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By introducing a periodic array of pores in an elastic matrix, instabilities with wavelengths
that are of the order of the size of the microstructure can be triggered. Interestingly, these
instabilities can be utilized to design a novel class of responsive materials. Possible
applications include materials with unusual properties such as negative Poisson's ratio,
phononic and photonic switches and colorful and reconfigurable displays.

Although shape plays an important role in the design and performance of periodic materials,
so far only the non-linear response of structures with circular and elliptical pores has been
investigated and the effect of the pore shape on the structural response has not yet been
explored. Here, we numerically explore the effect of pore shape on the non-linear response of a
square array of pores in an elastomeric matrix. Our results show that pore shape can be used
effectively to design material with desired properties and to control attractive features of soft
porous systems, such as their stiffness, critical strain and negative Poisson's ratio.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Materials with significant porosity, generally termed cellular solids, exhibit properties that differ from those of their solid
counterparts and have a large number of uses in mechanical and thermal applications (Gibson and Ashby, 1999; Wadley, 2006).
In particular, cellular solids are used to design lightweight structures (Queheillalt and Wadley, 2005), to maximize energy
absorption (Wierzbicki and Abramowicz, 1983; Papka and Kyriakides, 1994) and for acoustic damping (Verdejo et al., 2009). The
connections between the architecture of such materials and their macroscopic properties have been investigated by many
researchers (Gibson and Ashby, 1999; Wadley, 2006; Evans et al., 2001; Ashby and Bréchet, 2003). Moreover, the non-linear
stress–strain behavior of cellular solids has been of particular interest (Gibson and Ashby, 1999; Papka and Kyriakides, 1998;
Triantafyllidis and Schraad, 1998; Ohno et al., 2002; Tantikom et al., 2005; Chung and Waas, 2002). Under compression, elastic
foams deform linearly to a strain of about 5%. Then, their cell walls buckle and they collapse at a nearly constant stress until
contact between cell walls occurs, giving rise to the final steep portion of the stress–strain curve. Polymeric and metallic foams
have similar stress–strain curves, but after instability they deform plastically at nearly constant stress until the cell walls touch.

Although traditionally instabilities have been viewed as an inconvenience, buckling need not to be deleterious: buckling
plays an important role in the morphogenesis of some plant parts (Steele, 2000); the surface pattern of a dehydrated fruit is
dominated by buckling (Yin et al., 2008) and buckling caused by swelling increases the leave motility in the Venus flytrap
(Forterre et al., 2005). Inspired by nature, researchers have recently demonstrated instabilities to be instrumental in
controlling adhesion (Chan et al., 2008), facilitating flexible electronics (Rogers et al., 2010), fabricating micro-fluidic structures
(Khare et al., 2009), controlling surface wettability (Chung et al., 2007), providing means for micro- and nano-patterning and
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Fig. 1. Experimental images of three periodic structures with differently shaped pores loaded under uniaxial compression (Overvelde et al., 2012). All
structures are characterized by 50% porosity and the engineering strain ε22 ¼ �0:125 is applied. The shape of the pores is found to strongly affect the
instability. In structures A and B the critical instability is characterized by a short wavelength and leads to the formation of a checkerboard pattern. In
contrast, a buckling mode with a wavelength equal to the size of the sample is observed in structure C, reminiscent of the twinning observed in austenite to
martensite phase transformations in shape memory alloys.
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designing optical micro-devices (Yoo et al., 2002; Zhang et al., 2008), designing active micro-hydrogel devices (Lee et al., 2010)
and reversible encapsulation systems (Shim et al., 2012).

2D periodic porous structures recently attracted considerable interest because of the dramatic transformations of the original
geometry that may be observed as the result of mechanical instabilities. Upon reaching a critical applied deformation, a square
array of circular pores in an elastomeric matrix is found to suddenly transform into a periodic pattern of alternating, mutually
orthogonal ellipses (Michel et al., 2007; Mullin et al., 2007; Bertoldi et al., 2008; Zhang et al., 2008). Remarkably, it has been
demonstrated that these instabilities provide opportunities for fabrication of complex microstructures (Zhang et al., 2008) and
for the design of materials with unusual properties such as negative Poisson's ratio (Bertoldi et al., 2010), phononic (Jang et al.,
2009) and photonic switches (Krishnan and Johnson, 2009) and reprogrammable colorful displays (Li et al., 2012).

