational DoF
through its nonlinear geometrical coupling between the two
translational DoF. Next, we use our continuum model to
understand whether for specific loading directions ϕ the
system supports solitary waves with different modes. To
this end, we start by noting that in our experiments the
impactor imposes a displacement with amplitude

Ain ¼ Ainêk ¼ Ain cosϕêx þ Ain sinϕêy; ð9Þ

to the squares that it contacts. This input signal excites a
vector soliton with translational amplitude

A ¼ Axêx þ Ayêy; ð10Þ

where Ax and Ay are the amplitudes of its translational
components, which are functions of both the propagation
velocity c and the propagation angle ϕ [i.e., Axðc;ϕÞ and
Ayðc;ϕÞ� (see the Supplemental Material [29] for details).
Since the translational amplitude should be a projection of
the input signal along the direction of A [see Fig. 3(a)], it
follows that

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
x þ A2

y

q
¼ Ain ·

A
jAj ; ð11Þ

which provides a relation between the input signal applied
by the impactor (i.e., the amplitude Ain and the angle ϕ) and
the propagating velocity c of the excited solitary wave.
Therefore, given a pair of input parameters ϕ and Ain,
Eq. (11) can be used to solve for c and, once c is known, the
form of the solitary pulse excited by the impact via Eqs. (7),
(3a), and (3b).
In Fig. 3(b), we show the evolution as a function of the

angle ϕ of A and c for solitons excited by impacts of
amplitude Ain ¼ 7 mm (the input displacement applied in
our experiments). Interestingly, we find that for most impact
directions two different solitary modes are excited by Ain,
each characterized by a distinct velocity c and translational
amplitudeA. Only for impact directions of ϕ ∼ 0° and ∼45°
is a single wavemode excited. Importantly, we also find that
the velocities predicted by our continuum model nicely
agree with those extracted from both our experimental
(triangular markers) and numerical (circular markers)
results. Finally, to get a better understanding of the different
solitary modes excited by the input signal, in Figs. 3(c)–3(f)
we show a snapshot of the deformation induced by all
excited modes for ϕ ¼ 0°, 15°, 30°, and 45°. We find that,
while for ϕ ¼ 0° and 45° a pure compression wave prop-
agates through the structure (i.e., all squaresmoves along the
êk direction), for ϕ ¼ 15° and ϕ ¼ 30° two mixed com-
pression-shear solitary modes are excited—a prediction that
matches well with our experimental and numerical results.
Finally, we focus on the transversal self-focusing effect

observed both in our experiments and numerical analyses
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for ϕ ¼ 45°. To better quantify it, for ϕ ¼ 0° and 45° we
extract from both our experiments and numerical simu-
lations the width of the propagating pulses along the ê⊥
direction, W⊥ (see the Supplemental Material [29] for
details). The results shown in Figs. 4(b) and 4(c) indicate
that W⊥ is rather constant with time (or equivalently
distance) for ϕ ¼ 45° and that its variation is significantly
smaller relative to that observed for ϕ ¼ 0°. As such, this
analysis confirms the self-focusing effect observed in the
contour plots of Figs. 1 and 2 for ϕ ¼ 45°.
To summarize, we have used a combination of exper-

imental, numerical, and analytical methods to study the
propagation of nonlinear elastic waves in a 2D soft
mechanical metamaterial comprising a network of squares
connected by thin and highly deformable ligaments. Our
results reveal that the system supports not only the propa-
gation of elastic vector solitons with three components (two
translational and one rotational), but also very rich behaviors
such as compact pulses (akin to sound bullets) and separa-
tion of the pulses into different solitary modes. As such, our
study shows that soft mechanical metamaterials provide a
convenient platform to study nonlinear wave physics.
Moreover, the 3D printability of these systems enables
unique opportunities for engineering wave phenomena,
ultimately providing new opportunities to control and
manage intense vibrations and waves.
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S1 Experiments

S1.1 Fabrication

In this work, we consider a metamaterial comprising a two dimensional (2D) array of counter-

rotating hinged squares (1–5), all made of elastomeric material (polydimethylsiloxane - PDMS).

The 2D system is circular, with 30 unit squares along its diameter (Fig. S1a). All squares are

rotated by offset angles of θ0 = 25◦ with respect to the horizontal and vertical directions, are

connected to one another at their vertices, and have center-to-center-distance a = 9.27 mm

(the pre-programmed shape is indicated as black lines in Fig. S1b). The sample was printed

in the shape of a rectangular octagon using direct ink writing (4, 6–8), and subsequently cut

into a circle using a laser cutter. Note that due to the finite acceleration of the print-head, the

connections between the squares become somewhat rounded, with widths of approximately

5 mm (Fig. S1b). A thin strip of PDMS was then printed around the circumference of the

circular system to constrain and couple the motion of the partial squares around the border, and

steel spheres (4.76 mm in diameter) were embedded within the squares to increase the local

inertia and decrease wave speed (no steel spheres were added to the partial squares along the
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circumference). Finally, a speckle pattern was applied to the surface of the specimen by lightly

spray painting with black paint to enhance the contrast for the Digital Image Correlation (DIC)

analysis (9).

Figure S1: (a) Image of the 2D sample. (b) Magnified view, with the black lines indicating the pre-
programmed path of the print-head (i.e., the ideal shape of the squares). The connections between the
squares are not as sharp as intended because of the change of speed around corners during printing.

S1.2 Testing

To investigate the propagation of elastic pulses in the system, the specimen is first laid flat on

a bed of closed packed steel spheres (to minimize friction), each with a diameter of 19 mm.

