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equilibrium boundary-value problems are obtained by the method of dynamic relaxation
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numerical, and analytical results.
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1. Introduction

Thin elastic sheets develop surface undulations, or wrinkles, in the presence of small compressive stress. The study of
this phenomenon has its roots in the pioneering works by Wagner (1929) and Reissner (1938). In recent years, interest in
thin sheets has greatly increased due to their relevance in a wide array of applications such as biological tissues (Ben Amar
and Dervaux, 2008), integrated circuits (Kim et al., 2008), and solar sails (Vulpetti et al., 2008; Taylor and Steigmann, 2009;
Kezerashvili, 2010). As a result, wrinkling has recently attracted considerable attention among engineers (Healey et al., 2013;
Wong and Pellegrino, 2006a–c; Pipkin, 1986; Steigmann, 1990; Zheng, 2009), physicists (Davidovitch et al., 2011; Cerda and
Mahadevan, 2003; Vandeparre et al., 2011) and biologists (Kareklas et al., 2013).

The problem may be regarded as one of characterizing the deformation of a sheet well into the post-buckling range,
though it differs from conventional buckling in that it is attended by significant stretching. To model details of the wrinkle
patterns such as wavelength and amplitude, an appropriate theory must account for the flexural stiffness of the sheet. This
effectively introduces a local length scale in the theory, which in turn figures in the wavelengths of the wrinkles.

Typical approaches to characterizing the wrinkled regions in thin sheets in recent years can be placed into three general
categories: tension-field theory, analytical approaches based on a Föppl–von Kármán framework and finite element
simulations based on buckling analyses.

Tension-field theory was devised (Pipkin, 1986; Steigmann, 1990; Haseganu and Steigmann, 1994) to circumvent
the rather formidable challenges associated with developing nonlinear models incorporating a local length scale. There, the
bending stiffness is ignored and the wrinkles are regarded as being continuously distributed over interior portions of the
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sheet—regions which must be determined in the course of solving the associated boundary-value problem. Tension-field
theory has been rigorously established in recent years (Pipkin, 1986; LeDret and Raoult, 1995) as the appropriate leading-
order model as sheet thickness tends to zero. It is also far more tractable than models which incorporate flexural stiffness,
but offers no information about the details of the wrinkle patterns. At best, it is useful for assessing the stress distribution in
sheets which are so thin that the compressive buckling stress is negligible in comparison to the tensile stress transmitted
along the wrinkle trajectories.

Alternatively, other analytical approaches are based on minimizing an energy functional that incorporates both
membrane and bending contributions. These are usually based on a geometrically nonlinear Föppl–von Kármán framework
augmented by a constraint leading to relationships for the amplitude and wavelength of wrinkles in a specific problem of
interest (Cerda et al., 2002; Cerda and Mahadevan, 2003; Efimenko et al., 2005; Wong and Pellegrino, 2006b; Vandeparre
et al., 2010; Puntel et al., 2011; Davidovitch et al., 2011; Vandeparre et al., 2011; Schroll et al., 2011). However, it has been
shown via the method of gamma-convergence that the Föppl–von Kármán equations can be rigorously derived from three-
dimensional elasticity theory only if the deformation of the midplane is isometric (Friesecke et al., 2006).

Finally, numerical analyses via the finite element method have been used to study wrinkling in thin sheets (Wong and
Pellegrino, 2006c; Zheng, 2009; Nayyar et al., 2011). Here, the sheet is discretized using shell elements. First the buckling
modes are determined by an eigenvalue analysis. A certain number of mode shapes are then used as an imperfection in a
post-buckling analysis to determine the equilibrium state of the sheet. The wrinkling pattern has been found to be
significantly affected by the shell formulation used in the simulations and the determination of the shell element which best
characterizes the wrinkled regions remains open (Wong and Pellegrino, 2006c; Zheng, 2009). In a notable recent work by
Healey et al. (2013), a more complete bifurcation analysis is carried out on a hyperelastic sheet under tension using a
conformal finite element discretization and Euler–Newton arc-length continuation based upon a modification of the Föppl–
von Kármán model.

The goal of the present paper is to provide an accurate model of thin sheets which may be used to predict the details of
the deformation in wrinkled regions for general problems, and to illustrate its use through the numerical solution of several
equilibrium problems in which wrinkling figures prominently. The analysis is based on a model recently derived from three-
dimensional nonlinear elasticity which effectively extends Koiter's theory (Koiter, 1960, 1966) to deformations that involve
significant stretching (Steigmann, 2013). The theory is successfully implemented within a finite difference framework and
used to solve a variety of problems involving wrinkling. The simulations show excellent agreement with experimental
results available in the literature and demonstrate that the proposed framework is robust and can be effectively used to
investigate the behavior of thin sheets.

The basic model is discussed in Steigmann (2010, 2013), and its relationship to three-dimensional elasticity theory is
summarized in Section 2. In Section 3, the equilibrium equations of the theory are replaced by an artificial dissipative
dynamical system for the purpose of effecting a solution procedure based on the method of dynamic relaxation (Silling,
1988, 1989). This is discretized using a spatial finite difference mesh derived from Green's theorem, together with explicit
finite differencing in (artificial) time. Equilibria of this system are precisely the solutions to the original physical system, and
are recovered by advancing the dynamical solution until the transient response has run its course. Several examples
highlighting wrinkle formation are discussed in Section 4. In the first example, we present a simulation of the uniaxial
tension of a rectangular silicone rubber sheet inspired by numerous studies (Cerda and Mahadevan, 2003; Zheng, 2009;
Puntel et al., 2011; Nayyar et al., 2011; Healey et al., 2013). Equilibrium deformations and wrinkle properties found using the
present model are compared with the corresponding experimental and finite element results of Zheng (2009) over a range
of applied displacement. For the next example, we simulate wrinkling induced by the in-plane shearing of a rectangular
Kapton sheet based on experiments by Wong and Pellegrino (2006a). We compare our results with the experimental data
for two applied shearing displacements. In the final two examples we focus on thin sheets with central holes and compare
results from the present model with those from tension-field theory. In the penultimate example, we simulate the uniaxial
tension of a rectangular Kapton sheet with an unloaded central hole. Finally, we conduct a simulation of the combined twist
and pull-up of a central hub in an annular sheet. The results from these four examples not only show excellent agreement
with available experimental data, but also support a conjecture offered in Steigmann (1990) to the effect that the stress
delivered by tension-field theory furnishes a reliable estimate despite the inability of that theory to model the deformation
in wrinkled regions.

2. Finite strain model for thin elastic sheets

In this section we summarize relevant aspects of the model and specialize it to the case of isotropic materials. This model
will then serve a basis of the numerical analysis that is the focus of this study.