Here, we focus on 2D elastomeric porous structures and investigate the effect of pore shape on their non-linear behavior.While it has
been recently shown that the pore arrangement (Triantafyllidis et al., 2006; Michel et al., 2007; Shim et al., 2013), the porosity of the
solid (Bertoldi et al., 2010) and the loading conditions (Michel et al., 2007) have a strong effect on the stability of the system, the goal of
this work is to provide a deep understanding in the effect of pore shape on the global response of the structure. Since it has been
recently demonstrated that pore shape has a strong effect on the instability, affecting not only the point where instability occurs, but also
its wavelength (Overvelde et al., 2012) (see Fig. 1), we conduct a systematic numerical study to identify the effect of pore shape on the
non-linear response of the periodic elastomeric structures, while keeping the porosity, hole arrangement and loading conditions fixed.

The pore shape is found to provide a convenient parameter to control not only the initial stiffness and the critical strain,
but also attractive features of soft porous systems, such as their negative Poisson's ratio.1 Our results show that the pore
shape can be used effectively to design material with desired properties and pave the way for the development of a new
class of soft, active and reconfigurable devices over a wide range of length scales.

The paper is organized as follows. First, the family of pore shapes investigated in this study is presented in Section 2.
Then, in Section 3 the numerical analyses that are used to investigate the non-linear response of infinite periodic and porous
structures are introduced. Finally, numerical results are presented and discussed in Section 4, highlighting the effect of the
pore shape on the macroscopic response of the periodic elastomeric structures.
2. Microstructure

In this study, we consider a square array of pores in an elastomeric matrix and focus on pores with four-fold symmetry.
Taking the circular pore shape as a starting point, we make use of Fourier series expansion to alter their contour according to

x1 ¼ rðθÞ cos θ; x2 ¼ rðθÞ sin θ;

with rðθÞ ¼ r0½1þc1 cos ð4θÞþc2 cos ð8θÞ�; ð1Þ
1 Although Poisson's ratio is rigorously defined in the framework of linear elasticity, here we extend the concept to finite elasticity and use it to
quantify the lateral deformation of the material.
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Fig. 2. Pore shapes obtained using Eq. (1) for c1 ¼ c2 ¼ �0:4;0:3;…;0:4 and ϕ0 ¼ 0:5.

Fig. 3. (i) Schematic indicating tmin, L0 and rmin, which are used in the constraints defined in Eqs. (3) and (4). (ii) Constraint A and Constraint B as a function
of c1 and c2 for ϕ0 ¼ 0:5 and t ¼ 0:05;0:1;0:15.
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where 0rθr2π and three parameters have been introduced to control the pore size (r0) and shape (c1 and c2). While
c1 ¼ c2 ¼ 0 in Eq. (1) provides a description of a circle of radius r0, by changing c1 and c2 a variety of shapes can be obtained,
as shown in Fig. 2. Thus, in terms of shape optimization, c1 and c2 represent a 2D design space that allows for a systematic
study of the effect of pore shape on the non-linear response of the periodic structures. Since we focus on pores arranged on
a square array, r0 is related to the initial porosity of the structure ϕ0 through

r0 ¼
L0

ffiffiffiffiffiffiffiffi
2ϕ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2þc21þc22Þ

q ; ð2Þ

with L0 denoting the center-to-center distance between neighboring pores in the undeformed configuration, as specified in Fig. 3i.
Note that, to preserve the structural integrity the pair (c1, c2) has to be chosen such that
�

P
e

Constraint A: a minimum distance between pore boundaries is preserved. Therefore, the minimum ligament thickness
tmin ¼ L0�2 maxðx1Þ has to satisfy

tmin

L0
Zt ; ð3Þ
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t denoting the normalized minimum feature size in the structure.
�
 Constraint B: the minimum radius of the pore rmin is positive, i.e.

rmin ¼min½rðθÞ�Z0; ð4Þ
rðθÞ being defined in Eq. (1).