An impulse is generated by an aluminum impactor with a 72 mm long flat end that spans the

width of eight unit cells (Fig. S2). By impacting the sample at different locations along the

circumference, we apply a displacement signal along different directions defined as

ê|| = cosφ êx + sinφ êy, (S1)

where êx and êy denote the two directions of periodicity of the system, and φ is the angle be-

tween the normal to the impactor and êx (see Fig. S2). The impulse displacement is controlled

by the initial gap distance between the impactor and the specimen, while its shape is determined
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by the initial velocity applied to the impactor. The propagation of the pulse wave through the

specimen is observed with a high-speed camera (Photron Mini AX-200) recording at 4000 Hz

with a pixel size of 0.28 mm/pixel. 2D DIC analysis is then performed using an open source

MATLAB-based software (10) with subset size of 12 pixels and a subset spacing of 6 pixels to

obtain the full field displacement. Finally, the velocity is calculated from the displacement data

using the 4-th order accurate central difference scheme.

Figure S2: Magnified view of the sample, highlighting the impactor (on the left) and the impact direction
ê||.

S1.3 Experimental results

In Fig. S3, we show contours of the velocity components v|| = vx cosφ + vy sinφ and v⊥ =

−vx sinφ + vy cosφ along ê|| and ê⊥, respectively (vx and vy being the velocity components

along the x and y direction, respectively), obtained via DIC at t=3.5 and 5.5 ms for φ = 0◦, 15◦,

30◦ and 45◦ (the videos recorded during these experiments are shown in Movie S1). Moreover,

in Fig. S4 we report the evolution of v|| at t=3.5 and 5.5 ms as a function of the distance from
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Figure S3: Contour plots of v|| and v⊥ for all impact angles at (a) t = 3.5 ms, (b) t = 5.5 ms. The magenta
lines indicate the impactor. The full time evolution is available in Movie S1.

the impactor d along three lines perpendicular to the bottom, top, and center of the impactor.

Finally, in Fig. S5 we report the spatial-temporal map of v||, which at any given time t is cal-

culated by taking the maximum value between those measured within a small window (with

width delimited by the dashed yellow lines shown in Fig. S3). Note that the location of the

small window is informed by the velocity contours of Fig. S3 as well as the plots of Fig. S4.

Specifically, for φ = 15◦ and 30◦ the window is chosen near the bottom of the impactor to

capture the distinct peaks of the faster and slower pulses in the velocity profile at t = 5.5 ms
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Figure S4: Evolution of v|| as a function of the distance from the impactor d at t=3.5 and 5.5. ms for (a)
0◦, (b) φ = 15◦, (c) φ = 30◦ and (d) φ = 45◦.

(Fig. S4b and c). We use the plots of both Figs. S4 and S5 to extract the wave speed c, which

corresponds to the peaks of the velocity profile.

φ = 0◦. Though an impulse would typically disperse as it travels through a structure, for this

system it is observed that for impacts along either principal axis pulses propagate through the

2D system maintaining both their shape and velocity (i.e., they propagate in a solitary fashion).

Specifically, both Figs. S4a and S5a clearly indicate that for φ = 0◦ the velocity profile is char-

acterized by a single peak with nearly constant width, from which the wave speed is extracted
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Figure S5: Spatial-temporal map of v|| for (a) φ = 0◦, (b) φ = 15◦, (c) φ = 30◦, and (d) φ = 45◦

as 33.3 m/s.

φ = 15◦ and 30◦. Differently, we find that for φ = 15◦ and 30◦ the profile of v|| immediately

after the impact is asymmetric with respect to the propagation axis ê|| (see contours at t = 3.5

ms in Fig. S3b). This asymmetry results from the underlying elastic anisotropy, which produces

different soliton speeds along different directions of the structure. This leads to an apparent

separation of pulses in some directions, an effect which becomes even more visible at later

times (see contours at t = 5.5 ms in Fig. S3b). The separation of modes is also confirmed by

the contours of the shear velocity, v⊥, in Fig. S3. Specifically, the existence of both positive and

negative shear velocities along the propagation direction indicates that the two pulse modes have

different symmetries, and propagate at different wave speeds. This is not the case for φ = 0,
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where positive and negative shear velocity pulses are symmetric relative to ê|| and propagate at

the same speed - indicating that the same mode is excited with opposite polarization on each

side of the propagation axis. Finally, the wave speed of the two modes for both φ = 15◦ and

30◦ can be extracted from Fig. S5b and c. For φ = 15◦, the faster pulse propagates at 33.4 m/s

while the slower pulse propagates at 28.0 m/s. For φ = 30◦, the faster pulse propagates at 33.4

m/s while the slower pulse propagates at 23.5 m/s.

φ = 45◦. The velocity profiles for φ = 45◦ indicate that there is again only one wave mode

travelling through the system along the ê|| direction with a speed of 21.9 m/s. While a single

pulse was also observed for φ = 0◦, the wave fronts for φ = 0◦ and 45◦ are very different.

For φ = 0◦ the wave front maintains its width in the ê|| direction during propagation, but

becomes more disperse in the ê⊥ direction. By contrast, for φ = 45◦, the pulse keeps its

shape in both ê|| and ê⊥ directions. As a matter of fact, the pulse transversal width in Fig. S3b

is the same as the impactor width. This suggests that for φ = 45◦ the wave has a transversal

self focusing effect, balancing the linear beam diffraction and stabilizing the pulse lateral width.