2.1. Summary of notation

To describe the theory, standard notation is used throughout. Bold face is used for vectors and tensors and indices to
denote their components. Latin indices take values in f1;2;3g; Greek in f1;2g. The latter are associated with in-plane
coordinates and associated vector and tensor components. A dot between bold symbols is used to denote the standard inner
product. Thus, if A1 and A2 are second-order tensors, then A1 UA2 ¼ trðA1A

t
2Þ, where trð�Þ is the trace and the superscript t is



M. Taylor et al. / J. Mech. Phys. Solids 62 (2014) 163–180 165
used to denote the transpose. The norm of a tensor A is jAj ¼
ffiffiffiffiffiffiffiffiffiffi
AUA

p
. The linear operator Symð�Þ delivers the symmetric part

of its second-order tensor argument; the notation � identifies the standard tensor product of vectors. If C is a fourth-order
tensor, then C½A� is the second-order tensor with Cartesian components CijklAkl. We use Div and D to denote the three-
dimensional divergence and gradient operators, respectively; div and ∇ are reserved for their two-dimensional counter-
parts. For example, Div A¼ Aij;jei and div A¼ Aiα;αei, where feig is a fixed orthonormal basis and subscripts preceded by
commas are used to denote partial derivatives with respect to Cartesian coordinates.

2.2. The order—h3 energy

The potential energy of an edge-loaded plate of thickness h, apart from an error of order oðh3Þ, is given by (see Eqs. (111)
and (131) of (Steigmann, 2010))

E¼
Z
Ω
Wdaþ 1

24 h
3
Z
∂Ωe

P1νUg ds; ð1Þ

with

W ¼ hW Fð Þþ 1
24 h

3M Fð Þ F′½ �UF′; ð2Þ

and

F¼∇rþd � k; F′¼∇dþg � k; ð3Þ
where rðuÞ is the position of a material point on the deformed image ω of the midplane Ω, ∇ is the gradient operation on Ω,
∇r maps Ω to the tangent plane Tω to the deformed surface ω at the material point u, and the functions dðuÞ;gðuÞ and hðuÞ
are the directors. Here primes refer to through-thickness derivatives, evaluated on the undeformed midplane in the direction
of its unit normal k, and u is position on this plane. In particular, if χ ðxÞ is the three-dimensional deformation, then r¼ χ jΩ,
while d and g are equal to χ ′ and χ″ respectively. Further, WðFÞ, P¼WF and MðFÞ ¼WFF respectively are the restrictions to Ω
of the three-dimensional strain-energy function, the Piola stress and the elastic moduli.

We suppose that ∂Ω consists of possibly overlapping arcs ∂Ωe and ∂Ωn, where essential and natural boundary conditions,
respectively, are specified; ν is the exterior unit normal to ∂Ω lying to the right of Ω as it is traversed in the sense of Green's
theorem. The integral over ∂Ωe in (1), which is non-standard, is explained in Steigmann (2010).

In (3), d and g are given respectively by the solutions to Steigmann (2010)

∂W
∂ ~F

∇rþd � kð Þ
� �

k¼ 0 ð4Þ

and

fAðkÞð∇rþd � kÞgg¼ �fMð∇rþd � kÞ½∇d�gk; ð5Þ

where AðkÞ is the acoustic tensor defined by

fAðkÞðFÞgv¼ fMðFÞ½v � k�gk: ð6Þ

Eq. (4) is simply the usual plane-stress condition, which is shown in Steigmann (2010) to be necessary at the considered
order in h if the deformation is to minimize energy. It yields d uniquely in terms of ∇r if the strong-ellipticity condition

a � bUMð ~FÞ½a � b�40 ð7Þ
is satisfied for all a � ba0 (Hilgers and Pipkin, 1996). Eq. (5) then delivers g uniquely in terms of ∇r and ∇∇r, implying, as
in classical plate theory, that E is specified entirely in terms of the mid-plane deformation function rðuÞ.

Before proceeding, we introduce the mild constitutive hypothesis that the strain-dependent energy

UðEÞ ¼WðFÞ; ð8Þ
where

E¼ 1
2 FtF�I
� � ð9Þ

and I is the identity for 3-space, is convex in a neighborhood of the origin in strain space, with the origin furnishing an
isolated local minimum. Accordingly, the second Piola–Kirchhoff stress,

S¼ UE; ð10Þ
satisfies

S¼ Cð0Þ½E�þoðjEjÞ; ð11Þ
in which Cð0Þ is positive definite in the sense that A � Cð0Þ½A�40 for all non-zero symmetric A, where

CðEÞ ¼ UEE ð12Þ
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is the tensor of strain-dependent moduli. The two sets of moduli are related by

M Fð Þ A½ � ¼ASþ1
2 FC Eð Þ AtFþFtA

h i
ð13Þ

for any tensor A; this follows easily by differentiating the relation

P¼ FS: ð14Þ
It follows from (8), (13) and the minor symmetries of C that

MðIÞ½A� ¼ Cð0Þ½A� ð15Þ
for any A, and hence that our hypotheses yield strong ellipticity at zero strain, a result that is well known in linear elasticity
theory. Accordingly, these hypotheses are compatible with (7).

2.3. The leading-order model for combined stretching and wrinkling

In this work we are interested in a regime of deformation for which the membrane and bending energies are of
comparable magnitude. These are associated respectively with the order – h and order – h3 terms in the expression (2) for
the strain-energy function. In Hilgers and Pipkin (1996), it is shown that the functional (1) fails to furnish a well-posed
minimization problem as it stands if the 2nd Piola–Kirchhoff stress, S, has a negative eigenvalue anywhere in the domain Ω.
However, in Steigmann (2013) it is shown that this issue is ameliorated if the state of stress everywhere in the domain is of
order oð1Þ, in which case the effect of stress on the order—h3 term in (2) may be suppressed with no adverse effect on
accuracy.

If jSj ¼ oð1Þ, as supposed, then the error incurred by imposing S¼ 0 in the coefficients of h3 in (2) affects the energy at
order oðh3Þ. Accordingly, order—h3 accuracy is maintained if W in (2) is replaced by

W ¼ hW Fð Þþ 1
24 h

3M Rð Þ F′½ �UF′; ð16Þ

where R is the rotation factor in the polar decomposition of the deformation gradient. This is justified by the fact that our
constitutive hypotheses (11) yield a strain of order oð1Þ under the present assumption on stress, which yields a correction to
(2) of order oðh3Þ; this is negligible in the order—h3 truncation of the energy. Using Steigmann (2007)

MðRÞ½F′�UF′¼MðIÞ½RtF′�URtF′ ð17Þ
with (13), together with the minor symmetries of C, we arrive at the form

W ¼ hW Fð Þþ 1
24 h

3C 0ð Þ RtF′
� �

URtF′ ð18Þ

of the strain-energy function. This involves ∇r in both terms and ∇∇r in the second term. It is easily verified that the
operative Legendre–Hadamard condition (Hilgers and Pipkin, 1992a, 1996), which we do not state here for the sake of
brevity, is satisfied without qualification.

