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A B S T R A C T   

We introduce a class of ultra-light and ultra-stiff sandwich panels designed for use in photophoretic levitation 
applications and investigate their mechanical behavior using both computational analyses and micro-mechanical 
testing. The sandwich panels consist of two face sheets connected with a core that consists of hollow cylindrical 
ligaments arranged in a honeycomb-based hexagonal pattern. Computational modeling shows that the panels 
have superior bending stiffness and buckling resistance compared to similar panels with a basketweave core, and 
that their behavior is well described by Uflyand-Mindlin plate theory. By optimizing the ratio of the face sheet 
thickness to the ligament wall thickness, panels maybe obtained that have a bending stiffness that is more than 
five orders of magnitude larger than that of a solid plate with the same area density. Using a scalable micro
fabrication process, we demonstrate that panels as large as 3 × 3 cm2 with a volumetric density of 20 kg/m3 and 
corresponding area density of 2 g/m2 can be made in a few hours. Micro-mechanical testing of the panels is 
performed by deflecting microfabricated cantilevered panels using a nanoindenter. The experimentally measured 
bending stiffness of the cantilevered panels is in very good agreement with the computational results, demon
strating exquisite control over the dimensions, form, and properties of the microfabricated panels.   

1. Introduction 

Sandwich panels are structural elements that consist of a lightweight 
foam or honeycomb core between two thin face sheets. They are 
commonly used in aviation, transportation, and construction where 
mechanical performance and weight saving are critical. Here, we 
explore the use of sandwich panels at an entirely different length scale. 
The goal is to create small planar structures that are light enough to be 
lofted by photophoretic forces, but that have sufficient rigidity and 
strength to be handled at a macroscopic scale and to potentially serve as 
airborne substrates for small payloads in the Earth’s stratosphere. Pho
tophoretic forces arise as a result of molecular interactions when a 
structure exposed to light develops a non-uniform temperature distri
bution in a rarefied atmosphere.1 While small, photophoretic forces 
caused by solar radiation may be sufficient to levitate very light struc
tures in the Earth’s stratosphere [1,2]. According to a recent study [3], 
practical photophoretic levitation devices require an area density on the 

order of 10 g/m2. The advantage of using photophoretic forces for this 
purpose is that such a structure can stay within a certain altitude range 
semi-permanently [4] where it may serve as a platform for atmospheric 
sensors and communication devices on Earth or even Mars [3]. 

Ultra-light sandwich panels at the length scales required for photo
phoretic lofting have only recently gained attention. Monolithic sand
wich panels with cores that consist of pyramidal or octahedral truss 
structures have been fabricated by first making a sacrificial polymer 
template using two-photon lithography, coating this template with 
electroless Ni-P, and then finally etching away the sacrificial template in 
an alkaline solution [5,6]. Typical sandwich panels made using this 
technique have a panel thickness of 1 mm and a Ni-P coating thickness in 
the range of 1 µm. Mechanical characterization of these panels shows 
that they are quite robust, but the panels have a fairly large area density 
in the range of 100–1000 g/m2, mainly due to the relatively large 
coating thickness and the high density of Ni-P. This density is too large 
for photophoretic lofting under atmospheric insolation [1,2]. In order to 
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1 Crookes’ radiometer, which consists of a set of vanes on a low-friction spindle in a partially evacuated glass bulb, is a well-known illustration of the photophoretic 
force. When illuminated, the vanes rotate with an angular velocity that depends on the intensity of the light. 
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fabricate sandwich panels with much lower area densities, Bargatin et al. 
proposed a cardboard-like sandwich panel with a basketweave core 
fabricated using conventional silicon microfabrication techniques [7,8]. 
These panels are made by first patterning the silicon layer of a 
silicon-on-insulator (SOI) wafer using photolithography and deep 
reactive-ion etching (DRIE) to form a sacrificial template. This template 
is then coated with a thin layer of alumina using atomic layer deposition 
(ALD). In a final step, the sacrificial silicon is etched away using an 
isotropic etch, leaving a sandwich panel with a thickness in the range of 
10 µm and an alumina thickness on the order of 50 nm. These panels 
have an area density of only 0.5 g/m2 and a volumetric density of 50 
kg/m3, on par with a typical silica aerogel [9,10], yet are sufficiently 
robust to be handled with tweezers. Unfortunately, use of SOI wafers as 
sacrificial templates limits the maximum panel thickness that can be 
achieved, and the fabrication process is not readily scalable to panels 
larger than approximately 1 cm2. Because of their superficial similarity 
to cardboard, we follow Bargatin et al. in referring to microfabricated 
sandwich panels as nano-cardboard [1,8]. 

Here we investigate the mechanical behavior of a range of micro
fabricated sandwich panels, both using computational analyses and 
micro-mechanical testing. We propose a novel hexagonal unit-cell ge
ometry that results in isotropic in-plane properties and that has superior 
buckling resistance. We evaluate the bending stiffness, shear stiffness, 
and post-buckling behavior for a broad range of unit cell geometries and 
dimensions and use these results to formulate guidelines for the design 
of useful sandwich structures. We describe a scalable microfabrication 
process to fabricate larger sandwich panels much more quickly than is 
possible with existing process flows. Finally, we perform micro- 
mechanical tests on microfabricated cantilevered panels and find very 
good agreement between the experimental bending stiffness and the 
computational results, demonstrating exquisite control over the di
mensions, form, and properties of the microfabricated panels. 

2. Fabrication and characterization 

2.1. Geometry of the unit cell 

Figure 1a shows a schematic drawing of a nano-cardboard panel with 

a core that consists of cylindrical elements organized in a periodic 
pattern. The geometry of the unit cell used for the panel is an important 
factor in determining both the area density of the panel and its me
chanical behavior. Because the face sheets of nano-cardboard panels are 
so thin, the bending stiffness of the individual face sheets is exceedingly 
small. This small bending stiffness may lead to spontaneous wrinkling of 
the face sheets during the fabrication process. Lin and Bargatin [8] 
proposed a no-straight-line condition to prevent spontaneous wrinkling 
in the face sheet. According to this condition, the unit cell of a sandwich 
panel needs to be defined such that it is impossible to draw a straight line 
across the face of the panel without intersecting a ligament connecting 
the two face sheets. The basketweave pattern depicted in Fig. 1b satisfies 
this condition and was studied extensively by these researchers. While 
the basketweave pattern has a large specific bending stiffness, its elastic 
properties are not isotropic in the plane of the panel because the unit cell 
has only four-fold rotational symmetry [8]. 