This potentially leads to the generation of compact sound bullets of very large amplitudes, which

may dramatically impact a variety of applications, such as biomedical devices, nondestructive

evaluation, and defense systems. To better quantify this observed absence of divergence, in

Figs. S6a and b we report the evolution of v|| in a small window (delimited by the dashed red

lines shown in Fig. S6c) oriented along the ê⊥ direction at t = 4, 5 and 6 ms for φ = 0◦ and 45◦,

respectively. Note that at each time t the window is located at the pulse front, with the distance

d from the impactor extracted from Fig. S5a and d. The plots clearly indicate that the width of

the wave front for φ = 0◦ grows wider during propagation, while remaining roughly constant

for φ = 45◦. This effect can be quantified by inspecting the time evolution of transversal width

W⊥ (see S6d), which corresponds to the full width at half maximum (FWHM) of the velocity

profiles plotted in Figs. S6a and b. We find that the variation in width for φ = 45◦ is significantly
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smaller relative to that observed for φ = 0◦, confirming the self focusing effect observed in the

contour plots of Fig. S3.

Figure S6: Evolution of v|| in a small window (delimited by the dashed red lines shown in c) oriented
along the ê⊥ direction at t= 4, 5 and 6 ms for (a) φ = 0◦ and (b) φ = 45◦. The dashed lines indicate the
full width at half maximum of the velocity profiles. (c) Schematic indicating the window in which we
monitor v||. (d) Time evolution of the width W⊥, which corresponds to the full width at half maximum
of the velocity profiles.
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S2 Mathematical model

As recently shown in several studies (4, 5, 11), the response of the system considered here can

be accurately captured by modeling it as an array of rigid bodies connected at the vertices via a

combination of longitudinal and rotational linear springs. However, in all previous efforts only

deformations along one of its principal directions of symmetry (i.e., one of the two directions

of periodicity of the structure) were considered. As such, only two degrees of freedom (i.e.,

longitudinal displacement and rotation) were assigned to each rigid unit. By contrast, here we

derive the discrete model and the corresponding analytical solution for planar waves for the

general 2D case in which the waves propagate along arbitrary directions.

S2.1 Discrete model

In our discrete model we consider the squares to be rigid and to have three degrees of freedom:

the displacement in the x-direction, ux, the displacement in the y-direction, uy, and the rotation

around the z-axis, θ. Moreover, to facilitate the analysis, we define the positive direction of

rotation alternatively for neighboring squares. Specifically, for each square we assume the

energetically favorable direction of rotation under compression to be the positive one. As such,

for the [i, j]-th unit (which is rotated by θ0 in a clockwise direction - see Fig. S7-c) a clockwise

rotation is positive (see blue arrow in Fig. S7-c), while for the [i − 1, j]-th, [i + 1, j]-th,

[i, j−1]-th and [i, j+1]-th units (which are rotated by θ0 in a counter-clockwise direction - see

Fig. S7-c), counterclockwise rotations are considered positive (see purple arrow in Fig. S7-c).

As for the hinges, we model them using a combination of three linear springs: (i) their

longitudinal response is captured by a spring with stiffness kl; (ii) their shearing is governed by

a spring with stiffness ks; (iii) their bending is captured by a torsional spring with stiffness kθ.

Under the assumptions listed above, the equations of motion for the [i, j]-th square are given
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i, j

longitudinal

shearing

torsional

i, j

i+1, j

i-1, j

i, j+1i, j-1

(a) (b)

Figure S7: (a) Discrete model based on rigid units connected at their vertices by springs. (b) Schematic
of the [i, j]-th rigid square unit.

by

müx =
4∑
p=1

F x [i, j]
p ,

müy =
4∑
p=1

F y [i, j]
p ,

Jθ̈ =
4∑
p=1

M [i, j]
p ,

(S2)

where m and J are the mass and moment of inertia of the rigid unit, which are measured as

0.797 g and 5.457 g·mm2 respectively. Moreover, F x [i, j]
p and F y [i, j]

p are the forces in the x-

direction and the y-direction generated at the p-th vertex of the [i, j]-th unit by the springs and

M
[i, j]
p represents the corresponding moment. For a square initially rotated by an angle θ0, these

forces and moments are given by

F x [i, j]
p = kp ·∆l[i, j]p · êx,

F y [i, j]
p = kp ·∆l[i, j]p · êy,

M [i, j]
p = −kθ∆θ[i, j]p −

∥∥∥r[i, j]p (θ[i, j])×
(
kp ·∆lp

[i, j]
)∥∥∥ ,

(S3)

with

kp =

[
kl 0
0 ks

]
, for p = 1, 3, (S4)
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and

kp =

[
ks 0
0 kl

]
, for p = 2, 4. (S5)

Furthermore, ∆θ
[i, j]
p is the change in angle experienced by the rotational spring connected to

the p-th vertex of the [i, j]-th rigid unit

∆θ
[i, j]
1 = θ[i, j] + θ[i, j+1],

∆θ
[i, j]
2 = θ[i, j] + θ[i+1, j],

∆θ
[i, j]
3 = θ[i, j] + θ[i, j−1],

∆θ
[i, j]
4 = θ[i, j] + θ[i−1, j],

(S6)

and r[i, j]p denotes the vector that connects the center of the [i, j]-th rigid unit to its p-th vertex

(see Fig. S7-c)

r[i, j]1 (θ[i, j]) =
a

2 cos θ0

[
C(θ[i, j]), (−1)i+jS(θ[i, j])

]
,

r[i, j]2 (θ[i, j]) =
a

2 cos θ0

[
−(−1)i+jS(θ[i, j]), C(θ[i, j])