In contrast to conventional buckling, stretch-induced wrinkling is a deformation mode in which the stretching and
bending energies are of comparable magnitude (Cerda and Mahadevan, 2003). In this mode of deformation the stress scales
as h. To see this, suppose

S¼ hSþoðhÞ; ð19Þ
with S independent of h. Our constitutive hypotheses (11) then furnish the strain

E¼ hEþoðhÞ; ð20Þ
where E ¼ S½S� and S is the compliance tensor (the inverse of Cð0Þ). The stretching term in the strain energy (18) reduces to

hW Fð Þ ¼ 1
2 h

3E � C 0ð Þ E� �þoðh3Þ; ð21Þ

yielding

W ¼ h3Ŵ þoðh3Þ; ð22Þ
where

Ŵ ¼ 1
2 E � C 0ð Þ E� �þ 1

24R
tF′ � C 0ð Þ RtF′

� �
: ð23Þ

This incorporates bending and stretching effects at leading order.
In the case of isotropy, to which attention is confined in this work, this strain-energy function reduces to Steigmann

(2013)

W ¼ 1
2
h

2λμ
λþ2μ

ðtr ϵÞ2þ2μjϵj2
� �

þ 1
24 h

3 2λμ
λþ2μ

ðtr κÞ2þ2μjκj2
� �

; ð24Þ
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in which the superposed caret has been suppressed, λ and μ are the classical Lamé moduli, satisfying the inequalities
3λþ2μ40 and μ40 associated with the positivity of Cð0Þ,

ϵ¼ Eαβeα � eβ ð25Þ
is the in-plane part of the strain tensor and

κ¼ �ð∇rÞtbð∇rÞ; ð26Þ
where b is the curvature tensor on the deformed surface, is the bending strain. In terms of Cartesian coordinates on Ω,

κ¼ �bαβeα � eβ; bαβ ¼ niri;αβ; ð27Þ
where n is the unit-normal field on the deformed surface and subscripts preceded by commas refer to partial derivatives
with respect to the coordinates.

Eq. (24) is precisely Koiter's expression, specialized to flat plates, for the strain energy of a nonlinearly elastic shell
(Koiter, 1960, 1966).

In summary, the potential energy E associated with global stretching-wrinkling in a thin plate of thickness h is given by

E=h3 ¼ Eþoðh3Þ=h3; ð28Þ
where

E¼
Z
Ω
Ŵ da; ð29Þ

with Ŵ given by (24). Here we have used the fact that jPj ¼OðhÞ to suppress the order oðh3Þ contribution of the integral over
∂Ωe in (1). Eq. (29) is the leading order potential energy of the plate under the present hypotheses.

Our results indicate that Koiter's model furnishes the leading-order energy in deformations for which the bending and
stretching energies are of equal order; this is precisely the regime of interest in this work. Further, in view of (28) it would be
possible to regard E as the rigorous leading-order energy if the estimate (19) on the (plane) stress could be established a
priori in the interior of Ω. We know of no rigorous justification for this assumption, however. This state of affairs
notwithstanding, Ciarlet (2005) has given convincing arguments in favor of the Koiter energy as the best overall model of a
thin sheet, insofar as the membrane-dominated and bending-dominated regimes are concerned. Our results regarding the
intermediate regime in which both effects are equally important lends further support to this view. We observe that in this
case there are no small parameters in the leading-order energy functional and hence no localized boundary-layer effects of
the kind traditionally associated with bending; instead, in this regime bending is widespread throughout the interior of the
sheet.

Remark. Despite its status as the leading-order estimate of the three-dimensional energy in the regime of equal
contributions from membrane and bending behavior, the isotropic Koiter model satisfies only the non-strict version of
the relevant Legendre–Hadamard necessary condition for energy minimizers (Hilgers and Pipkin, 1996; Steigmann, 2010),
and therefore fails to satisfy the hypotheses of available existence theorems based on the direct method of the calculus of
variations. Of course this does not mean that minimizers fail to exist, either for the Koiter model or for its three-dimensional
antecedent. In this regard we note that an existence theorem for the Koiter energy was recently given in Ciarlet and Mardare
(2012), using a large-strain extension of the energy (24). However, we are unaware of any existence results for the energy
(24) per se. This state of affairs provides further impetus for the use of dynamic relaxation, whereby the problem is
regularized by embedding it in a dynamical system with positive-definite mass.

2.4. Euler equations and boundary conditions

The Euler equations for (29) are derived in the manner discussed in Hilgers and Pipkin (1992b). They are

div T¼ 0 or Tiα;α ¼ 0; ð30Þ
where T is the tensor with nontrivial components

Tiα ¼Niα�Miαβ;β; ð31Þ
and where

Niα ¼ ∂W=∂ri;α and Miαβ ¼ ∂W=∂ri;αβ; ð32Þ
with W given by (22) and ri the components of the vector, rðuÞ.

In this work we consider non-standard mixed problems in which position and orientation data are assigned on ∂Ωe, with
vanishing tractions and bending moments assigned on ∂Ωn. Typical boundary conditions on ∂Ωe entail the specification of
the position r and its normal derivative r;ν. Typical boundary conditions on ∂Ωn are Steigmann (2010)

Tiανα�ðMiαβνατβÞ;s ¼ f i and Miαβνανβ ¼ ci; ð33Þ
where fi and ci are the force and couple per unit length, assumed here to vanish. If ∂Ωn is piecewise smooth, with a finite
number of points where its unit tangent τ is discontinuous, then the foregoing must be amended to include corner forces
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Fj ¼ ½Mjαβνατβ�, where the bracket identifies the jump of the enclosed quantity occurring as ∂Ωn is traversed clockwise. This is
explained in detail in Steigmann (2010).

In the present work all examples meet one of the following sets of boundary conditions:
�
 ri and ri;ν assigned on ∂Ωe, f i ¼ 0 and ci ¼ 0 on ∂Ωn
�
 ri assigned on ∂Ωe, f i ¼ 0 on ∂Ωn, and ci ¼ 0 on all of ∂Ω,
corresponding, respectively, to mixed zero-load problems in which part of the boundary is either clamped or pinned. We
note that the latter data admit comparisons with simulations based on pure membrane theory.

Regarding the response functions Niα and Miαβ occurring in (31), we observe that W involves ∇∇r via κ. Using (24) and
(27) in (32), we derive

Miαβ ¼ 1
12 h

3ni
2λμ
λþ2μ

bγγδαβþ2μbαβ

	 

: ð34Þ

On the other hand, ∇r is involved in the membrane energy and also in κ, via the normal n. Using (24) and (27) to evaluate
the associated derivative (see Steigmann and Ogden, 1999 for a detailed calculation), we obtain

Niα ¼ h∂W=∂ri;α�MiλμΓαλμ; ð35Þ
where Γαλμ are the Christoffel symbols induced by the parametrization of the deformed surface in terms of the coordinates
uα, and

∂W=∂ri;α ¼ ri;βSβα with Sβα ¼ 2λμ
λþ2μ

Eγγδβαþ2μEβα ð36Þ

the midplane components of the 2nd Piola–Kirchhoff stress.
It is well known that the Christoffel symbols depend on the surface metric ri;αri;β and its coordinate derivatives

(Sokolnikoff, 1951). Explicitly,

Γαλμ ¼ Eμα;λþEαλ;μ�Eλμ;α; ð37Þ
where

Eαβ ¼ 1
2 ri;αri;β�δαβ
� �

; ð38Þ
in which δ is the Kronecker delta, and the strain itself has been neglected in the computation of Γαλμ to ensure consistency
with (18). Accordingly, strain-gradient effects enter the model via the Γλαβ , whereas bending effects are of course accounted
for by the bαβ . The former effect is due to the fact that the variables and differential operators appearing in (31) and (32)
involve coordinates in the undeformed configuration, whereas the customary form of the equations involves covariant
differentiation on the deformed surface (Koiter, 1966); the transformation from the latter to the former amounts to a strain-
gradient effect. We observe that the associated term in (35) is inherently nonlinear and so does not appear in the
linearization of the model with respect to the midplane displacement field rðuÞ�u.