Here, we introduce a honeycomb-like unit cell that contains a pattern 
of hollow cylindrical ligaments with hexagonal rotational symmetry 
(Fig. 1c). Like the basketweave pattern, this pattern satisfies the no- 
straight-line condition, but it results in a panel that has in-plane 
elastic isotropy because of its rotational symmetry (Appendix A). 
Furthermore, for the same wall thickness and cross-sectional area, hol
low cylinders with circular cross-section have critical buckling loads 
that are orders of magnitude larger than cylinders with rectangular 
cross-section, leading to better overall performance of the panel. 

2.2. Nano-cardboard fabrication process 

Microfabrication of a sandwich panel consists of three distinct steps 
1) the formation of a sacrificial template, 2) deposition of a thin 
conformal layer onto the sacrificial template, and 3) selective removal of 
the sacrificial template to leave a freestanding structure [8,11]. We first 
fabricate a sacrificial template from a general-purpose, single-crystal 
silicon substrate (Fig. 2a). The thickness of the substrate determines the 
thickness of the sandwich panel, while the size of the substrate sets an 
upper limit on the in-plane dimensions of the panel. We use standard 
photolithography to define the ligament pattern on the silicon substrate 
and then use a deep reactive ion etch (DRIE) based on the Bosch process 
to etch all the way through the silicon substrate. Once the ligament 
pattern has been etched, we coat the silicon template with a thin layer of 
aluminum oxide. Aluminum oxide was selected as the constituent ma
terial since it has a high modulus-to-density ratio, is transparent, and has 
low thermal conductivity, requirements for efficient photophoretic 
levitation [3]. To obtain a coating of uniform thickness independent of 
the geometry of the template and across the entire silicon substrate, we 
use the atomic layer deposition process (ALD), which deposits a 
conformal coating, atomic layer by atomic layer, over the entire extent 
of the template. Coatings with thicknesses ranging from tens to hundreds 
of nanometers are readily achieved using this process. We later refer to 
the thickness of the ALD coating as the wall thickness since the ALD 
coating forms both the face sheets and the ligament walls of the sand
wich panel. For the few cases where the thicknesses of the face sheets 
and the ligaments are different, we will refer to these values explicitly as 
face sheet thickness (tf ) or ligament wall thickness (tl). Different thick
nesses of the face sheets or ligament walls can be achieved with addi
tional deposition or etch processes. 

In a final step, an isotropic XeF2 etch selectively removes the sacri
ficial silicon template while leaving the aluminum oxide in place. 
Because the silicon is completely encapsulated in aluminum oxide, it is 
necessary to first introduce small openings in the aluminum oxide to 
provide access to the silicon (Fig. 2b). These openings are defined by 
means of photolithography using a photoresist (SPR 220–7.0) that 
bridges the openings in the silicon template. The aluminum oxide is then 
etched using either a buffered oxide (5:1) etch solution, or a reactive ion 
etch based on a BCl3/Cl2/Ar chemistry. Since the size of these openings 
is very small compared to the size of the unit cell, they can be uniformly 

Fig. 1. (a) Schematic diagram of 2D nanolattice structures with hexagonal 
pattern; (b) Unit cell of basketweave pattern; (c) Unit cell of hexagonal pattern. 
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Fig. 2. (a) Schematic diagram of the process used to fabricate nano-cardboard panels; (b) Optical image of a sample with micron-size openings in the top layer 
immediately prior to the XeF2 etching process; (c) Selective etching of silicon using XeF2 gas by spatially distributing the openings in the top layer; (d) Effect of the 
openings in the top layer on how quickly the sacrificial template is etched for the case of a 100 μm thick silicon template. The scale bar corresponds to 100 μm in 
figure (b) and to 10 mm in figure (d). The nano-cardboard panels used in figures (b) and (d) have R/u = 0.13, u = 100 μm, H = 100 μm, t = 100 nm, and a diameter of 
4 μm for the etch openings. 
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distributed across the template without reducing the mechanical per
formance of the panels in a meaningful way (Appendix B). The openings 
in the aluminum oxide allow the XeF2 gas to etch the silicon uniformly 
across the silicon template (Fig. 2c), radically decreasing the time 
necessary to remove the silicon and making the etch time independent of 
the size of the template. Fig. 2d illustrates the effectiveness of this 
approach. Sample B in Fig. 2d has small openings in the top aluminum 
oxide layer to allow uniform access of XeF2, while Sample A only 

provides access via the edges of the template as in the process described 
by Lin and Bargatin [8]. It is clear that all the silicon in Sample B has 
been etched after a few hours, while only a small amount of silicon has 
been removed from Sample A in the same amount of time, even though 
Sample B is more than four times larger than Sample A. Additionally, this 
approach makes it possible to selectively etch away silicon in certain 
sections of the template, while leaving it in place in others, simply by 
controlling the spatial distribution of the openings in the top layer 

Fig. 3. (a) Macro-scale nano-cardboard panel larger than a US quarter coin; (b) Handling of macro-scale nano-cardboard panel by hand and tweezer; (c) A nano- 
cardboard panel fabricated using a 100 nm ALD coating supports a mass of 20 mg. The area density of the nano-cardboard in this figure is 2.0 g /m2 with R/u 
= 0.12, H = 90 μm, t = 100 nm, and a diameter of 4 μm for the etch openings. 

Fig. 4. (a) Infinitely wide plate modeled as a cantilever beam with a width of one unit cell and periodic boundary conditions. Unit cell width cantilever beam for 
analyzing various force modes using finite element analysis and surface-coupling implementation of PBCs; (b) Boundary condition and applied load on the structure 
for simulating simple shear; (c) Schematic diagram of nanoindentation procedure for 2D nanolattice cantilever beam testing. 
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Fig. 5. For nano-cardboard panels with u = 100 μm and R/u = 0.12, (a) Bending stiffness for various values of wall thickness and panel thickness; (b) Shear stiffness 
for various values of wall thickness and panel thickness; (c) Schematic diagram of a panel with a hexagonal (R/u = 0.12) unit cell subject to simple shear deformation; 
cross-sectional view of panel along the XZ plane; (d) Plot of shear stiffness as a function of wall thickness. (e) Plot of shear stiffness per unit length as a function of 
ligament wall thickness for several values of the face sheet thickness. 
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(Fig. 2c). This feature of the fabrication process enables fabrication of 
nano-cardboard panels of a variety of shapes, including nano-cardboard 
panels tethered to a solid silicon frame, and also provides an opportunity 
to integrate these structures into MEMS devices. Fig. 3 shows a few 
examples of nano-cardboard panels resulting from this fabrication pro
cess. Macro-scale panels are readily fabricated (Fig. 3a) and are rigid 
enough to be handled by hand or tweezer (Fig. 3b). The panel in Fig. 3c 
supports a mass of 20 mg without noticeable deflection or fracture. 