]
,

r[i, j]3 (θ[i, j]) = − a

2 cos θ0

[
C(θ[i, j]), (−1)i+jS(θ[i, j])

]
,

r[i, j]4 (θ[i, j]) =
a

2 cos θ0

[
(−1)i+jS(θ[i, j]), −C(θ[i, j])

]
,

(S7)

with

C(θ[i, j]) = cos
(
θ[i, j] + θ0

)
, S(θ[i, j]) = sin

(
θ[i, j] + θ0

)
, (S8)

where a is the center-to-center distance between two neighboring units. Finally, ∆l[i, j]p is a

vector whose entries provide the change in length along the x- and y- directions of the linear

springs connected to the p-th vertex,

∆l
[i, j]
1 =

(
u[i, j+1]
x − u[i, j]x

)
êx +

(
u[i, j+1]
y − u[i, j]y

)
êy + ∆r

[i, j+1]
3 −∆r

[i, j]
1 ,

∆l
[i, j]
2 =

(
u[i+1, j]
x − u[i, j]x

)
êx +

(
u[i+1, j]
y − u[i, j]y

)
êy + ∆r

[i+1, j]
4 −∆r

[i, j]
2 ,

∆l
[i, j]
3 =

(
u[i, j−1]x − u[i, j]x

)
êx +

(
u[i, j−1]y − u[i, j]y

)
êy + ∆r

[i, j−1]
1 −∆r

[i, j]
3 ,

∆l
[i, j]
4 =

(
u[i−1, j]x − u[i, j]x

)
êx +

(
u[i−1, j]y − u[i, j]y

)
êy + ∆r

[i−1, j]
2 −∆r

[i, j]
4 ,

(S9)
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with

∆r[i, j]p = r[i, j]p (θ[i, j])− r[i, j]p (0). (S10)

Substitution of Eqs. (S3)-(S10) into Eq. (S2), yields the expanded governing equation

∂2u
[i, j]
x

∂t2
=kl

(
u[i, j+1]
x + u[i, j−1]x − 2u[i, j]x

)
+ ks

(
u[i+1, j]
x + u[i−1, j]x − 2u[i, j]x

)
− kla

2 cos θ0

[
cos(θ[i, j+1] + θ0)− cos(θ[i, j−1] + θ0)

]
+ (−1)i+j

ksa

2 cos θ0

[
sin(θ[i+1, j] + θ0)− sin(θ[i−1, j] + θ0)

]
∂2u

[i, j]
y

∂t2
=kl

(
u[i+1, j]
y + u[i−1, j]y − 2u[i, j]y

)
+ ks

(
u[i, j+1]
y + u[i, j−1]y − 2u[i, j]y

)
− kla

2 cos θ0

[
cos(θ[i+1, j] + θ0)− cos(θ[i−1, j] + θ0)

]
− (−1)i+j

ksa

2 cos θ0

[
sin(θ[i, j+1] + θ0)− sin(θ[i, j−1] + θ0)

]
∂2θ[i, j]

∂t2
=− kθ

(
θ[i+1, j] + θ[i−1, j] + θ[i, j+1] + θ[i, j−1] + 4θ[i, j]

)
− kla

2

4 cos2 θ0
sin(θ[i, j] + θ0)

×
[
8 cos θ0 − cos(θ[i+1, j] + θ0)− cos(θ[i−1, j] + θ0)− cos(θ[i, j+1] + θ0)

− cos(θ[i, j−1] + θ0)− 4 cos(θ[i, j] + θ0) +
2kl cos2 θ0

a

(
u[i, j+1] − u[i, j−1] + v[i+1, j]

− v[i−1, j]
)]

+
ksa

2

4 cos2 θ0
cos(θ[i, j] + θ0)

[
sin(θ[i, j+1] + θ0) + sin(θ[i, j−1] + θ0)

+ sin(θ[i+1, j] + θ0) + sin(θ[i−1, j] + θ0)− 4 sin(θ[i, j] + θ0)
]

+ (−1)i+j
2kl cos θ0

a
cos(θ0)

(
−u[i+1, j]

x + u[i−1, j]x + u[i, j+1]
y − u[i, j−1]y

) ]
(S11)

For a metamaterial comprising N hinged units Eqs. (S11) result in a system of 3N coupled

differential equations, which we numerically solve using the 4th order Runge-Kutta method

(via the Matlab function ode45). In Fig. S8 we report numerical results obtained by simulating

the experiments considered in Figs. S2 and S3. Specifically, our numerical model comprises

716 square units arranged to form a circular structure with 30 squares along the diameter (see

Figs. S8a). The squares have θ0 = 25◦, m = 0.797 g, J = 5.457 g·mm2, and center-to-center
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distance a = 9.27 mm, and are connected via springs with kl = 16360 N/m, ks = 8180 N/m,

and kθ = 0.0312 N·m/rad (note that the value for kl is obtained by matching the numerically

predicted pulse velocity with that extracted from the experiments of Fig. S5a, while the values

for ks and kθ are those previously used in (11) and (4), respectively). Moreover, we excite

the propagation of non-linear waves by applying the experimentally-extracted displacement of

a point next to the center of the impactor (see Fig. S8b) to the squares on the boundary that

are highlighted in magenta in Figs. S8c and e. Finally, to model the effect of the thin strip of

PDMS printed along the circumference of the sample, we impose θ[i, j] = 0 to all other squares

on the boundary, while leaving ux and uy unset. In Figs. S8c and e we show the contours of

v|| and v⊥ at t = 6.5 ms for φ = 0◦, 15◦, 30◦ and 45◦. Moreover, in Fig. S8d we report the

spatial-temporal map of v||, calculated as described in Section S1.3. As in the experiments, we

find that (i) the excitation results in soliton-like pulses propagating through the structure; (ii)

for φ = 15◦ and 30◦ the wave seems to separate into two modes with different wave speeds

(similar to the experiments); (iii) for φ = 45◦ the pulse has a transversal self-focusing effect

and maintains its shape in both ê|| and ê⊥ directions.