Further, we use (33)2 and (34) to write c¼Mn with M¼ niMiαβνανβ . This is shown to yield the interpretation of M as a
pure bending moment along the edge of the deformed plate (Steigmann, 2013). Accordingly, the couple c vanishes if and
only if M¼0. Parts of the boundary where this condition obtains are either free or pinned.

3. Numerical implementation

In this section we provide a detailed description of a numerical strategy that can be used to solve a variety of problems
involving wrinkling with the model described in Section 2. Several such examples will be shown in Section 4. Here, we
choose a method known as dynamic relaxation, which has proved to be a robust numerical tool for predicting a host of
equilibrium phenomena in nonlinear elasticity including cables and membranes (Silling, 1988, 1989; Shugar, 1990;
Haseganu and Steigmann, 1994; Taylor and Steigmann, 2009; Rezaiee-pajand et al., 2011; Rodriguez et al., 2011). Our
purpose in this section is to construct a surrogate dynamical system which exhibits solutions to (30) as equilibria and, in
addition, possesses a mechanical energy that furnishes a Lyapunov function for the associated dynamics. In this way the
equilibrium problem is effectively replaced, strictly for purposes of numerical solution, by an artificial dynamical system
whose equilibria are solutions to the original problem. The desired equilibria are then obtained by a time-stepping
procedure that progresses until the energy associated with the surrogate dynamical system is dissipated.

3.1. A dissipative dynamical system

The total mechanical energy of the surrogate dynamical system is given by EþK, where E is the strain energy and K is the
kinetic energy. Using (31), the time derivative of the strain energy E is easily shown to be expressible in the form

_E ¼
Z
Ω
ðφα;α� _r iTiα;αÞ da; ð39Þ
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where _r i ¼ ∂riðuα; tÞ=∂t – the material derivative of the position field – is the velocity of a point on the plate midplane, and

φα ¼ Tiα _r iþMiαβ _r i;β: ð40Þ

The first term in the integrand of (39) is transformed via Green's theorem, using the decomposition

∇r¼ r;s � τþr;ν � ν; ð41Þ
where τ and ν are the unit tangent and normal to the edge and the tangential derivative r;s is obtained by differentiating r
with respect to arclength on ∂Ω. Integrating by parts with respect to arclength on ∂Ω, we deriveZ

Ω
φα;α da¼

Z
∂Ω
φανα ds¼

Z
∂Ωn

ðf i _r iþci _r i;νÞ ds; ð42Þ

where

_r i;ν ¼ _F iανα ð43Þ
is the normal derivative of the velocity. Thus, (39) becomes

_E ¼
Z
∂Ωn

ðf i _r iþci _r i;νÞ ds�
Z
Ω

_r iTiα;α da: ð44Þ

If the boundary of the sheet has corners, then the associated corner forces will in general contribute to the rate of change
of the energy. However, in this study the work-conjugate velocities at corners, if any, vanish identically; accordingly, corner
forces make no contribution to the energetics in the examples considered.

Proceeding, we take the kinetic energy, K, of the surrogate dynamical problem to be

K ¼ 1
2

Z
Ω
ρ _rj2 da;
�� ð45Þ

where rðu; tÞ ¼ riðu; tÞei is the position vector of a point on the deformed midsurface and ρ is the areal mass density of the
sheet on the reference midsurface. We emphasize that this is merely the form of the kinetic energy assumed for the
surrogate dynamical system; the kinetic energy in an actual dynamical theory of plates typically includes a rotatory inertia
term and is thus somewhat more complicated. This fact, however, is of no consequence as far as our present objective is
concerned.

To extend the dynamic relaxation scheme used in Haseganu and Steigmann (1994) and Taylor and Steigmann (2009) to
the present problem in as simple a manner as possible, we follow Silling (1988, 1989) and substitute the surrogate equation
of motion

Tiα;α ¼ ρ€r iþc_r i ð46Þ
in place of (30), where c is a damping coefficient. The structure of the viscous term implies that this is not a physically
meaningful equation of motion; actual viscous effects would have to be accommodated via the constitutive theory for the
sheet. However, we will show that (45) and (46) generate a Lyapunov function for the surrogate dynamical system. To this
end, we observe that taking the inner product of both sides of (46) with _r i and integrating over Ω yields (using (45))Z

Ω

_r iTiα;α da¼ _Kþ
Z
Ω
cj_rj2 da: ð47Þ

Recall the boundary conditions (33), where we assume that the components of applied force, fi, and couple, ci, per unit
length are zero. In Section 3.3, we develop a procedure to impose (33)1 automatically at every instant in time, whereas (33)2
is recovered only after the transient response has run its course. With this in mind, we put f i ¼ 0 in (44) and combine with
(47) to derive

ðEþKÞ� ¼
Z
∂Ωn

ci _r i;ν ds�
Z
Ω
cj_rj2 da: ð48Þ

For the purpose of ensuring that the surrogate energy E is dissipated in the course of the transient dynamics, we impose

ci ¼ �c_r i;ν on ∂Ωn; ð49Þ
yielding

ðEþKÞ� ¼ �c
Z
∂Ωn

j_r ;νj2 dsþ
Z
Ω
j_rj2 da

	 

; ð50Þ

and ensuring, for positive c, that the energy is strictly decreasing as long as the velocity is non-zero anywhere in Ω and the
rotational velocity is non-zero anywhere on ∂Ωn. Moreover, the energy EþK reduces to E in equilibrium states, and thus
furnishes a Lyapunov function for the dynamical system provided that equilibria are minimizers of the overall strain energy.
Strictly, these remarks apply to finite-dimensional systems and hence to the discretized surrogate dynamical system
described in Section 3.2.



M. Taylor et al. / J. Mech. Phys. Solids 62 (2014) 163–180170
3.2. Finite-difference discretization

In this section, (46) is discretized by using a finite-difference scheme derived from Green's theorem. The application of
this scheme to plane-strain problems in nonlinear elasticity theory is described by Silling (1989) and its adaptation to
membrane theory is developed in Haseganu and Steigmann (1994) and Taylor and Steigmann (2009). Here, we summarize
the method and describe its extension to the present theory.

3.2.1. Spatial discretization of the equations of motion
We spatially discretize the basic system of equilibrium equations given by (30). To this end, we cover the reference plane

Ω by a mesh consisting of two types of points: nodes and zone-centered points. A schematic of the mesh is depicted in Fig. 1.
Nodes are labelled using integer superscripts ði; jÞ. Thus, ui;j

α are the referential coordinates of node ði; jÞ, where
uα ¼ uUeα ðα¼ 1;2Þ. The four regions formed by a node, together with its nearest-neighbor nodes, are called zones. Zone-
centered points, identified by blue circles in the figure, are labelled using half-integer superscripts.