2.3. Computational analysis 

The mechanical behavior of the nano-cardboard panels was analyzed 
using both computational and experimental techniques. The computa
tional analysis was performed using a commercial finite-element anal
ysis software package, ABAQUS 2019, for several different unit cells and 
for various values of the ALD coating and panel thicknesses. To examine 
the bending behavior of the panels, we applied either a moment (pure 
bending) or a transverse force (combined bending and shear) at the end 
of an infinitely wide clamped cantilever plate made out of nano- 
cardboard (Fig. 4a). To simulate the infinitely wide plate, periodic 
boundary conditions were applied to a cantilever beam that was a single 
unit cell wide [12]. For ease of modeling and application of the 
boundary conditions, we represent the honeycomb structure using the 
rectangular unit cell shown in Fig. 4a instead of the hexagonal unit cell 
in Fig. 1c [13,14]. We also examined the behavior of a single unit cell 
subject to simple shear (Fig. 4b) [15]. In this case, the unit cell was fixed 
on one side and a transverse force was applied to the nodes on the 
opposite side with boundary conditions to prevent rotation of the sec
tion; periodic boundary conditions were applied to the nodes on both 
side faces. The nano-cardboard was modeled using the general-purpose 
shell element S4R, because the wall of the nano-cardboard consists of an 
ALD coating that is typically two to four orders of magnitude smaller 
than the overall macroscopic dimensions of the panel. The number of 
elements in a single unit cell varied from 7800 to 32,500 depending on 
its geometry. We used a linear elastic model with Young’s modulus of 
170 GPa and a Poisson’s ratio of 0.21, typical values for ALD coatings of 
aluminum oxide [16,17]. The length of the cantilever beams (L) was as 
indicated in the various figures. The simulations were performed with 
large-displacement kinematics and included extensive post-buckling 
behavior. 

2.4. Experimental characterization 

The mechanical behavior of the nano-cardboard panels was also 
measured experimentally. Nano-cardboard cantilever panels with a 
hexagonal unit cell and ligaments with a 13 μm radius (R) were first 
fabricated using the microfabrication process described earlier. The 
length of the cantilever panels was either 850 ± 0.4 μm or 1000 ± 0.4 
μm, and their width was 810 ± 0.4 µm. The thickness of the panels was 
105 ± 5 μm; the thickness of the aluminum oxide used to make the 
panels was determined to be 320 ± 5 nm by observing the cross-section 
of the cantilever panel in a scanning electron microscope (SEM). The 
load-deflection curves of the cantilever panels were measured using a 
nanoindentation tester (Nanomechanics, Inc., USA) with a Berkovich 
indenter tip, imposing a maximum displacement of 7 μm. To avoid 
damage to the nano-cardboard and to better determine the initial point 
of contact between the indenter and the cantilever beam, we used a 
customized testing sequence, shown in Fig. 4c. First, the initial distance 
between the indenter and the cantilever panel was determined by 
making an indentation in the rigid area where the silicon had not been 
etched away, close to the tip of the cantilever beam. Then the indenter 
was positioned above the tip of the cantilever panel, a distance 50 μm 
from the edge, and the indenter was lowered slowly to measure the load- 
deflection curve of the cantilever. 

3. Results and discussion 

3.1. Initial bending stiffness and shear stiffness of nano-cardboard panels 

3.1.1. Dependence on wall thickness (t) and panel thickness (H) 
Like their macroscopic counterparts, nano-cardboard panels consist 

of two face sheets and a lightweight core. Nano-carboard panels, how
ever, have three structural features that are quite different from 
macroscopic panels: 1) The volumetric fraction of material in the core is 
extremely low, typically on the order of 10− 3, 2) the ligaments between 
the face sheets are not connected to each other in the plane of the panel 
other than by the face sheets, and 3) the ratio of the thickness of the face 
sheet (i.e., the ALD coating thickness) to the thickness of the panel (i.e., 
the silicon substrate thickness) is very small, typically 10− 2 to 10− 4. As 
illustrated below, these characteristics result in somewhat different 
bending and shear behavior compared to conventional panels. We have 
calculated the initial bending and shear stiffnesses of nano-cardboard 
panels as a function of wall thickness t and panel thickness H, while 
keeping the unit cell of the panel the same (hexagonal pattern R/u =
0.12, where R and u are defined in Fig. 1c). The bending stiffness per unit 
width of the nano-cardboard panel, KB = ML/φ, is calculated as the 
initial slope of the moment-rotation curve obtained under conditions of 
pure bending. Here, M is the moment per unit width applied at the end of 
a cantilever plate of length L, and φ is the angle of rotation of the end of 
cantilever plate. The results are summarized in Fig. 5a. The bending 
stiffness of the nano-cardboard panels is proportional to t⋅H2, as one 
would expect for a sandwich panel with t/H→0 and with a core of 
negligible bending stiffness. In this limit, linear sandwich theory pre
dicts a bending stiffness KB (Appendix C) [18,19], 

KB ≈ Ef
t⋅H2

2
, (1)  

where Ef is the homogenized elastic modulus of the face sheets. The 
value of Ef for a nano-cardboard panel with a hexagonal pattern can be 
estimated directly by dividing the in-plane stiffness of the panel by a 
factor of two. The dotted curves in Fig. 5a represent the bending stiffness 
calculated from Eq. (1) using this estimate and are in very good agree
ment with the finite element model (FEM) calculations. 

The shear stiffness per unit width (KS) of the nano-cardboard panel 
was determined from the deformation of a rectangular unit cell sub
jected to simple shear (Fig. 4b), KS = Ql/Δx, where Δx is the transverse 
displacement, Q the applied force per unit width, and l the length of unit 
cell. The results are depicted in Fig. 5b. 