Having found that our discrete model closely matches the experimental results, we then

use it to further investigate the response of the system, focusing on the effect of both size and

loading conditions. We start by simulating a larger circular model comprising 2828 squares

(see Fig. S9). When subjected to the initial and boundary conditions used to generate the results

shown in Fig. S8, we find that the physical phenomena previously observed (i.e. soliton-like

pulses, mode separation for φ = 15◦ and 30◦, and self-focusing for φ = 45◦) not only persist,

but are further accentuated. In particular, in Fig. S10 we concentrate on the self focusing effect

and report the evolution of v|| as a function of the distance from the center of the impactor at t=8,

10 and 12 ms for φ = 0◦ (see Fig. S10a) and 45◦ (see Fig. S10b). Just as in the experiments (see

Fig. S6), we find that for φ = 0◦ the width of the wave front grows wider during propagation,
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while for φ = 45◦ it remains roughly constant - an observation that is further confirmed by the

evolution of the W⊥ over time (see Fig. S10c).

Finally, we use numerical analyses to make sure that the short width of the impactor used

in our experiments does not play an important role. To this end, we consider a square domain

comprising 60 × 60 squares and initiate planar waves by applying the displacement signal of

Fig. S8b to an entire edge (i.e. to the squares highlighted in magenta in Fig. S11), while

imposing θ = 0 to all other squares on the boundary. The results reported in Fig. S11 indicate

that the excitation initiates a soliton-like pulse for all considered angles φ and that for φ =

15◦ and 30◦ the pulse separates into two modes (the self-focusing effect previously found for

φ = 45◦ is not observed given the planar nature of the initiated wave). As such, the numerical

results of Figs. S9-S11 indicate that the phenomena observed in the experiments are not artifacts

introduced by edge effects and boundary conditions, but rather emerge because of the bulk

properties of the medium.
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Figure S8: (a) Schematic of the circular model comprising 716 squares. (b) Experimentally-extracted
displacement applied by the impactor to a point of the specimen next to the impactor’s center. (c) Contour
plots of v|| for all considered impact angles at t= 6.5 ms. (d) Spatial-temporal map of v|| for all considered
impact angles. (e) Contour plots of v⊥ for all considered impact angles at t = 6.5 ms. The magenta
squares in (c) and (e) are those to which the displacement is applied. The full time evolution is available
in Movie S2.
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Figure S9: Numerical results for a circular model comprising 2828 squares. (a) Contour plots of v||
for all considered impact angles at t = 12 ms. (b) Spatial-temporal map of v|| for all considered impact
angles. (c) Contour plots of v⊥ for all considered impact angles at t = 12 ms. The magenta squares in (a)
and (c) are those to which the displacement is applied. The full time evolution is available in Movie S2.
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Figure S10: Evolution of v|| in a small window (delimited by the dashed red lines shown in Fig. S6c)
oriented along the ê⊥ direction at t = 8, 10 and 12 ms for (a) φ = 0◦ and (b) φ = 45◦. The dashed lines
indicate the full width at half maximum of the velocity profiles. (c) Time evolution of the full width at
half maximum (FWHM) obtained from the velocity profiles.
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Figure S11: Numerical results for a square model comprising 60 × 60 squares. (a) Contour plots of v||
for all considered impact angles at t = 10 ms. (b) Spatial-temporal map of v|| for all considered impact
angles. (c) Contour plots of v⊥ for all considered impact angles at t = 10 ms. The magenta squares in (a)
and (c) are those to which the displacement is applied. The full time evolution is available in Movie S2.
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S2.2 Continuum model

Sice the numerical results of Fig. S11 reveal that the phenomena observed in our experiments

emerge also when planar waves propagate in samples of large size, we next simplify Eqs. (S11)

to derive analytical solutions for the case of planar waves. To this end, we first introduce three

continuous functions ux, uy and θ, which interpolate the discrete variables u[i, j]x , u[i, j]y and θ[i, j]

as

ux
(
x = x[i, j], y = y[i, j]

)
= u[i, j]x ,

uy
(
x = x[i, j], y = y[i, j]

)
= u[i, j]y ,

θ
(
x = x[i, j], y = y[i, j]

)
= θ[i, j]

(S12)

Assuming that the width of the propagating waves is much larger than the unit cell, the

displacements ux and uy and the rotation θ of the [i, j − 1]-th, [i, j + 1]-th, [i− 1, j]-th, and