To represent (30) at node (i, j), we first discretize the divergence, Tiα;α, using Green's theorem applied in the formZ
D
Tiα;α da¼ eαβ

Z
∂D
Tiα duβ; ð51Þ

where eαβ is the unit alternator ðe12 ¼ �e21 ¼ 1; e11 ¼ e22 ¼ 0Þ and D is identified with the quadrilateral contained within the
dashed contour of Fig. 1. The left-hand side of (51) is estimated as the nodal value of the integrand multiplied by the area of
D; the right-hand side as the zone-centered values of the integrand on each of the four edges of ∂D multiplied by the
appropriate edge length. Thus Silling (1988),

2Ai;jðTkα;αÞi;j ¼ eαβ½Tiþ1=2;jþ1=2
kα ðui;jþ1

β �uiþ1;j
β ÞþTi�1=2;jþ1=2

kα ðui�1;j
β �ui;jþ1

β Þ

þTi�1=2;j�1=2
kα ðui;j�1

β �ui�1;j
β ÞþTiþ1=2;j�1=2

kα ðuiþ1;j
β �ui;j�1

β Þ�; ð52Þ

where

Ai;j ¼ 1
4 ui�1;j

2 �uiþ1;j
2

� 

ui;jþ1
1 �ui;j�1

1

� 

� ui�1;j

1 �uiþ1;j
1

� 

ui;jþ1
2 �ui;j�1

2

� 
h i
ð53Þ

is one-half the area of the quadrilateral. The discretized version of (30) is then given by

Σi;j
k ¼ 0; ð54Þ

where

Σi;j
k ¼ 2Ai;jðTkα;αÞi;j: ð55Þ

To evaluate the right-hand side we require Tkα at the zone-centered points (cf. (52)). This in turn requires the zone-centered
values of Nkα and Miαβ;β (cf. (31)). The components Nkα are determined by the constitutive equation (36) together with the
zone-centered deformation gradient. To compute the deformation gradient, we use Green's theorem in the formZ

D
Fiα da¼ eαβ

Z
∂D
ri duβ: ð56Þ

We now identify D with the shaded region in Fig. 1. The left-hand side is approximated by the product of the shaded
area with the integrand, evaluated at the zone-centered point, and the four edge contributions to the right-hand side
are approximated by replacing the integrand in each with the average of the nodal values at the endpoints. This gives
i, j

i+1/2, j+1/2

i, j-1

i, j+1

i+1, j

i+1, j+1

i+1, j-1

i-1, j-1

i-1, j

i-1, j+1

i-1/2, j+1/2

i+1/2, j-1/2i-1/2, j-1/2

Fig. 1. Stencil of the finite-difference mesh. Nodes shown as red circles. Area colored gray denotes a zone with blue circles representing zone-centered
points. Contours marked with arrows denote regions of approximate integration. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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(Silling, 1988)

2Aiþ1=2;jþ1=2ðFiþ1=2;jþ1=2
kα Þ ¼ eαβ½ðriþ1;jþ1

k �ri;jk Þðu
i;jþ1
β �uiþ1;j

β Þ�ðri;jþ1
k �riþ1;j

k Þðuiþ1;jþ1
β �ui;j

β Þ�; ð57Þ

where

Aiþ1=2;jþ1=2 ¼ 1
2 ui;jþ1

2 �uiþ1;j
2

� 

uiþ1;jþ1
1 �ui;j

1

� 

� ui;jþ1

1 �uiþ1;j
1

� 

uiþ1;jþ1
2 �ui;j

2

� 
h i
: ð58Þ

The components Miαβ;β can be computed by using (57), with Fkα replaced by Mkαβ;β and rk by Mkαβ; thus,

2Aiþ1=2;jþ1=2ðMiþ1=2;jþ1=2
kαβ;β Þ ¼ eβγ ½ðMiþ1;jþ1

kαβ �Mi;j
kαβÞðui;jþ1

γ �uiþ1;j
γ Þ�ðMi;jþ1

kαβ �Miþ1;j
kαβ Þðuiþ1;jþ1

γ �ui;j
γ Þ�; ð59Þ

wherein the right-hand side involves the nodal values of Mkαβ . These in turn are determined constitutively (cf. (34)) by the
nodal values of the surface normal and curvature bαβ , given by

bi;jαβ ¼ ni;j
k F

i;j
kα;β; ð60Þ

where

2Ai;jFi;jkα;β ¼ eβγ ½Fiþ1=2;jþ1=2
kα ðui;jþ1

γ �uiþ1;j
γ ÞþFi�1=2;jþ1=2

kα ðui�1;j
γ �ui;jþ1

γ Þ

þFi�1=2;j�1=2
kα ðui;j�1

γ �ui�1;j
γ ÞþFiþ1=2;j�1=2

kα ðuiþ1;j
γ �ui;j�1

γ Þ�: ð61Þ

The exact expression for Fkα;β is symmetric in the second pair of subscripts. We impose this by identifying Fi;jkα;β with

1
2 Fi;jkα;βþFi;jkβ;α
� 


.
The expression (60) for the curvature involves the unit normal to the deformed plate surface, which also occurs explicitly

in (34). This is given analytically by (Taylor and Steigmann, 2009)

αnk ¼ 1
2 eijkeαβri;αrj;β ð62Þ

in which α – the areal stretch – is the norm of the right-hand side. Thus we compute

ðαnkÞiþ1=2;jþ1=2 ¼ 1
2 eijkeαβF

iþ1=2;jþ1=2
iα Fiþ1=2;jþ1=2

jβ ; etc ., ð63Þ

and use the average of these to obtain the nodal value for use in (60):

ðαnkÞi;j ¼ 1
4 ðαnkÞi�1=2;jþ1=2þðαnkÞiþ1=2;jþ1=2þðαnkÞi�1=2;j�1=2þðαnkÞi�1=2;j�1=2
h i

; ð64Þ

where ðαi;jÞ2 ¼ ðαnkÞi;jðαnkÞi;j.
Lastly, the zone-centered values of Nkα, required in (54), involve the associated Christoffel symbols Γαλμ. These are

approximated by

Γαλμ ¼ FkαFkλ;μ; ð65Þ

which is consistent with the null-strain values adopted in (37). The Γiþ1=2;jþ1=2
αλμ , etc., required in (54), are obtained using the

zone-centered deformation gradient together with the average of the Fkλ;μ at the adjacent nodes.
To solve (54) we replace it by the artificial dynamical system (cf. (46))

Σi;j;n
k ¼mi;j €r i;j;nk þci;j _r i;j;nk ; ð66Þ

where mi;j ¼ 2Ai;jρ is the nodal mass, ci;j ¼ 2Ai;jc is the nodal damping coefficient, n is the time step, and superposed dots
refer to derivatives with respect to (artificial) time. This is not the discrete form of the actual dynamical equations. Rather, it
is an artificial system introduced solely to expedite the computation of equilibria.
3.2.2. Temporal discretization
The time derivatives in (66) are approximated by the central differences

_rnk ¼ 1
2

_rnþ1=2
k þ _rn�1=2

k

� 

; €rnk ¼ 1

h
_rnþ1=2
k � _rn�1=2

k

� 

; _rn�1=2

k ¼ 1
h rnk�rn�1

k

� �
; ð67Þ

where h is the time increment and the node label (i, j) has been suppressed. Substitution into (66) furnishes the explicit,
decoupled system