The shear stiffness of the nano-cardboard panels is independent of 
panel thickness and approximately proportional to t3. At first glance, 
this result is somewhat surprising since the shear stiffness of a conven
tional macroscopic sandwich panel is typically well approximated by the 
shear stiffness of the core. In the case of these nano-cardboard panels, 
the shear stiffness of the core is relatively large because the core consists 
of cylindrical shells that serve as ligaments between the face sheets. The 
dependence of the shear stiffness on thickness of the face sheets then 
arises because the shear deformation imposed on the unit cell is 
accommodated almost entirely by bending of the face sheets in the re
gions around the cylindrical ligaments rather than by shear deformation 
of the core. The cylindrical ligaments are so stiff that they are not the 
limiting components for shear deformation, and because they are not 
directly connected to each other, the ligaments constrain the deforma
tion of the face sheet less than if they were connected. This mode of 
deformation is illustrated in Fig. 5c, which shows a cross-section 
through a small nano-cardboard panel deformed in simple shear. It is 
evident from the figure that the face sheets are corrugated, while the 
cylindrical ligaments are virtually undeformed. Since the deformation of 
the panel is accommodated by local bending of the face sheets, the 
overall shear stiffness is determined by the bending stiffness of the in
dividual face sheets, i.e., KS ∼ t3. The dependence of KS on t is shown in 
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more detail in Fig. 5d over several orders of magnitude of the wall 
thickness. For very small values of the wall thickness, the exponent 
approaches a value of three as expected when the deformation of the 
panel is completely accommodated by the face sheets and the defor
mation of the cylindrical ligaments is negligible. As the wall thickness 
increases, the bending stiffness of the face sheets increases as t3, while 
the shear stiffness of the cylindrical ligaments increases only linearly. As 
a result, the core accommodates a larger fraction of the deformation and 
the value of the exponent decreases with increasing t. This effect be
comes more apparent if we vary the wall thickness of the ligaments, 
while keeping the thickness of the face sheets constant (Fig. 5e). When 
the thickness of the ligaments is very small, both ligaments and face 
sheets deform, and the shear stiffness of the panel increases rapidly with 
ligament thickness. As the stiffness of the core ligaments increases 
further, the shear stiffness of the panel reaches a plateau where the shear 
stiffness is completely determined by the bending stiffness of the face 

sheets. As a result, the plateau values of the shear stiffness have a nearly 
perfect cubic dependence on the face sheet thickness. In this case, the 
shear stiffness can be expressed as (Appendix E) 

KS = g(R / u)
E

1 − ν2
t3

u2, (2)  

where g(R /u) is a fitting function that, for hexagonal panels with R/u 
between 0.10 to 0.15, can be written as, 

g(R / u) =
(

0.05525 − 0.67247(R/u) + 2.06014(R/u)2
)− 1

. (3)  

3.1.2. Dependence on unit cell pattern 
The unit cell defines the shape, spacing, and size of the ligaments 

connecting the two face sheets in a nano-cardboard panel. As such, it 
determines the stiffness of the core and has a profound impact on the 
overall mechanical behavior of the panel. Fig. 6a and b depict as a 

Fig. 6. (a) Graph of bending stiffness per unit length as a function of area density for nano-cardboard panels with the same shell thickness, but different unit cells; (b) 
Graph of shear stiffness per unit length as a function of area density for nano-cardboard panels with the same shell thickness, but different unit cells; (c) Plot of 
apparent bending stiffness calculated using values of the bending stiffness and shear stiffness from FEM simulation for various hexagonal and basketweave patterns (t 
= 100 nm, H = 100 μm). 
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function of area density the bending stiffness and the shear stiffness of 
nano-cardboard panels with the same wall and panel thicknesses, but 
with two different types of unit cells - one a hexagonal pattern with 
circle motif, the other the basketweave pattern used by Bargatin et al. 
[8]. As the ligament radius (R) or the aspect ratio changes (a/b), the 
nano-cardboard panels sweep a range of area densities. As shown in 
Fig. 6a, the bending stiffness decreases as the size of the motif increases 
for both types of unit cell. The bending stiffness is determined mainly by 
the stiffness of the face sheets and the thickness of the nano-cardboard 
panel. As the area fraction of ligaments increases, the stiffness of the 
face sheets decreases (Appendix C), and so does the bending stiffness of 

the panel. Note that, for a given area density, the hexagonal unit cell 
results in a significantly higher bending stiffness than the basketweave 
unit cell. The trends are different for the shear stiffness, as shown in 
Fig. 6b. As mentioned earlier, shear deformation of a nano-cardboard 
panel is accommodated by bending of the face sheets rather than 
deformation of the core. As the motif size of the pattern increases, the 
area between the ligaments where the bending deformation concen
trates is reduced, resulting in a higher overall shear stiffness. The shear 
stiffnesses are comparable for both types of unit cell, although the shear 
stiffness for the basketweave pattern increases more rapidly with area 
density. Appendix D provides stiffness results for another, more recent 

Fig. 7. (a) Optical image of nano-cardboard cantilever plates of L = 1000 μm and 850 μm with w = 810 μm; (b) Force-displacement curves as results of nano
indentation tests for L = 1000 μm and L = 850 μm 2D nanolattice cantilever plates; (c) Plot of apparent bending stiffness obtained from experiments and FEM 
simulation of the hexagonal pattern cantilever plates (R/u = 0.13, u = 100 μm, H = 100 μm, t = 320 nm). 
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Fig. 8. FEM simulations of buckling behavior: (a) Moment-rotation curve obtained from an FEM analysis of pure bending of a typical nano-cardboard panel; (b) 
Typical bending stiffness-moment curve from pure-bending of nano-cardboard panel; (c) FEM snapshots of buckling phase of nano-cardboard with hexagonal pattern 
(R/u = 0.11); (d) Buckling curves of nano-cardboard panels of different patterns with instantaneous stiffness inset; (e) Graph of the critical buckling moment as a 
function of area density for nano-cardboard panels with the same shell thickness, but different unit cells; (f) Comparison of buckling patterns for a panel with a 
basketweave pattern (a/b = 6, a/u = 0.6, u = 100 μm, H = 100 μm, t = 100 nm) subjected to pure bending, obtained from computational analysis (FEM) and 
experimental observation in a scanning electron microscope (SEM). 
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basketweave pattern with five ligaments [1]. 