As it can be observed in Fig. 3ii, both Constraint A and Constraint B bound the feasible domain of pore shapes (i.e. area
enclosed by the constraints boundary lines). The domain considered in this study is defined by ϕ0 ¼ 0:5 and t ¼ 0:15 and it is
highlighted in gray in Fig. 3ii.
3. Modeling

In this section, we will present the analyses that are used to investigate the non-linear response of infinite periodic
structures. First, we will introduce the material model (see Section 3.1) and loading conditions (see Section 3.2). Then, we
will focus on the analyses to detect the onset of microscopic or macroscopic instability (see Section 3.3). Finally, we will
discuss the post-buckling analysis (see Section 3.4).
3.1. Material model

The response of the elastomeric material used to fabricate the structures in previous work (Overvelde et al., 2012) is
captured using a Neo-Hookean model (Ogden, 1998). Let F¼ ∂x=∂X be the deformation gradient, mapping a material point
from the reference position X to its current location x. Furthermore, let J be the determinant of F, i.e. J ¼ det F. In the absence
of body forces, equilibrium of the body is ensured when the first Piola–Kirchoff stress S satisfies

Div S¼ 0: ð5Þ

For a hyperelastic material, with a response described by the free-energy WðFÞ, the first Piola–Kirchoff stress is given by

S¼ ∂W
∂F

: ð6Þ

The strain energy density function of a Neo-Hookean material modified to include compressibility (with a high bulk
modulus) is given by

W ¼ μ

2
J�2=3I1�3
� �

þ κ

2
ðJ�1Þ2; ð7Þ

where μ¼ E=½2ð1þνÞ� and κ¼ E=½3ð1�2νÞ� denote the initial shear and bulk moduli, respectively, E and ν being the material's
Young's modulus and Poisson's ratio and I1 ¼ trðFFTÞ. The first Piola–Kirchoff stress tensor is then obtained as

S¼ ∂W
∂F

¼ J�2=3μ F� 1
3
I1F

�T
� �

þ Jκ J�1ð ÞF�T : ð8Þ
3.2. Boundary conditions

Although the non-linear response of periodic structures can be numerically investigated on finite size structures, to
reduce the size of the computational model we will focus on structures of infinite size. Furthermore, it is important to note
that the response of infinite size structures is not influenced by boundary effects, hence facilitating the comparison of
structures with different pore shapes. These infinite periodic structures can be modeled by considering a Representative
Volume Element (RVE) and applying periodic boundary conditions.

In this study a stability analysis is first performed on an RVE comprising a single pore. Subsequently, RVEs with size
dictated by the periodicity of the critical mode are constructed and their post-buckling response is investigated. Each RVE is
subjected to a macroscopic deformation gradient imposing periodic boundary conditions, so that

uB�uA ¼ ðF�IÞðXB�XAÞ; ð9Þ

where A and B are two periodically located points on the boundary of the RVE and uD ¼ xðXDÞ�XD denotes the displacement
of node D. The macroscopic deformation can be imposed by prescribing the components of the macroscopic displacement
gradient ðF�IÞ, which are viewed as generalized degrees of freedom operationally applied using a set of virtual nodes
(Danielsson et al., 2002). Rigid body motion is prevented by constraining the displacement of a single point. Note that in this
paper we use an overbar to indicate macroscopic (i.e. homogenized) quantities.
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In this study, uniaxial compression in the vertical direction under plane strain conditions is considered, so that

F ¼ ð1þε11Þe1 � e1þð1þεÞe2 � e2þe3 � e3: ð10Þ
ε denoting the applied vertical engineering strain and ε11 being such that S11 ¼ 0.

3.3. Instability analysis

When a periodic structure deforms, its spatial periodicity can abruptly change due to mechanical instability. The
mechanics of incremental deformation superimposed upon a given state of finite deformation allows the investigation of
instabilities that develop in an infinite porous solid. Let us consider a perturbation of the tractions applied to the
undeformed configuration that takes the body to a new equilibrium configuration, in which the equations of motion are still
satisfied. The incremental problem is governed by

Div _S ¼ ρ0
D2 _x
Dt2

; ð11Þ

where _S denotes the incremental first Piola–Kirchhoff stress tensor and _x the incremental displacement field. Note that for a
non-linear elastic material characterized by a stored-energy function W, _S is given by

_Sij ¼ Lijkl
_F kl; with Lijkl ¼

∂W
∂Fij∂Fkl

: ð12Þ

For infinite periodic structures it is useful to make the distinction between microscopic instabilities (i.e. instabilities with
wavelengths that are of the order of the size of the microstructure) and macroscopic instabilities (i.e. instabilities with much
larger wavelengths in comparison to the size of the unit cell) (Geymonat et al., 1993; Triantafyllidis et al., 2006; Bertoldi
et al., 2008; Overvelde et al., 2012).