[i+ 1, j]-th units can then be expressed using Taylor expansion as

ux
(
x[i+p, j], y[i, j], t

)
≈
[
ux + a p ∂xux +

(a p)2

2
∂xxux +

(a p)3

6
∂xxxux

]
x[i, j], y[i, j], t

ux
(
x[i, j+p], y[i, j], t

)
≈
[
ux + a p ∂yux +

(a p)2

2
∂yyux +

(a p)3

6
∂yyyux

]
x[i, j], y[i, j], t

uy
(
x[i+p, j], y[i, j], t

)
≈
[
uy + a p ∂xuy +

(a p)2

2
∂xxuy +

(a p)3

6
∂xxxuy

]
x[i, j], y[i, j], t

uy
(
x[i, j+p], y[i, j], t

)
≈
[
uy + a p ∂yuy +

(a p)2

2
∂yyuy +

(a p)3

6
∂yyyuy

]
x[i, j], y[i, j], t

θ
(
x[i+p, j], y[i, j], t

)
≈
[
θ + a p ∂xθ +

(a p)2

2
∂xxθ +

(a p)3

6
∂xxxθ

]
x[i, j], y[i, j], t

θ
(
x[i, j+p], y[i, j], t

)
≈
[
θ + a p ∂yθy +

(a p)2

2
∂yyθ +

(a p)3

6
∂yyyθ

]
x[i, j], y[i, j], t

(S13)

where p = −1, 1 and ∂αf = ∂f/∂α. Moreover, if we assume that θ � 1, sin(θ0 + θ) and

cos(θ0 + θ) can be approximated as

sin(θ0 + θ) ≈ sin θ0 + θ cos θ0 − θ2
sin θ0

2
− θ3 cos θ0

6
,

cos(θ0 + θ) ≈ cos θ0 − θ sin θ0 − θ2
cos θ0

2
+ θ3

sin θ0
6

.

(S14)
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Substitution of Eqs. (S13) and (S14) into Eq. (S11) yields

müx =a2
[
kl∂xxux + ks∂yyux +

tan θ0 a
2kl

6
∂xxxθ + kl

(
tan θ0 + θ − tan θ0 θ

2/2
)
∂xθ
]
,

müy =a2
[
ks∂xxuy + kl∂yyuy +

tan θ0 a
2kl

6
∂yyyθ + kl

(
tan θ0 + θ − tan θ0 θ

2/2
)
∂yθ
]
,

Jθ̈ =a2
(
ks − kl tan2 θ0 − 4kθ

)
∇2θ/4− 2a2(kl tan2 θ0 + 4kθ)θ − 3a2kl tan θ0 θ

2

−a2kl(tan θ0 + θ − tan θ0θ
2/2)(∂xux + ∂xuy)− a2kl

(
13− 15 tan2 θ0

)
θ3/12

(S15)

where ∇2 = ∂xx + ∂yy. At this point it is important to note that in deriving Eqs. (S15) from

Eqs. (S11) we disregarded all the terms that switch sign between each neighboring unit (i.e., the

terms with coefficient (−1)i+j), as it is very challenging to interpolate these with continuous

functions. As it will be shown in Fig. S14, the good agreement between the analytical solution

derived from Eqs. (S15) and the numerical results obtained by directly integrating Eqs. (S11)

confirms the validity of this approximation (see Fig. S14).

Next, we consider a planar wave that propagates in the e|| direction and introduce the travel-

ing coordinate ζ = x cosφ+ y sinφ− ct, with c being the normalized pulse velocity. It follows

that Eqs. (S15) can be rewritten as

m∂ζζux =a2
[
kl cos2 φ∂ζζux + ks sin2 φ∂ζζux + kl cosφ

(
tan θ0 + θ − tan θ0 θ

2/2
)
∂xθ

+
cos3 φ tan θ0 a

2kl
6

∂xxxθ
]
, (S16a)

m∂ζζuy =a2
[
ks cos2 φ∂ζζuy + kl sin

2 φ∂ζζuy + kl sinφ
(
tan θ0 + θ − tan θ0 θ

2/2
)
∂yθ

+
sin3 φ tan θ0 a

2kl
6

∂yyyθ
]
, (S16b)

J∂ζζθ =a2
(
ks − kl tan2 θ0 − 4kθ

)
∂ζζθ/4− 2a2(kl tan2 θ0 + 4kθ)θ − 3a2kl tan θ0 θ

2

−a2kl(tan θ0 + θ − tan θ0θ
2/2)(cosφ ∂ζux + sinφ ∂ζuy)

− a2kl
(
13− 15 tan2 θ0

)
θ3/12. (S16c)
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We then integrate Eqs. (S16a) and (S16b) with respect to ζ to obtain

∂ζux = −cosφ (tan θ0 θ + θ2/2− tan θ0 θ
3/6) + cos3 φ tan θ0 ∂ζζθ/6

cos2 φ+ ks
kl

sin2 φ− mc2

kla2

+B1,

∂ζuy = −sinφ (tan θ0 θ + θ2/2− tan θ0 θ
3/6) + sin3 φ tan θ0 ∂ζζθ/6

ks
kl

cos2 φ+ sin2 φ− mc2

kla2

+B2,

(S17)

where B1 and B2 are integration constants. Since in this study we focus on the propagation of

waves with a finite temporal support and do not consider periodic waves, we require that

∂ζux|ζ→∞ = 0,

∂ζuy|ζ→∞ = 0,
(S18)

resulting in B1 = 0 and B2 = 0. Finally, substitution of Eqs. (S17) into Eq. (S16c) yields

∂ζζθ = C1θ + C2θ
2 + C3θ

3, (S19)

where

C1 = −4F
[
(Ex

1 + Ey
1 − 2) sin2 θ0 − 2Kθ

]
,

C2 = −3F sin 2θ0 (Ex
1 + Ey

1 − 2) ,

C3 = −F
3

(7 cos 2θ0 − 1) (Ex
1 + Ey

1 − 2) ,

(S20)

with

F =
3kl sec2 θ0/2

a2
[
3ks
2

+ kl tan2 θ0(Ex
2 + Ey

2 − 3
2
)
]
− 6

(
kθ − klc2J

ma2

) ,
Ex
α =

cos2α φ

cos2 φ+ ks
kl

sin2 φ− c2

a2

, α = 1, 2

Ey
α =

sin2α φ
ks
kl

cos2 φ+ sin2 φ− c2

a2

, α = 1, 2

(S21)