3.2. Stiffness of nano-cardboard cantilever beams 

When a transverse load is applied to the end of a typical cantilever 
plate, the deflection of the plate is predominantly the result of bending 
deformation. The contribution of shear deformation is usually small 
except in the case of very short plates. This is not so for nano-cardboard 
panels. Because the shear stiffness of a nano-cardboard panel is deter
mined by the bending stiffness of its face sheets, its shear stiffness is 
relatively speaking much smaller than that of regular sandwich panels. 
As a result, its deflection behavior is different from the behavior of a 
regular sandwich panel in the sense that shear has a much larger 
contribution to the overall deflection of the nano-cardboard panel. 
Consequently, the deflection of nano-cardboard panels cannot be 
described by Kirchoff-Love plate theory, and Uflyand-Mindlin plate 
theory [20,21] should be used instead. According to Uflyand-Mindlin 
theory, the maximum deflection of a cantilever panel subject to a con
stant line force F along its edge is the sum of the bending and shear 
contributions: 

δtotal = δbending + δshear =
FL3

3KB
+

FL
KS

, (4)  

where L the cantilevered length of the panel. Note that for this special 
case the same result can also be obtained from Timoshenko beam theory 
[19]. Combining both stiffnesses into a single apparent bending stiffness 
per unit width Dapp, we write 

δtotal =
FL3

3Dapp
with Dapp =

KB

1 + 3KB
L2KS

. (5) 

Figure 6c shows a graph of the apparent bending stiffness normalized 
by KB as a function of the cantilever length normalized by the panel 
thickness for various unit cells. The apparent bending stiffness in this 
figure was calculated using the bending stiffness and the shear stiffness 
values shown in Figs. 6a and 6b. Note that the absolute values of the 
apparent bending stiffness for panels with a hexagonal unit cell are 
much larger than for panels with a basketweave pattern and comparable 
area density. The apparent bending stiffness changes with the length of 
the cantilever panels because the relative contributions of shear and 
bending deformation change with panel length (Fig. 6c). Because the 
shear stiffness is so small, the transition from shear to bending occurs at 
a length to panel thickness ratio that is much larger than observed for a 
typical macroscopic panel - for a nano-cardboard panel with a length 
that is 50 times larger than the panel thickness, deformation by shear 
remains important. This would be highly unusual for a regular sandwich 
panel. 

3.3. Experimental verification 

To verify the finite element results experimentally, we fabricated two 
cantilever panels with lengths 850 μm and 1000 μm out of nano- 
cardboard, both with the same hexagonal unit cell (u = 100 μm, R =
13 μm), panel thickness (105 µm), and wall thickness (320 nm) (Fig. 7a). 
The area within the red dotted line consisted of nano-cardboard, where 
the silicon was etched away selectively by making small openings in the 
aluminum oxide; the area outside the dotted line consisted of solid sil
icon with a coating of ALD aluminum oxide. The force-displacement 
curves obtained using the nanoindenter are shown in Fig. 7b. The 
force-displacement curves are linear over the entire range of displace
ments and a linear least-squares fit of the data allows experimental 
determination of the values of the apparent bending stiffness Dapp of the 
plates using Eq. (5). These experimental values obtained from multiple 
deflection experiments are shown as blue square and circle in Fig. 7c, 
which graphs the apparent bending stiffness as a function of cantilever 
plate length. Also marked in this figure are the values of the apparent 

bending stiffness obtained from FEM simulations of nano-cardboard 
cantilever plates of slightly different lengths. The black curve is the 
apparent bending stiffness calculated from Eq. (5) using the values of the 
bending stiffness KB and the shear stiffness KS obtained from finite 
element simulations of the unit cell models (Figs. 5a and 5b). It is 
evident from Fig. 7c that there is very good agreement between the 
experimental values of the apparent bending stiffness, the values ob
tained from the full-fledged cantilever plate simulations, and the curve 
obtained from Eq. (5). This agreement suggests that Uflyand-Mindlin 
plate theory provides a good description of the mechanical behavior 
of cantilever nano-cardboard plates, provided the bending and shear 
stiffness values are known. The agreement also indicates that the ge
ometry and dimensions, as well as the material properties, of the 
experimental cantilevers are very close to those of the FEM, i.e., the 
current fabrication process provides excellent control over the di
mensions, form, and properties of the nano-carboard structures. 

3.4. Post-buckling behavior of 2D nanolattice cantilever beams 

The load capacity of sandwich panels is generally limited by various 
failure mechanisms including face sheet yielding, core yielding, face 
sheet wrinkling, and buckling [22]. Nano-cardboard panels have an 
extremely small ratio of face sheet thickness to panel thickness - a typical 
ratio can be as small as 1:1000. Furthermore, they are fabricated using 
materials that tend to have very large yield or fracture strengths [23,24], 
either because of their very fine microstructures in the case of metals or 
because they are dense ceramics without macroscopic flaws. Conse
quently, microfabricated panels buckle easily under load, but the 
buckling deformation is often entirely elastic and fully reversible [7,8]. 
Thus, the non-linear post-buckling behavior of these panels may 
potentially be regarded as part of their normal useful behavior and 
quantification of the buckling behavior may enable creative use of these 
panels in applications. 

Figure 8a shows a typical moment-rotation curve of a nano- 
cardboard cantilever with a hexagonal pattern loaded in pure bending 
obtained by finite element analysis; Fig. 8b shows the corresponding 
instantaneous bending stiffness as a function of rotation. Three stages 
are clearly visible: In stage I, before buckling, the deformation behavior 
is linear. In this stage, compressive stresses develop in the bottom face 
sheet, and tensile stresses in the top face sheet (Fig. 8c). In stage II, the 
compressive stress in the bottom sheet leads to local buckling of the face 
sheet as shown in Fig. 8c. Buckling occurs in the largest areas (red dotted 
circle in Fig. 8c, Stage II) unconstrained by the cylindrical ligaments. 
While local buckling is accompanied by a reduction of the bending 
stiffness of the panel, the panel retains significant resistance to bending 
after buckling (Fig. 8b). As the bending moment is increased further, the 
panel buckles over a length scale that spans several unit cells (Stage III), 
and the bending stiffness decreases rapidly (Figs. 8b and c). 