3.3.1. Microscopic instabilities
Although microscopic instabilities may alter the initial periodicity of the solid, they can still be detected focusing on the

primitive cell spanned by the lattice vectors A1 and A2 and investigating the propagation of small-amplitude elastic waves
superimposed on a finite state of deformation (Geymonat et al., 1993; Triantafyllidis et al., 2006; Bertoldi et al., 2008)

_xðX; tÞ ¼ _~x expðiK0 � X� iωtÞ; ð13Þ
here ω and K0 are the angular frequency and wave vector of the propagating wave, respectively, and _~x denotes the
magnitude of the incremental displacement.

While a real angular frequency ω corresponds to a propagating wave, a complex angular frequency identifies a
perturbation growing exponentially in time. Therefore, the transition between a stable and an unstable configuration,
identified by the critical loading parameter εcr , is detected when the frequency vanishes (i.e. ω¼ 0). The new periodicity of
the solid introduced by instability can then be obtained by the corresponding wave vector.

Therefore, to detect the onset of microscopic instabilities, we first load the primitive unit cell to a certain extent and then
apply incremental displacements given by the Bloch-type relation to the boundary of the primitive cell

_xA ¼ _xB exp½iK0 � RAB�expð� iωtÞ; ð14Þ
A and B being two periodically located nodes on the primitive cell boundary and RAB denoting the distance vector between
these nodes in the undeformed configuration, i.e. RAB ¼XB�XA. A number of wave vectors are considered and for each of
them the corresponding angular frequency ω is determined by solving the frequency domain equations

Div _~S ¼ ρ0 ω
2 _~x ; ð15Þ

with

_SðX; tÞ ¼ _~S ðXÞexpð� iωtÞ: ð16Þ
A microscopic instability is detected at the first point along the loading path for which a wave vector K0;cr exists such that

the corresponding angular frequency ω is zero. Let us write K0;cr as

K0;cr ¼ K1;crB1þK2;crB2; ð17Þ
where B1 and B2 denote the reciprocal lattice vectors

B1 ¼ 2π
A2 � e

A
; B2 ¼ 2π

e� A1

A
with A¼ JA1 � A2 J ; e¼ A1 � A2

A
; ð18Þ

A1 and A2 defining the lattice vectors which span the primitive cell. Then, the instability will result in a new RVE with
n1 � n2 primitive unit cells in the two directions spanned by the lattice vectors, where

n1 ¼
1

K1;cr
; n2 ¼

1
K2;cr

: ð19Þ
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Since commercial finite-element software packages normally do not support complex-valued displacements, following
Aberg and Gudmundson (1997) all spatial fields ψ are split into a real and imaginary part

ψðXÞ ¼ ψ reðXÞþ iψ imðXÞ; ð20Þ
so that the frequency-domain wave equations (15) split into

Div _~S
re ¼ ρ0ω

2 _~x re; Div _~S
im ¼ ρ0 ω

2 _~x im: ð21Þ
These two sets of equations can be solved simultaneously using two identical finite-element meshes for the primitive cell
and coupling them by the incremental displacement boundary conditions from Eq. (14)

_xre
B ¼ _xre

A cos ½iK0 � RAB�� _x im
A sin ½iK0 � RAB�;

_x im
B ¼ _xre

A sin ½iK0 � RAB�þ _x im
A cos ½iK0 � RAB�: ð22Þ

3.3.2. Macroscopic instabilities
Macroscopic (or long wavelength) instabilities can be detected considering K0-0 when performing the Bloch wave

analysis described in the previous section. Alternatively, it has been rigorously shown that macroscopic instabilities can also
be detected from the loss of strong ellipticity of the overall response of the material (Geymonat et al., 1993). Specifically, for
the porous material considered in this study macroscopic instability may occur whenever the condition

LHijklNjNlmimk40 for m � Na0; ð23Þ

is first violated along the loading path, m and N denoting unit vectors. Note that LH denotes the macroscopic (homogenized)
tangent modulus of the solid that is evaluated numerically by subjecting the RVE to four independent linear perturbations of
the macroscopic deformation gradient (Bertoldi et al., 2008).