Eq. (S19) is the Klein-Gordon equation with quadratic and cubic nonlinearities 1 (13), which
1Note that Eq. (S19) can be rewritten as the Extended Korteweg-de Vries (KdV) Equation (also known as the

Gardner Equation) (12). To demonstrate this point, we start from the Extended Korteweg-de Vries (KdV) Equation

∂θ

∂t
+ F1

∂3θ

∂x3
+ F2θ

∂θ

∂x
+ F3θ

2 ∂θ

∂x
= 0 (S22)
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admits an analytical solution in the form of

θ =
1

D1 ± D2 cosh (ζ/W )
, (S26)

where D1, D2 and W are solution parameters. Eq. (S26) defines a solitary wave with character-

istic width W and amplitude of rotational component

Aθ = θ(ζ = 0) =
1

D1 ±D2

. (S27)

Next, to determine D1, D2 and W as a function of the geometry of the system and the pulse

velocity c, we substitute Eq. (S26) into Eq. (S19) and find that the latter is identically satisfied

only if

D1 = − C2

3C1

, (S28a)

D2 =

√
C2

2

9C2
1

− C3

2C1

, (S28b)

W =
1√
C1

, (S28c)

At this point it is important to note that the existence of the two solutions defined by Eq.

(S26) requires that

and rewrite it in terms of the traveling coordinate ζ = x− ct

−c∂θ
∂ζ

+ F1
∂3θ

∂ζ3
+ F2θ

∂θ

∂ζ
+ F3θ

2 ∂θ

∂ζ
= 0. (S23)

Integration of Eq. (S23) with respect to ζ yields (note that we have set the integration constants equal to zero
because of the boundary condition at infinity)

−cθ + F1
∂2θ

∂ζ2
+ F2θ

2 + F3θ
3 = 0, (S24)

which has the form of the nonlinear Klein-Gordon Equation (Eq. (S19)) with

C1 =
c

F1
, C2 = −F2

F1
, and C3 = −F3

F1
. (S25)
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(i) W is real valued, yielding

C1 > 0 (S29)

(ii) D2 is a real number, yielding

C2
2

9C2
1

− C3

2C1

> 0 (S30)

(iii) the denominator in Eq. (S26) is different from zero,

D1 +D2 cosh (ζ/W ) 6= 0, (S31)

three conditions that can be equivalently rewritten as C1 > 0 and C3 < 0. For the structure

considered in this study (for which θ0 = 25◦, m = 0.797 g, J = 5.457 g·mm2, a = 9.27 mm,

kl = 16360 N/m, ks = 8180 N/m, and kθ = 0.0312 N·m/rad) we find that the conditions

given by Eqs. (S29)-(S31) are satisfied only if Aθ < −172◦ and Aθ > 0. As such, since it is

unrealistic to achieve rotations larger that 172◦, our system can support only positive solutions

and those are the ones we focus on in this study.

Finally, the solution for the displacements ux and uy can be obtained by integrating Eqs.
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(S17),

ux =

∫ ∞
ζ

−Ex
1

[
θ(ζ ′) tan θ0 +

θ(ζ ′)2

2
− tan θ0

6
θ(ζ ′)3 +

1

6
cos2 φ tan θ0 ∂ζ′ζ′θ(ζ

′)

]
dζ ′ =

1

12
Ex

1

{
2H1W

(D2
2 −D2

1)
−5/2

[
2 arctan

(√
D2 −D1

D1 +D2

tanh
ζ

2W

)
+ 2 arctan

√
D2 −D1

D1 +D2

]
+

D2

(D2
1 −D2

2)
2W

θ(ζ) sinh
ζ

W

[
6W 2(D2

1 −D2
2)+

θ(ζ) tan θ0

(
W 2(D2

2 − 4D2
1) + 2(D2

1 −D2
2) cos2 φ− 3D1D2W

2 cosh
ζ

W

)]}
,

uy =

∫ ∞
ζ

−Ey
1

[
θ(ζ ′) tan θ0 +

θ(ζ ′)2

2
− tan θ0

6
θ(ζ ′)3 +

1

6
sin2 φ tan θ0 ∂ζ′ζ′θ(ζ

′)

]
dζ ′ =

1

12
Ey

1

{
2H1W

(D2
2 −D2

1)
−5/2

[
2 arctan

(√
D2 −D1

D1 +D2

tanh
ζ

2W

)
+ 2 arctan

√
D2 −D1

D1 +D2

]
+

D2

(D2
1 −D2

2)
2W

θ(ζ) sinh
ζ

W

[
6W 2(D2

1 −D2
2)+

θ(ζ) tan θ0

(
W 2(D2

2 − 4D2
1) + 2(D2

1 −D2
2) sin2 φ− 3D1D2W

2 cosh
ζ

W

)]}
,

(S32)

where

H1 = 3D1(D
2
1 −D2

2) + tan θ0
[
12D4

1 +D2
2(12D2

2 − 1)− 2D2
1(12D2

2 + 1)
]
, (S33)

and we have imposed that U |ζ→∞ = 0 and V |ζ→∞ = 0. It follows from Eqs. (S32) that the

amplitude of the displacements ux and uy are given by

Ax = ux(ζ → −∞) = −Ex
1H2

Ay = uy(ζ → −∞) = −Ey
1H2

(S34)

with

H2 = −W
2

+
W [H1 − 3D1(D

2
1 −D2

2)]