ðh�1þc=2Þmi;j _r i;j;nþ1=2
k ¼ ðh�1�c=2Þmi;j _r i;j;n�1=2

k þΣi;j;n
k ; ri;j;nþ1

k ¼ ri;j;nk þh_r i;j;nþ1=2
k ; ð68Þ

which is used to advance the solution in time node-by-node. We remark that because only long-time limits of solutions are
relevant, temporal accuracy is not an issue. Stability is dependent on h, c, and mi;j via the system stiffness (Shugar, 1990;
Topping and Khan, 1994; Rezaiee-pajand et al., 2011).
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3.2.3. Numerical solution procedure
The starting procedure for (68) is derived from the quiescent initial conditions

ri;j;0k ¼ Rkðui;j
α Þ; _r i;j;0k ¼ 0; ð69Þ

where RkðuαÞ is assigned. Thus, from (68) we obtain

ð2=hÞmi;j _r i;j;1=2k ¼ Σi;j;0
k ; ð70Þ

in which the right-hand side is determined by the functions Rk. The system is non-dimensionalized and the solution is
advanced to the first tn such that

maxjΣi;j;n
k joɛ; ð71Þ

a suitable tolerance.
In practice, we use an efficient alternative to viscous damping known as kinetic damping (Shugar, 1990; Topping and

Khan, 1994; Rezaiee-pajand et al., 2011), in which (68) is solved with the viscosity, c, set to zero. At each step, tn, we compute
the total system kinetic energy

Knþ1=2 ¼ 1
2
∑
i;j
mi;j _r i;j;nþ1=2

k
_r i;j;nþ1=2
k : ð72Þ

If a peak value of the kinetic energy is detected, we compute an associated position field using the estimate

ri;j;pk ¼ ri;j;nþ1
k � 3h

2
_r i;j;nþ1=2
k þ h2

2m
Σi;j;n
k ; ð73Þ

and then restart the procedure with the initial conditions ri;j;0k ¼ ri;j;pk and _r i;j;0k ¼ 0 (Topping and Khan, 1994; Rezaiee-pajand
et al., 2011). This method involves only the parameters h and ρ, the latter via mi;j. We fix one of these, say h¼1, and then
adjust the other to achieve stability and as rapid a rate of decay as possible, until (71) is achieved.

3.3. Boundary conditions

In this work we simulate mixed problems in which the bending moment and traction vanish on a part of the boundary
with the complementary part assumed to be either free or pinned; the latter entails the assignment of position data and null
values of the bending moment. As discussed in Section 2.4, this in turn requires that Mkαβνανβ vanish on the relevant part of
the boundary. As we are concerned exclusively with equilibria, we enforce this by using a scheme suggested by the energy
argument of Section 3.1. Thus, at boundary nodes we impose

Mi;j
kαβνανβ ¼ �c _F

i;j
kανα; ð74Þ

in which the left-hand side is computed as before, using zone-centered values of the deformation gradient exterior to the
mesh; these in turn are computed using nodal positions at a layer of nodes exterior to the mesh (Fig. 2).

The right-hand side of (74) is estimated by averaging _F kα at the exterior zone-centered points adjacent to node ði; jÞ, using
(57) in which rk is replaced by _rk. Application of the central-difference operators (67) then furnishes an explicit, decoupled
i, j

i+1/2, j+1/2

i+1, j+1

i+1/2, j-1/2

i-1/2, j+1/2

i-1/2, j-1/2

i, j+1

i+1,j

interior exterior

exterior

interior ν

Fig. 2. Schematic of a typical finite-difference mesh at a corner boundary. Nodes and zone-centered points contained within the body are denoted with red
and blue circles, respectively. Nodes and zone-centered points exterior to the body are denoted with black and white circles, respectively. Outward unit
normal ν indicated with green arrow. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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scheme for updating the external nodal positions. This proceeds in parallel with the computation described in Section 3.2.1
until these nodal positions settle to their static values. In effect the deformations of the exterior nodes simulate the
orientation of the tangent plane to the deformed plate required to maintain equilibrium in response to the zero-moment
edge condition.

Regarding the traction data, we proceed by integrating (46) over the region D containing a boundary node (Fig. 2),
obtainingZ

D
ðρ€rkþc_rkÞ da¼

Z
∂Di

Tkανα dsþ
Z
∂De

Tkανα ds; ð75Þ

where ∂Di;e, respectively, are the internal and external parts of the boundary ∂D. Here we use (33)1 in the integral over ∂De,
together with f k ¼ 0, obtaining (see Fig. 2)Z

∂De

Tkανα ds¼ ðMkαβνατβÞi;jþ1�ðMkαβνατβÞi;j�1: ð76Þ

The interior integral over ∂Di is approximated as in (52), and the left-hand side of (76) is estimated as before, yielding
(66) in which

Σi;j
k ¼ eαβ½Ti�1=2;jþ1=2

kα ðui�1;j
β �ui;jþ1

β ÞþTi�1=2;j�1=2
kα ðui;j�1

β �ui�1;j
β Þ�þMi;jþ1

kαβ νατβ�Mi;j�1
kαβ νατβ: ð77Þ

The nodal positions are then updated together with those in the interior until a static configuration is attained.

4. Simulations

In this section, we demonstrate our model via four examples that highlight large elastic deformations in wrinkled thin
sheets. These are selected for the purpose of facilitating comparisons with available experimental, numerical, and analytical
results. In particular, the examples shown in Sections 4.3 and 4.4 are compared with corresponding results using the much
simpler tension-field theory of elastic membranes.

Tension-field theory has the feature that it admits only tensile states of stress, extending the range of applicability of
membrane theory to states of strain that would otherwise generate compressive stresses that are unstable in a pure
membrane. An extended membrane theory that incorporates tension-field theory automatically may be obtained from the
conventional membrane energy (the order—h energy in (24)) via the process of relaxation, which entails the construction of
an energy minimizing sequence of deformations containing ever-more finely spaced wrinkles (Pipkin, 1986; Dacarogna,
1989). The limit of the sequence is a smooth deformation, and the strain-energy function associated with it is such that
compressive stresses are excluded. The theory also emerges from three-dimensional nonlinear elasticity via the method of
gamma convergence (LeDret and Raoult, 1995), a technique for extracting the leading-order variational problem in the
small-thickness limit. The resulting model is based on a relaxed membrane strain-energy function, which is constructed
from the original by a straightforward procedure. This procedure, and its application to the present membrane energy
(cf. (24)), are thoroughly documented elsewhere (Pipkin, 1986; Haseganu and Steigmann, 1994; Taylor and Steigmann, 2009)
and thus simply invoked in the present work without further comment.

Although tension-field theory cannot be used to determine the detailed deformation in a wrinkled region of the sheet, it
does yield a prediction of the location and extent of wrinkled regions; these are the regions where the relaxed energy
generates purely tensile states of stress or slack states with no stress at all. This information, together with the predicted
(tensile) stretch distribution in wrinkled regions, furnishes a basis for direct assessment of tension-field theory against the
standard of the more general model adopted here. Accordingly, we present simulations based on tension-field theory
alongside those based on the present model.