3.4. Post-buckling analysis

For materials characterized by a critical microscopic buckling mode we investigate the non-linear post-buckling
response. RVEs with size dictated by the critical periodicity n1 � n2 identified through the Bloch Wave analysis are built
and an imperfection in the form of the most critical buckling mode, ψ cr , is introduced into the mesh. Therefore, the mesh is
perturbed by ψcr scaled by a factor w, so that

w maxjψ crj ¼ 0:005L0; ð24Þ
where L0 denotes the size of the primitive cell in the undeformed configuration.

Periodic boundary conditions (see Eq. (9)) are used and the RVEs are loaded according to Eq. (10) with compressive
applied strain ε increased until the pores completely collapse. The evolution of both the macroscopic stress and the
deformation of the microstructure is monitored during the simulations.

4. Results

In this study numerical simulations are performed to determine the effect of pore shape on the response of periodic
elastomeric structures. First, the linear elastic response of the feasible structures is investigated (see Section 4.1). Then, the
stability of the structures is studied, demonstrating that pore shape has a significant effect not only on the critical load, but
also on the wavelength of the instability (see Section 4.2). Finally, since it has been recently shown that microscopic
instabilities can be exploited to effectively tune the properties of the materials and to achieve unusual response such as
negative Poisson's ratio (Bertoldi et al., 2010), we focus on the post-buckling response of structures for which short
wavelength instabilities are critical (see Section 4.3). In particular, the effect of pore shape is highlighted by inspecting the
evolution of stress, incremental stiffness and Poisson's ratio as a function of the applied loading.

The response of the porous structures is studied using the non-linear finite-element code ABAQUS/Standard. Triangular,
quadratic, plane strain elements (ABAQUS element type CPE6H) were used and the accuracy of the mesh was ascertained
through a mesh refinement study, resulting in a relative mesh density of around 800–1250 elements per primitive cell. To
focus on the effect of pore shape, we limit ourselves to structures characterized by an initial porosity ϕ0 ¼ 0:5 and a
minimum wall thickness t ¼ 0:15 in Constraint A, as specified in Eq. (3). The feasible combinations of the pore shape
parameters c1 and c2 for the structures considered in this study correspond to the area highlighted in gray in Fig. 3ii.

4.1. Initial response

We start by determining the initial response of the feasible structures. The initial response is determined by considering
a primitive cell and applying a small uniaxial strain ε ¼ 1� 10�4, which results in approximately linear behavior. Then, the
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Fig. 4. (i) Contour map showing the initial macroscopic stiffness E0=E as a function of c1 and c2. (ii) Contour map showing the initial macroscopic Poisson's
ratio ν0=ν as a function of c1 and c2.
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initial stiffness E0 and Poisson's ratio ν0 are calculated as

E0 ¼
∂S22
∂ε

 !
ε ¼ 0

and ν0 ¼ � ε11
ε

� �
ε ¼ 0

; ð25Þ

where S22 denotes the uniaxial macroscopic stress.
Fig. 4i and ii show the dependence of E0 and ν0 on c1 and c2 for all feasible structures. As expected, both the initial

stiffness and Poisson's ratio of the porous structure are lower than the corresponding properties of the bulk material.
Moreover, although the porosity ϕ0 is equal for all structures, we note that the pore shape has a significant effect on the
structural response. In particular, E0=E and ν0=ν vary continuously within the feasible domain specified by Constraint A, so
that 0:28rE0=Er0:42 and 0:45rν0=νr0:70. Moreover, it is worth mentioning that the pore shape affects E0 and ν0 in a
very similar way. As a result, pores characterized by ðc1; c2Þ ¼ ð�0:21; 0:28Þ are found to lead to minimum values of both E0

and ν0. In contrast, maximum values for E0 and ν0 are attained for pores with an almost square shape.
To better understand the effect of pore shape on the initial response of the porous materials, in Fig. 5 we present the

distribution of the nominal stress component S22 for nine representative structures. The images clearly show that the
compressive load is fully carried by the vertical members. Therefore, an effective column with width weff can be defined, so
that

E0 ¼
Eweff

L0
: ð26Þ

In Fig. 5 vertical dashed lines are used to identify the effective columnwidth, showing a very strong correlation between weff

and the distribution of the stress within the structure. Furthermore, if we assume that the load is fully carried by vertical
columns of width weff, the transverse strain ε11 for the porous structure can be approximated by

ε11 � � ενweff

L0
; ð27Þ

so that the macroscopic Poisson's ratio is given by

ν0 ¼ � ε11
ε

� νweff

L0
: ð28Þ

Comparison of Eqs. (26) and (28) clearly shows that our simple analysis predicts the same dependence of E0 and ν0 on weff.
Therefore, we expect the effect of pore shape on these two macroscopic properties to be the same. This prediction is
confirmed by numerical results reported in Fig. 4.