3(D2
2 −D2

1)
5
2

arctan

(
D1 −D2√
D2

2 −D2
1

)
. (S35)

Having obtained an analytical solution, we now use it to validate our experimental and

numerical observations. To begin with, we note that Eqs. (S27) and (S32) confirm that the
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pulses that propagate in our 2D mechanical metamaterial are solitons. Specifically, they reveal

that they are elastic vector solitons with three components - two translational and one rotational

- that are coupled together and copropagate without dispersion. Next, we use our continuum

model to understand whether for a specific loading direction φ the system supports solitary

waves with different modes. To this end, we start by noting that in our experiments the impactor

imposes a displacement with amplitude

Ain = Ainê|| = Ain cosφ êx + Ain sinφ êy (S36)

to the squares that it contacts. This input signal excites a vector soliton with translational am-

plitude

A = Axêx + Ayêy, (S37)

where Ax and Ay are the amplitudes of its translational components, which are defined by

Eqs. (S34) and are functions of both the propagation velocity c and the propagation angle φ

(i.e., Ax(c, φ) and Ay(c, φ)). Since the translational amplitude should be a projection of the

input signal along the direction of A (see Fig. S12(a)), it follows that

|A| =
√
A2
x + A2

y = Ain ·
A

|A|
. (S38)

By substituting Eqs. (S36) and (S37) into Eq. (S38) we obtain

A2
x + A2

y

Ax cosφ+ Ay sinφ
= Ain, (S39)

which provides a relation between the input signal applied by the impactor (i.e., the amplitude

Ain and the angle φ) and the propagating velocity c of the excited solitary wave. Therefore,

given a pair of input parameters φ and Ain, Eq. (S39) can be used to solve for c and, once c is

known, for the form of the solitary pulse excited by the impact via Eqs. (S26) and (S32).

In Fig. S12(b) we show the translational amplitude A of the solitons excited by impacts of

amplitudeAin = 7 mm (which corresponds to the input displacement applied in our experiments
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Figure S12: (a) Schematic highlighting the input signal Ain and the translational amplitude of the excited
soliton A. (b) Translational amplitude A of the solitons excited by impacts of amplitudeAin = 7 mm for
different directions φ ∈ [0, 45◦]. (c)-(f) translation amplitude, wave profile and associated deformation
for all solitary modes excited by input signals withAin = 7 mm and (c) φ = 0◦, (d) φ = 15◦, (e) φ = 30◦

and (f) φ = 45◦.

- see Fig. S8(b)) for different directions φ ∈ [0, 45◦]. Interestingly, we find that for most impact

directions two different solitary modes are excited by Ain, each characterized by a distinct

velocity c and translational amplitude A (note that in Fig. S12(b) the blue and orange arrows

denote the translational amplitude of the lower and higher velocity mode, respectively). Only

for excitation with φ ∼ 0◦ or∼ 45◦ is a single wave mode excited. Specifically, for φ ∼ 0◦ only

the higher velocity mode is excited, while for φ ∼ 45◦ only the lower velocity one propagates.

Next, to get a better understanding of the different solitary modes excited by the input signal,
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in Fig. S12(c)-(f) we show the profile of the three components of all excited modes (defined by

Eqs. (S26) and (S32)) for φ = 0◦, 15◦, 30◦ and 45◦ together with a snapshot of the deformation

they induce in the structure. We find that for φ = 0◦ and 45◦ a compression wave propagates

through the structure with all squares moving along the ê|| direction (i.e. A = |A|ê||). By

contrast, for φ = 15◦ and φ = 30◦ two mixed compression-shear solitary modes are excited,

one propagating faster and one slower. While for φ = 15◦ the magnitude of the translational

amplitudes of the two modes is similar, for φ = 30◦ the one closer to the direction of the input

signal dominates. At this point we want also to point out that the separation of modes is a

robust phenomenon, minimally affected by the amplitude of the input signal. To highlight this

important point, in Fig. S13 we report the evolution of A and c as a function of φ for Ain =

20 mm and 40 mm. The results are qualitatively identical to those reported in Fig. S12(b) for

Ain = 7 mm.

(a)

velocity    [m/s]

20 25 30 4035

(b)

velocity    [m/s]

20 25 30 4035

Figure S13: Translational amplitude A of the solitons excited by impacts of amplitude (a) Ain = 20 mm
and (b) Ain = 40 mm for different directions φ ∈ [0, 45◦].

Next, in Fig. S14 we focus on Ain = 7 mm and compare the theoretical solution (given by

Eqs. (S32) and Eqs. (S27)) with numerical results for φ = 0◦, 15◦, 30◦ and 45◦. Note that the

numerical results are obtained by extracting the displacement (u[i, j]x , u[i, j]y ) and rotation (θ[i, j])

along the center line of a 60× 60 model to which the theoretical solution (given by Eqs. (S26)
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and (S32)) is applied as excitation to the left edge. We find very good agreement between the

numerical results (markers) and the predictions of our continuum model (lines), confirming the

validity of the assumptions made during its derivation.
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Figure S14: Evolution of ux, uy and θ as a function of ζ for all solitary modes excited by by input signals
with Ain = 7 mm and (a) φ = 0◦, (b) φ = 45◦, (c) φ = 15◦ and (d) φ = 30◦. Both analytical (lines) and
numerical (markers) results are shown.
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