Figure 8d shows the buckling curves for nano-cardboard cantilever 
panels with various hexagonal unit cells loaded in pure bending; Fig. 8e 
summarizes the effects of ligament radius and area density on the critical 
buckling moment. Fig. 8f shows a comparison of the buckling patterns 
for a panel with a basketweave pattern subjected to pure bending ob
tained from the computational analysis (FEM) and from experimental 
observation in a scanning electron microscope (SEM), with very good 
agreement between both. The values of the critical buckling moment 
were obtained from buckling simulations performed using ABAQUS. The 
first eigenvalue was extracted from the FEM displacement using a linear 
perturbation analysis and the critical buckling moment was then 
calculated using the bending stiffness of the structure. As the radius of 
the cylindrical ligaments increases, the size of the unconstrained area 
between the ligaments decreases and the critical bending moment for 
local buckling increases. While the initial bending stiffness of the panel 
decreases with increasing ligament radius (Fig. 8(d)), the reduction in 
bending stiffness after buckling decreases, i.e., buckling has only a small 
effect on the load carrying ability of the panel. The figures also show the 
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Fig. 9. (a) Bending stiffness versus applied moment divided by panel thickness for nano-cardboards with various panel thicknesses; (b) Buckled shape of the largest 
unconstrained section of the bottom face sheet obtained from FEM analysis along with an optical image of a buckled nano-cardboard sample; (c) Stress distribution 
along the white dotted line of Fig. 9b on bottom face sheet before local buckling; (d) Critical buckling force dependance on R/u; (e) Effect of shell thickness and 
pattern on critical buckling force; (f) Effect of unit cell size on critical buckling force. The scale bar in (b) corresponds to a length of 10 μm. 
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typical buckling behavior of a panel with a basketweave pattern. In 
general, the buckling behavior of the basketweave pattern is somewhat 
inferior to that of a hexagonal pattern with similar area density (Figs. 8d, 
8e and Appendix D). There are two causes for the inferior buckling 
behavior of the basketweave pattern: 1) The ligaments of the basket
weave pattern consist of flat rectangular plates, which buckle at much 
lower loads than the cylindrical ligaments in the hexagonal pattern 
because flat surfaces have a much lower resistance to buckling than 
curved surfaces [25]; 2) Unlike panels with a hexagonal pattern, bas
ketweave panels loaded in pure bending develop compressive stress in 
both top and bottom face sheets, causing buckling in the top face sheet in 
addition to buckling in the bottom face sheet. 

Figure 9a shows the instantaneous bending stiffness of nano- 
cardboard panels with the same hexagonal unit cell but different 
panel thicknesses, 25 μm and 50 μm, as a function of applied bending 
moment per unit panel thickness. While the bending stiffness increases 
with panel thickness, we note that the critical buckling moments per 
unit panel thickness are approximately the same because the stress 
distributions in the face sheets scale directly with the applied bending 
moment per unit panel thickness M/H. Fig. 9b depicts the region of the 
face sheets where local buckling occurs in the FEM models when the 
panel is subjected to pure bending. Buckling occurs in the exact same 
locations in the FEM models as observed experimentally (inset in 
Fig. 9b) and the buckled shapes are qualitatively similar. Fig. 9c shows 
for various unit cells the normal stress distribution in the X-direction 
along the white dotted line in Fig. 9b immediately prior to buckling. It is 
evident from the figure that nano-cardboard panels with the same unit 
cell (R/u = 0.12, 0.13), but different panel thickness, have very nearly 
the same stress distribution and hence the same M/H immediately prior 
to buckling, in agreement with Fig. 9a. The stress distributions go 
through a compressive maximum in the region where buckling is 
observed. There are regions near the edges of the distributions that have 
higher compressive stresses, but these regions are much more con
strained by the ligaments and no buckling is observed. Fig. 9d shows the 
critical value of M/H as a function of R/u. As the value of R/u increases, 
the region where buckling is observed is increasingly constrained by the 
ligaments and the critical value of M/H increases. Figs. 9e and 9f show 
the effects of wall thickness t and unit cell size u on local buckling of the 
face sheet. The critical value of M/H scales with t3/u2, similar to the 
critical buckling condition for a simply supported plate. The critical 
moment for local buckling of the face sheet can then be estimated from 

Mcr = f (R / u)H
t3

u2

E
1 − ν2, (6)  

where E and ν are Young’s modulus and Poisson’s ratio of the coating 
material, and the function f (R/u) can be obtained from Fig. 9d. Quan
tification of the post-buckling behavior of the panel (Fig. 8d) of course 
requires detailed large-deformation FEM calculations. 

4. Some design considerations for nano-cardboard panels 

With applications involving photophoretic levitation in mind, we 
focus this section on developing design principles for nano-cardboard 
panels that are both ultralight and ultra-stiff. The area density of a 
nano-cardboard panel with a hexagonal pattern is given by 

ρarea =
2
̅̅̅
3

√
⋅u2tf + 28⋅πR

(
Htl − Rtf

)
− 14πHt2

l̅̅̅
3

√
⋅u2

ρc, (7)  

where ρc is density of the wall/coating material, tl is the wall thickness of 
the ligaments and tf is the thickness of the face sheets. As shown in 
Table 1 for the special case t = tf = tl, low weight and good mechanical 
performance are inherently conflicting requirements. Any change to H, t 
or u that improves the mechanical behavior also results in an increase in 
area density (Eq. (7)). It is possible, however, to improve the mechanical 
performance and keep the area density constant by increasing t and u 
simultaneously. For instance, a nano-cardboard panel with u = 100 μm, 
H = 100 μm, t = 100 nm, and R/u = 0.12, has an area density of 2.20 
g/m2. If t is doubled and u multiplied by a factor of 2.53, the area density 
of the panel remains the same, while KB, Mcr, and KS improve slightly. 
Increasing the value of u, however, also increases the radius R of the 
ligaments, which may have a deleterious effect on the photophoretic 
force if R becomes larger than the mean free path of the surrounding gas 
[3]. 

More headway can be made by allowing the thickness of the face 
sheets and the ligaments to vary independently since the face sheets and 
ligaments affect the overall mechanical behavior of the nano-cardboard 
panel very differently. Different thicknesses for the face sheets and the 
ligaments are readily implemented in the current fabrication process. 

As shown in Fig. 10a, there are many combinations of tf and tl that 
result in the same area density. Figs. 10b-d show the values of KB, KS and 
the critical buckling moment as a function of the thickness ratio, tf/tl, for 
a fixed area density. The figures show that both the bending stiffness and 
the critical buckling moment initially rise rapidly and then approach a 
plateau (Figs. 10b, d) as the thickness ratio increases for a fixed area 
density. The reason for this behavior is that both the bending stiffness 
and the critical buckling moment are determined by the face sheet 
thickness, and the face sheet thickness approaches a constant value 
determined by the area density as the thickness ratio grows without 
bound (Fig. 10a). By contrast, the shear stiffness is determined by the 
thickness of the face sheet when the ligament wall thickness is large and 
the deformation is localized in the face sheets, but it decreases rapidly 
with ligament wall thickness when the wall of the ligaments is thin and 
the compliance of the core starts to dominate the deformation (Fig. 5e). 
Consequently, for a given area density, there exists an optimum value of 
the thickness ratio that maximizes the shear stiffness for that area den
sity (Fig. 10c). Below the optimum value, the shear deformation is 
mainly accommodated by the bending of the face sheets; above that 

Table 1 
Relationship between the mechanical behavior and area density of hexagonal pattern nano-cardboard panels, and structural parameters for the case that tf = tl.   