4.2. Instability analysis

Here, we investigate the stability of the feasible structures under uniaxial compression. It has been recently shown that
pore shape has a significant effect not only on the critical load, but also on the wavelength of the instability (Overvelde et al.,
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Fig. 5. Distribution of the nominal stress component S22 for nine representative structures. The vertical dotted lines specify the effective widthweff (see Eq. (26)).
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2012). While the previous work only focused on three pore shapes, in this study we conduct an extensive numerical study
on the effect of c1 and c2 on the non-linear response of the porous structures. We start by determining the critical strain at
the onset of microscopic (εmicro

cr ) and macroscopic (εmacro
cr ) instability for all the pore shapes within the feasible c1�c2

domain. To efficiently calculate the critical strains, we implement a discrete Newton–Raphson algorithm, so that the
increment of the applied strain Δε for each loading step is determined as

Δε iþ1 ¼Δε iþ Δε i�Δε i�1
� � f i

f i� f i�1 ; ð29Þ

where f denotes minðLHijklNjNlmimkÞ for the macroscopic instability analysis and the angular frequency ω for the microscopic
instability analysis.

The results of the instability analyses are reported in Fig. 6 as contour maps, demonstrating that both εmicro
cr and εmacro

cr are
significantly affected by the pore shape. The absolute value of εmicro

cr is found to be minimum for pores characterized by a ‘þ ’

shape (i.e. defined by positive values of c1). In contrast, macroscopic instabilities are encountered very early along the
loading path in the case of ‘� ’ shaped pores (i.e. defined by negative values of c1), which accommodate compression by
allowing a shear along one of the axes of the ‘� ’.

In this study we are interested in the post-buckling response of structures for which short wavelength instabilities are
critical. For these structures

εmicro
cr �εmacro

cr r0; ð30Þ

which will be referred to as Constraint C. In Fig. 7i both the boundaries for Constraint A and Constraint C are shown, enclosing
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Fig. 6. (i) Contour map showing the critical microscopic strain εmicro
cr as a function of c1 and c2. (ii) Contour map showing the critical macroscopic strain

εmacro
cr as a function of c1 and c2.

Fig. 7. (i) Constraint A and Constraint C for ϕ0 ¼ 0:5 and t ¼ 0:15. The domain for which microscopic instabilities are critical is enclosed by both curves and is
highlighted in gray. (ii) Initial shapes and critical buckling modes for four representative structures.
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a feasible domain in which the structures undergo microscopic instability. Interestingly, our systematic study reveals that for
pores characterized by a ‘þ ’ shape Constraint C is satisfied and microscopic instabilities are critical. In contrast, for ‘� ’

shaped pores macroscopic instabilities are critical. For pores that show an equal contribution of ‘� ’ and ‘þ ’ shape
(i.e. c1 	 0), the critical strains for microscopic and macroscopic instabilities are close to each other, so that a competition
between the two types of instabilities is observed. Finally, we note that for all the structures that satisfy Constraint C the
critical instability is characterized by a wavelength equal to 2L0 in both vertical and horizontal direction and leads to the
formation of a checkerboard pattern, as shown in Fig. 7ii for four representative microstructures.

Next, to better understand how pore shape affects the wavelength of the critical instability, we focus on the deformation
of the ligaments and model them as beams with varying cross-section along their length (see Fig. 8i). Since during the initial
linear elastic regime the vertical ligaments of the porous structure are found to fully carry the uniaxial load (see Fig. 5), we
start by considering only one vertical member (see Fig. 8i). Guided by both experiments and simulations (Overvelde et al.,
2012), we identify the boundary conditions for the 1D beam model: for the case of microscopic instability we apply pin–pin
boundary conditions (i.e. we set the transverse displacement u¼0 at both ends); for the case of macroscopic instability we
fix the rotation at both ends (i.e. ϕ¼ 0) and the transverse displacement only at the lower end. We then determine the
critical strain under uniaxial compression for both sets of boundary conditions performing finite-element simulations in
ABAQUS/Standard. The beam is discretized using 100 linear beam elements (ABAQUS element type B21) and the critical
strain is obtained through a linear buckling analysis (ABAQUS step type nBUCKLE). We consider beams with a cross-section
corresponding to all pore shapes within the feasible c1�c2 domain and determine the region in which microscopic
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instabilities are critical. The boundary between microscopic and macroscopic modes predicted by the 1D model corresponds
to the dashed line in Fig. 8ii, revealing that the simple beam model captures the essence of the problem, but does not predict
the correct value for the critical strains. In particular, the 1D beam model underestimates the critical microscopic strain,
leading to an enlarged region of structures that are characterized by a microscopic mode.