In all examples we report the Young's modulus, E, and Poisson ratio, ν, of the materials considered. These are connected
to the Lamé moduli used in (34) and (36) by the well-known relations

2μ¼ E
1þν

; λ¼ Eν
ð1�2νÞð1þνÞ : ð78Þ

Further, we note that in all examples, the equilibria obtained may be regarded as stable relative to perturbations represented
by the selected initial conditions. Of course it is not possible to impose infinitely many sets of initial data, and so the
equilibria obtained could conceivably be merely conditionally stable.

4.1. Extension of a rectangular silicone rubber sheet

This example is inspired by the theoretical investigations of Cerda and Mahadevan (2003) and Puntel et al. (2011), the
experimental and numerical investigation conducted by Zheng (2009), and the numerical studies of Nayyar et al. (2011) and
Healey et al. (2013). A rectangular sheet of silicone rubber is considered, with properties E¼1 MPa and ν¼ 0:5 and
dimensions of 254 mm �101.6 mmwith thickness h¼0.1 mm (Zheng, 2009). We non-dimensionalize the sheet dimensions
using L¼101.6 mm. The sheet is pinned along the top and bottom edges and the vertical sides are unloaded. The bottom
edge is fixed and the top edge is displaced vertically by varying amounts.
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The sheet is discretized using a rectangular mesh that is biased to have a higher concentration of nodes in the central
region, where wrinkling is expected to occur. For applied stretches of 10% or less, a mesh refinement study shows that
approximately 60,000 nodes yields a converged solution. At larger applied stretches, the large deformation at the corners of
the sheet requires a finer mesh. In the present example, we use approximately 120,000 nodes when the applied stretch is
larger than 10%. The initial configuration is chosen to coincide with the assigned displacements at the top and bottom
boundaries while having a small random out-of-plane perturbation at the interior nodes.

First, we illustrate the kinetic damping process in Fig. 3 for a typical simulation with the sheet stretched by 10%. Here, we
present the normalized kinetic energy of the system as a function of dynamic relaxation step, or iteration, with key kinetic
energy peaks identified. The configuration at each identified peak is shown demonstrating the progression of the solution
from a near initial state (Fig. 3a) to the final equilibrium state (Fig. 3f). For this example, we use a random initial out-of-plane
perturbation with a normalized magnitude in the range ð0;10�6Þ. Through the first seven kinetic energy peaks, the out-of-
plane displacement at each point in the sheet remains at approximately the same order of magnitude (Fig. 3a–b). As the
number of iterations increases, we observe the initiation of the wrinkles near the top corners (Fig. 3c). These have out-of-
plane displacements several orders of magnitude larger than the initial random perturbation. Like the in-plane
displacement, the wrinkles move down the sheet from the top boundary and the wrinkled area become more widespread
(Fig. 3c–d–e) while the wrinkles themselves become more ordered until finally settling at the equilibrium configuration
(Fig. 3f).

Next, in Fig. 4a–d, we show the equilibrium configurations for the sheet at stretches of 5%, 10%, 20%, and 30%. In addition,
we compare the wrinkled cross-sections (at the transverse midplane) of these results (Fig. 4e) with the corresponding
experimental and numerical results of Zheng (2009) (Fig. 4f and g). The simulations yield qualitative agreement with
Zheng's results as well as the predictions of Cerda and Mahadevan (2003) and Puntel et al. (2011). In particular, wrinkling is
mainly confined to the interior of the sheet, with the wrinkle trajectories oriented vertically. Quantitative comparisons with
Cerda and Mahadevan (2003) and Puntel et al. (2011) are not appropriate, however, due to the simplifying assumptions on
which those theoretical works are based, such as the use of global constraints intended to mimic the neglected boundary
conditions. These assumptions facilitate tractable analysis but do not faithfully model the actual boundary conditions which
are here modeled explicitly.

In Zheng's numerical results, the wrinkle amplitude at first increases, peaking at a stretch of about 10%, and then
decreases until the wrinkles nearly disappear at a stretch of 30% (Fig. 4g). Likewise, our cross-sectional results (Fig. 4e) show
similar behavior. This is also in accord with the numerical studies of Nayyar et al. (2011) and Healey et al. (2013).
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Fig. 3. Typical normalized system kinetic energy as a function of dynamic relaxation iteration for a rectangular silicone rubber sheet undergoing uniaxial
tension. Sheet configurations at various points in the kinetic damping process are shown in (a) through (f).
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In Zheng's experiment (see Fig. 3.22 of Zheng, 2009), the initial unstressed configuration of the silicone rubber sheet is
highly wrinkled with the wrinkle trajectories aligned slightly off the vertical axis. Under load, the wrinkles align with the
vertical axis, but the wrinkling mode (i.e. the shape of the wrinkled cross-section) remains essentially unchanged from its
initial state. The amplitude of the wrinkles generally decreases under increasing load, but never completely disappears
(Fig. 4f). In contrast, our model is based on an initially planar reference configuration, making meaningful comparisons with
the experiment difficult. Nevertheless, good quantitative agreement is obtained with respect to the general magnitude of
the wrinkle amplitudes. Our simulations also predict smaller amplitude wrinkles extending to the free edges as seen
experimentally in Fig. 4f, but not present in the numerical results (Fig. 4g).

Zheng's post-buckling numerical results (Fig. 4g) are based on an initial buckling analysis using the finite element
method. In a buckling analysis, modes and mode shapes are extracted from the tangent stiffness matrix. This is followed by a
geometrically nonlinear post-buckling simulation using some number of the lowest mode shapes as an initial perturbation.
The two lowest mode shapes found by Zheng via the buckling analysis occurred at the same eigenvalue—one with a
large central peak (“symmetric” mode) and one with two large peaks on either side of the sheet's vertical centerline
(“anti-symmetric” mode). The fact that they occur at the same eigenvalue suggests that either shape is equally likely to
appear once the critical wrinkling threshold is met. The results of Zheng's post-buckling analysis all fall into the symmetric
mode shape based on the selection of only that mode shape as an initial imperfection. In contrast, Healey et al. (2013)
determined that there is in fact an entire ”orbit” of equally likely neutrally stable configurations that include symmetric and
anti-symmetric solutions as well as a family of wrinkle configurations “in-between”. Our results fall roughly into both
symmetric (strain 10%) and anti-symmetric (strain 20% and 30%) type mode shapes.

To investigate the wrinkling shapes further, we conducted ten simulations at 10% strain with a different initial condition
for each. As in the kinetic damping example shown in Fig. 3, each of the ten simulations has a unique initial randomized out-
of-plane perturbation. Fig. 5 shows an inset (see Fig. 4b) focusing on the central region of the equilibrium configuration for
each case. We identify two families of mode shapes: symmetric (Fig. 5a) and anti-symmetric (Fig. 5b). As shown in Fig. 5c,
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our anti-symmetric family actually contains configurations that might be better classified as “in-between” states. For
example, the fifth randomized configuration has an anti-symmetric shape that is phase-shifted with respect the center-line.
These results are consistent with the analysis of Healey et al. (2013).