Panel thickness (H) Wall thickness (t) Unit cell size (u) Ligament radius / Unit cell size (R/u) 

Bending stiffness, KB ~H2 ~t No effect * ↓ 
Critical buckling moment, Mcr ~H ~t3 ~1/u2 ↑ 
Shear stiffness, KS No effect ~t3 ~1/u2 * ↑ 
Area density, ρarea (Eq. (5)) ↑ ~t ↓ ↑ (H > R) 

↓ (H < R)  

* Effect of unit cell size (u) is specified in Appendix E. 
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Fig. 10. (a) Combinations of face sheet thickness and ligament thickness for fixed area densities; (b) Effect of tf /tl on the bending stiffness at constant area density; 
(c) Effect tf /tl on shear stiffness at constant area density; (d) Effect of tf /tl on the critical buckling moment at constant area density; (e) Bending stiffness of various 
sandwich structures versus area density; (f) Shear stiffness of various sandwich structures versus area density. In (a)-(d), the hexagonal nano-cardboard panels have 
dimensions of H = 100 μm, u = 100 μm and R/u = 0.12. 
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ratio, it is accommodated by the deformation of the core. Because the 
apparent bending stiffness of a nano-cardboard panel depends on both 
KB and KS, the optimum thickness ratio also results in approximately the 
maximum apparent bending stiffness. The cases corresponding to the 
optimum thickness ratios are marked in Figs. 10a-d by the + symbols. 

The results in Figs. 10b-d suggest that the wall thickness of the lig
aments should be significantly smaller than the thickness of the face 
sheets for optimum mechanical performance. There are, however, 
practical considerations that may put a lower bound on the thickness of 
the ligament walls from a materials and fabrication point of view. For 
instance, if the panel is fabricated out of alumina using an ALD process, 
our experience and previous work [8] suggest a lower bound of 
approximately 25 nm. This lower bound may be different for other 
materials and fabrication processes. The corresponding maximum 
practical thickness ratios are marked in Figs. 10a-d by the × symbols. 
These ratios obviously result in slightly lower than optimum stiffness 
values. 

Figs. 10e and 10f show a compilation of the bending stiffness and 
shear stiffness for a broad range of nano- and micro-cardboard panels [5, 
6,8,22,26,27]. For the same area density, the bending stiffness of 
nano-cardboard panels is superior to that of a bulk aluminum oxide 
cantilever beam by many orders of magnitude (gray line in Fig. 10e) and 
the bending stiffness of panels with a hexagonal pattern is also signifi
cantly better than that of panels with a basketweave pattern. 
Nano-cardboard panels with the maximum practical thickness ratio and 
the optimum thickness ratio are marked in the figure with black × and 
+ symbols, respectively, and clearly have superior bending stiffness. 
Unlike the bending stiffness, however, the shear stiffness of 
nano-cardboard panels is smaller than that of alumina beams with the 
same area density (Fig. 10f). As the area density increases, the gap be
tween cardboard panels and bulk alumina decreases, but there is a dif
ference of approximately three orders of magnitude in the relevant 
nano-cardboards region (<10 g/m2). This small shear stiffness affects 
the bending behavior of nano-cardboard panels, especially for narrow 
panels as shown in Fig. 6c. 

This study focuses on the mechanical behavior of nano-cardboard for 
use in photophoretic levitation devices. For levitation, the temperature 
difference between top and bottom face sheets needs to be maximized to 
increase the photophoretic force. To achieve this, Schafer et al. sug
gested a modified nano-cardboard structure by removing some liga
ments to decrease thermal conduction through the ligaments [3]. As the 
temperature difference between the face sheets of this structure is 
further maximized, the lofting force is greatly improved by thermal 
transpiration through the openings in the top and bottom face sheets. 
The lack of ligaments, however, deteriorates the buckling resistance and 
stiffness of the structure. We believe that the best photophoretic levi
tation device consists of two distinct parts, a photophoretically active 

structure with fewer ligaments and the nano-cardboard covered in this 
study to provide mechanical stability to the device. It is necessary to 
study practical photophoretic levitation devices under conditions that 
optimize both the photophoretic force and the mechanical behavior. 
That will be the follow-up work of this study. 

5. Conclusions 

We have developed a class of ultralight and ultra-stiff nano-card
board panels using a scalable fabrication process. The cores of the panels 
consist of hexagonal patterns of tubular ligaments and results in superior 
mechanical properties compared to previously reported basketweave 
patterns. The fabrication process uses a silicon wafer as a sacrificial 
template and ALD aluminum oxide as structural material. Small open
ings in the ALD coating distributed across the template make it possible 
to etch the sacrificial template in selected areas and to scale the size of 
the panel without impact on etch time. Nano-cardboard panels as large 
as 3 × 3 cm2 have been fabricated in just a few hours using this process. 
We have evaluated the mechanical behavior of the panels using finite 
elements and find very good agreement of the model results with 
experiment measurements of the bending stiffness of cantilevered 
panels. Both experimental and computational results indicate that the 
panels are well described by Uflyand-Mindlin plate theory, which can 
account for the relatively low shear stiffness of the panels. We show that 
for a given area density, there exists a ratio of face sheet thickness to 
ligament wall thickness that maximizes the shear stiffness of the panel. 
Below this optimum value, the shear deformation is accommodated by 
bending of the face sheets; above that ratio, it is accommodated by 
deformation of the core. Panels with the optimum thickness ratio 
significantly outperform other panels with the same area density. We 
believe that these panels are light and strong enough to serve as com
ponents in photophoretic levitation devices. 
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Appendix A. Isotropic hexagonal pattern 