To improve the quantitative agreement with the 2D solid continuum models, we construct beam models comprising four
beams characterized by the same cross-section used in the 1D beam models (see Fig. 9i). Periodic boundary conditions are
applied to the four outer nodes, as shown in Fig. 9i. Moreover, to enforce microscopic instability the rotation of the center
node is constrained to be opposite to that of the outer nodes. In contrast, for the macroscopic instability we equate the
rotation of the center node to that of the outer nodes. As for the 1D model, a linear buckling analysis is conducted for both
Fig. 8. (i) Experimental images (Overvelde et al., 2012) showing the deformation under uniaxial compression of the vertical ligaments in porous samples
undergoing macroscopic (top) and microscopic (bottom) instabilities. Based on these experimental images, 1D beam models are constructed. The beams
have varying cross-section along their length and appropriate boundary conditions are applied. Here, L0 is the size of the primitive cell, u and v correspond
to the displacement of each node in horizontal and vertical direction, respectively, and φ is the rotational degree of freedom. (ii) Contour map showing
εmicro
cr �εmacro

cr as predicted by the 1D beam model as a function of c1 and c2. The dashed line corresponds to Constraint C.

Fig. 9. (i) Experimental images (Overvelde et al., 2012) showing the deformation under uniaxial compression of both the vertical and horizontal ligaments
in porous samples undergoing macroscopic (top) and microscopic (bottom) instabilities. Based on these experimental images, 2D beam models are
constructed. The beams have varying cross-section along their length and appropriate boundary conditions are applied. Here, L0 is the size of the primitive
cell, u and v correspond to the displacement of each node in horizontal and vertical direction, respectively, and φ is the rotational degree of freedom. The
subscripts l and r indicate left and right nodes, respectively. (ii) Contour map showing εmicro

cr �εmacro
cr as predicted by the 2D beam model as a function of c1

and c2. The dashed line corresponds to Constraint C.
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Fig. 10. (i) Evolution of the macroscopic nominal stress S22 as a function of the macroscopic strain ε for four representative structures. (ii) Numerical
images of the four representative structures at different levels of macroscopic strain: εcr , ðεcrþεconÞ=2 and εcon , in which εcon is the strain at which the pore
faces come into self-contact.
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sets of boundary conditions to calculate the value of Constraint C. The results are reported in Fig. 9ii as a contour map, where
the color represents the value of Constraint C. This parametric study shows that the 2D beam model accurately estimates the
region in which microscopic instabilities are critical (see the dashed line in Fig. 9ii). Therefore, our results clearly indicate
that the horizontal ligaments play a crucial role in determining the wavelengths of the critical modes.
4.3. Post-buckling analysis

We now focus on the structures for which microscopic instabilities are critical (i.e. the structures that satisfy both
Constraint A and Constraint C) and perform non-linear load–displacement analyses to capture their post-buckling
deformation. First, we investigate the effect of pore shape on the stress–strain response and on the incremental modulus
of the structures. Then, we focus on the effect of the pore shape on the evolution of the lateral strain. Since for all structures
considered in this study the critical microscopic instability is characterized by a periodicity of 2�2, RVEs consisting of four
primitive cells are used in the post-buckling analyses.
4.3.1. Stress–strain response
We start by focusing on the four representative structures A–D shown in Fig. 7ii. Fig. 10i shows the evolution of the

macroscopic nominal stress S22 as a function of the applied engineering strain ε. For all four structures we observe a
behavior that is typical for cellular solids with three distinct regimes: a linear elastic regime, a stress plateau following
thereafter and compaction by further compression. Images of the four configurations at different levels of deformation are
reported in Fig. 10ii. First, we observe that when the critical value of the compressive strain is reached, buckling occurs,
leading to the formation of a checkerboard pattern. Once formed, the new pattern becomes further accentuated for
increased values of the applied strain. Finally, we notice that the non-linear response of all four representative structures is
characterized by the same key features and the pore shape is found only to affect the strain at which transitions between the
three different regimes occurs.
4.3.2. Incremental stiffness
Next, we focus on the evolution of the homogenized structural stiffness, defined as