4.2. Shearing of a rectangular Kapton sheet

Inspired by the experiments of Wong and Pellegrino (2006a), we simulate the response of a rectangular Kapton sheet
clamped along opposite (horizontal) edges, with the remaining (vertical) edges remaining free of load. This is modeled here
as a mixed clamped/zero-traction, zero-moment boundary value problem. In principle, the clamping condition entails the
specification of the orientation n on an edge; here, this is simply the unit normal to the initial plane of the sheet. However,
in Steigmann (2013) it is shown that this is equivalent, in the order—h3 model considered here, to the specification of the
normal derivative r;ν. If position on the edge is also specified, then it follows from (41) that clamping amounts to the
specification of the deformation gradient Fiα. Accordingly, we specify the deformation gradient on ∂Ωe, using the procedure
described in Section 3.2.

The considered sheet has dimensions 380 mm�128 mm, with thickness h¼0.025 mm, Young's modulus E¼3.5 GPa and
Poisson's ratio ν¼ 0:31 (Wong and Pellegrino, 2006c). We normalize the position and displacement data using L¼380 mm.
The lower edge is fixed and the upper edge undergoes a controlled shear (horizontal) displacement. We consider two
examples in which this displacement is either 0.5 mm or 3.0 mm. Our discretization is based on a uniformly spaced
rectangular grid of 80,000 nodes. The actual and simulated deformed configurations of the sheet are depicted in the first
and second rows, respectively, of Fig. 6. We draw attention to three specific aspects of wrinkling in the deformed
configuration: the wrinkles aligned at nearly 451 in the middle of the sheet, the fan shape transitions at the corners, and the
small wrinkles aligned perpendicularly to the unloaded vertical edges. Our simulations capture all of these features. We note
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that Wong and Pellegrino (2006c) performed a finite element buckling analysis for this problem. While their analysis
captures the 451 wrinkles in the central region and the fan shape transitions, it appears to miss the features perpendicular to
the unloaded edges (see Fig. 6 of Wong and Pellegrino, 2006c). From the cross-sectional plots shown in the third row of
Fig. 6, we see quantitative agreement as well. In particular, the simulated data on the amplitude and wavelength of the
wrinkles furnish remarkable agreement with the experimental data.
4.3. Extension of a rectangular Kapton sheet with an unloaded interior hole

This example is similar to that of Section 4.1 except that the sheet contains an interior hole which, together with the long
edges, is free of traction and bending moment. The initial rectangular configuration of the sheet has dimensions
125 mm�50 mm with thickness h¼0.01 mm, and the central hole is initially circular with radius 15 mm. Positions and
displacements are normalized using L¼125 mm. The shorter edges are displaced apart by 10% of their original separation
distance. We assume the material to be Kapton with the material properties given in Section 4.2.

Deformed equilibrium configurations are shown in Fig. 7a and b using the current thin-plate model and the tension-
field theory membrane model, respectively. In both cases, we discretize the sheet using the same radial mesh of
40,000 nodes, biased such that more nodes are located near the central hole. The presence of the hole is predicted to
have pronounced effects, including the redistribution of wrinkled regions and reorientation of the trajectories of the
wrinkles. Also predicted are lightly stressed zones adjoining the extremities of the hole boundary at its major axes in the
deformed configuration. The pattern shows remarkable agreement with the corresponding tension-field solution in which
these zones are entirely slack, i.e. free of stress. The main difference between the present simulation and that delivered by
tension-field theory is the detailed spatial resolution of the deformation of the wrinkled regions, as well as that of the
‘slack’ zones.

Fig. 8 depicts the distribution of maximum principal stretch, λ, in the sheet together with the predicted distributions of λ
in regions adjoining the hole, as functions of distance from the hole center in orthogonal directions aligned with the edges
of the initial rectangle. The corresponding tension-field theory solution is also shown, and indicates that the latter yields a
remarkably accurate prediction of the stretch in wrinkled regions of the membrane. This agreement supports an earlier
conjecture (Steigmann, 1990) to the effect that tension-field theory furnishes an accurate description of the tensile stress –
and associated stretch – in wrinkled regions, despite its failure to model the detailed deformation pattern. That conjecture is
based on the observation that tension-field theory yields the stress as the solution to a statically determinate system. Failure
to accurately model the deformation is thus expected to have negligible effect on the predicted distribution of tensile stress
transmitted along the trajectories of the wrinkle lines.
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4.4. Twist and pull-out of an annular sheet

This final example is inspired by the work of Haseganu and Steigmann (1994) on the numerical solution to problems in
tension-field theory. A plane annular sheet is pinned at rigid concentric circular boundaries of radii 250 mm and 62.5 mm.
The outer circle is fixed while the inner one is displaced out-of-plane by 125 mm and rotated through 901. The positions and
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displacements are normalized using L¼250 mm. The material is again taken to be Kapton. For results using the present
model and those using tension-field theory, we use a center-hole-biased radial mesh with 20,000 nodes.

The solution yields the deformation and wrinkling pattern shown in Fig. 9. Again, there is very good agreement between
the region predicted to be wrinkled using the tension-field theory, and the wrinkling observed in the current model. We
draw attention to the narrow region near the inner boundary where wrinkling is suppressed. This prediction, which is
common to simulations based on the present model and on tension-field theory (Haseganu and Steigmann, 1994), is
corroborated by independent analysis (Roxburgh et al., 1994) and experiments on rubber sheets (Haseganu, 1994).

The tension-field theory solution exhibits a maximum principal stretch distribution which is axisymmetric in regions
where wrinkling occurs (Haseganu and Steigmann, 1994). In this case an analytical result is known, based on an integral of
the equations of tension-field theory (Steigmann, 1990). The distribution of the maximum principal stretch, derived from
simulations based on the present model, is seen to be in excellent agreement with the analytical result derived from
tension-field theory (Fig. 10). The present example thus provides further evidence in support of the foregoing conjecture
regarding tension-field theory. Further work is needed, however, to assess the status of the conjecture in general boundary-
value problems.
5. Concluding remarks

In this work we present a model for the finite bending and stretching of thin sheets derived from, and having optimal
accuracy with respect to, three-dimensional nonlinear elasticity. We show this model to be tractable for numerical analysis
by extending the method of dynamic relaxation to thin sheets exhibiting large deformations and wrinkling and solving
several illustrative boundary-value equilibrium problems. The results obtained exhibit excellent agreement with available
experimental data as well as with those obtained from the tension-field theory.

As stated previously, tension-field theory, which suppresses bending stiffness, is much more tractable than the
alternatives. However, it does not model the detailed character of the deformation in wrinkled regions of the sheet
(e.g. amplitude and wavelength). Our results indicate that it nevertheless furnishes a reliable estimate of the attendant
stress distribution. In particular, the examples of Sections 4.3 and 4.4 show exceptional agreement between the current
model and tension-field theory insofar as the maximum principal stretches are concerned, and also in the prediction of the
locations where wrinkling occurs. Further, the current approach is applicable to a wide variety of problems without any a
priori knowledge about the nature of the solution. In particular, it accommodates widespread wrinkling while incorporating
the conventional limiting cases in which either membrane or bending behavior dominates.
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