For the nano-cardboard panel to be elastically isotropic, we suggest the use of cylindrical ligaments organized in a hexagonal pattern based on a 
honeycomb. Unlike the basketweave pattern, this pattern results in isotropy because of its six-fold rotational symmetry. As an example, we apply pure 
bending to two hexagonal nano-cardboard plates (R/u = 0.12, u = 100 μm, H = 100 μm, t = 100 nm). Two cantilever plates were modeled by 
extending a square hexagonal pattern unit cell in the direction of the X-axis and Y-axis (Fig. A1a), respectively. Periodic boundary conditions were 
applied in the direction perpendicular to the extension axis. Fig. A1b shows the moment-rotation curves for both plates, and the overlap between the 
curves is evident. 
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Appendix B. Effect of micro-openings on bending behaviors 

Micro-openings in the face sheets dramatically reduce the time for etching silicon using XeF2 gas during the nano-cardboard fabrication. The radius 
of the micro-openings is 1–2 μm, which is small compared to the dimensions of nano-cardboard panel. Using finite element analysis, we checked the 
effect of those micro-openings on the pure-bending deformation of a nano-cardboard panel. We modeled nano-cardboards without micro-openings 
and with micro-openings as shown in Figs. B1a and b. For the nano-cardboard with micro-openings, we applied pure bending in the downward 
and upward directions, respectively. As can be seen in Figs. B1c and d, the behaviors do not change significantly when micro-openings are present, 
although the critical buckling moment may be slightly reduced. 

Fig. A1. (a) Nano-cardboard plates based on hexagonal pattern (R/u = 0.12, u = 100 μm, H = 100 μm, t = 100 nm); (b) Moment-rotation curve from pure-bending of 
nano-cardboard plates. 

Fig. B1. Nano-cardboards (R/u = 0.14, u = 100 μm, H = 100 μm, t = 100 nm) (a) without micro-openings and (b) with micro-openings; (c) Moment-rotation curves 
from pure-bending of nano-cardboard plates; (d) Bending stiffness-moment curve from pure-bending of nano-cardboard plates. 
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Appendix C. Linear sandwich theory for bending stiffness 

Sandwich structures are generally composed of two face sheets and a core connecting them as shown in Fig. C1a. Using the parallel-axis theorem, 
the equivalent flexural rigidity of the sandwich structure (EIeq) can be derived as following: 

EIeq =
∑

EiIi = Ef (I1 + I2) + EcIc  

= Ef

([
wt3

12
+wt

(
H
2

)2
]

+

[
wt3

12
+wt

(
H
2

)2
])

+ Ec
w(H − t)3

12  

= Ef

(
wt3

6
+

wtH2

2

)

+ Ec
w(H − t)3

12
.

For nano-cardboards panels, Ec/Ef is approaches zero and the equation above can be expressed as 

EIeq = Ef
wtH2

2
.

In nano-cardboard panels, Ef can be obtained from the in-plane tensile deformation of the whole structure including the core (Fig. C1b). Since the 
in-plane deformation of face sheets is somewhat constrained by the core ligaments, the value of Ef is slightly different from the effective elastic 
modulus of just the patterned face sheet. Fig. C1c shows Ef values for various hexagonal patterns, where we used a Young’s modulus of 170 GPa and a 
Poisson’s ratio of 0.21 in the finite element analysis. This result also shows that Ef decreases with increasing area fraction of the ligaments. 

Fig. C1. (a) Cross-section of typical sandwich structure; (b) In-plane tensile deformation of nano-cardboard structure; (c) Effect of area fraction of the ligaments on 
the effective face sheet modulus of nano-cardboard panels with hexagonal patterns. 
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Appendix D. Nano-cardboard panels with basketweave pattern with five ligaments 

We have done a full FEM analysis of the basketweave pattern with five ligaments from Ref [1]. In particular, we investigated the bending, shear, 
and buckling behavior of the following two representative nano-cardboard panels with five ligaments:  

1) Basketweave panel 1 with height = 100 μm, wall thickness = 100 nm, and unit cell size = 100 μm. This panel is directly comparable to the nano- 
cardboard panel with hexagonal unit cell in Fig. 6 in terms of physical dimensions and unit cell size. This basketweave panel has an area density of 
~6.8 g/m2, compared to ~2.3 g/m2 for the hexagonal panel.  

2) Basketweave panel 2 with height = 100 μm, wall thickness = 100 nm, unit cell size = 350 μm. This basketweave panel has a much larger unit cell 
size, but an area density of ~2.3 g/m2, which is comparable to that of the hexagonal panel. 

For both panels, we used b/u = 0.51 and c/u = 0.02 (see Fig. D1a) for each ligament, similar to what was used in Ref [1]. Fig. D1b shows schematic 
images of both panels along with a hexagonal panel with R/u = 0.13 (for reference). 

The results of the FEM simulations are shown in Figs. D1c-e. It is evident from these results that  

• The panel with basketweave pattern 1 has a comparable critical buckling moment, higher shear stiffness, and lower bending stiffness than the 
reference hexagonal pattern, but an area density that is about three times higher than the reference panel.  

• The panel with basketweave pattern 2 has an area density comparable to that of the reference hexagonal panel, but the bending stiffness, shear 
stiffness and buckling moment are significantly lower than those of the reference hexagonal pattern. 

We conclude that, at least for the patterns investigated here and for panels with a similar area density, the basketweave pattern with five ligaments 
has lower stiffness and buckling resistance than the hexagonal pattern. 

Fig. D1. (a) Unit cell of basketweave pattern with five channels; (b) Schematic diagram of nano-cardboard panels with different unit cells: basketweave pattern with 
five channels for different unit cell size (100 μm and 350 μm), hexagonal pattern for unit cell size of 100 μm; Graph of (c) bending stiffness, (d) shear stiffness, (e) 
critical buckling moment per unit length as a function of area density for nano-cardboard panels with the same shell thickness, but different unit cells. 
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Appendix E. Effect of unit cell geometry on nano-cardboard stiffness 

Figure E1 shows the change of bending stiffness and shear stiffness depending on the unit cell size for hexagonal nano-cardboard panels. Using 
ABAQUS, we prepared nano-cardboard panels with H = 100 μm, t = 100 nm, and R/u = 0.12. We simulated the bending and shear behaviors for 
various unit cell sizes (u = 100, 200, 400, 800 μm). As shown in Figs. E1a, the bending stiffness of the nano-cardboard panels is independent of the unit 
cell size of the panel. The results in Figs. E1b and E1c suggest that the shear stiffness of nano-cardboard panels is approximately proportional to u− 2. 
Fig. E1d shows that the normalized shear stiffness, g(R /u), depends on R/u only. 
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