E ¼ ∂S22
∂ε

: ð31Þ

In Fig. 11i the evolution of the incremental stiffness as a function of ε is shown for the four representative structures A–D.
The three regimes observed in the stress–strain response are clearly reflected in the evolution of E , which is characterized by
three distinct regions. The first region corresponds to the initial linear elastic stiffness E0 studied in Section 4.1. The second
region plateaus at EC0 and is observed after a sharp transition induced by the instability. To better understand the effect of
pore shape on this plateau, in Fig. 11ii we report as a contour map the homogenized structural stiffness at ε ¼ �0:1 for all
structures characterized by microscopic instability. The results clearly show that all structures are characterized by Er0.
In particular, the minimum value of E (i.e. E=E¼ �0:08) is found for almost square pores characterized by ðc1; c2Þ ¼
ð�0:05;0:07Þ.
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Fig. 11. (i) Evolution of the macroscopic incremental stiffness E=E as a function of the macroscopic strain ε for four representative structures. (ii) Contour
map of E=E at an applied strain ε ¼ �0:1 as a function of c1 and c2.
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Finally, a sharp transition to E40 occurs when the pores collapse. Although we stopped the simulations just after the
point where contact occurs, we expect the structural stiffness for a completely collapsed structure to be approximately equal
to that of the bulk material (i.e. E=EC1).

4.3.3. Poisson's ratio
It has been recently demonstrated that microscopic instabilities strongly affect the evolution of the lateral strain, providing

opportunities for the design of materials with tunable negative Poisson's ratio (Bertoldi et al., 2010). To quantify the lateral
deformation of the porous structures, we define two Poisson's ratio-like quantities:

νref ¼ � ε11
ε

and νdef ¼ � ∂ε11
∂ε

: ð32Þ

Note that νref characterizes the lateral deformation of the structure with respect to the undeformed configuration. Differently,
νdef quantifies the lateral deformation with respect to the deformed configuration induced by an increment in the applied
strain Δε and allows us to describe Poisson's ratio of a material that operates around a pre-deformed state.

The evolution of νref and νdef as a function of the applied deformation for the four representative structures A–D is shown
in Fig. 12i and iii, respectively. As expected, all structures are characterized by initially positive values of νref and νdef .
However, as previously observed for a square array of circular pores (Bertoldi et al., 2010), the dramatic pattern
transformation introduced by instability strongly the Poisson's ratio of the structure. Beyond the instability, νref is found
to monotonically decrease as a function of ε in all four structures and eventually becomes negative. While νref gradually
decreases after instability, νdef is characterized by three plateaus. Before instability occurs, all structures are characterized by
a constant and positive value of νdef 	 0:4. At instability, a rapid transition to a negative value close to �1 is observed.
Finally, when the pores collapse due to large deformation and negative Poisson's ratio behavior, a sharp transition to a
positive value νdef 	 0:5 is expected, since at this point we are left with a pre-stressed homogeneous solid that has the same
properties as the bulk material.

Next, we consider all structures for which microscopic instabilities are critical and calculate their Poisson's ratio νref and
νdef at ε ¼ �0:1. The results are shown in Fig. 12ii and iv as a contour map, with the color representing the associated value
of Poisson's ratio. The largest negative values for both νref and νdef are found for pores that are characterized by a ‘þ ’ shape.
For these pores microscopic instabilities are detected very early along the loading path, leading to a maximum lateral
contraction. Moreover, our results indicate that circular pores do not lead to optimal compaction, instead an optimized
folded configuration that maximizes the lateral contraction is found in structures with ‘þ ’ shaped pores, demonstrating the
significant effect that the pore shape has in the design of foldable soft structures.

5. Discussion and conclusion

In this study we numerically investigated the effect of pore shape on the non-linear response of a square array of pores in
an elastomeric matrix. Our results show that the pore shape strongly affects structural stability, not only changing the
critical strain, but most importantly the wavelength of the critical mode. In particular, our study reveals that only a limited
number of pore shapes lead to periodic structures for which microscopic instabilities are critical. Focusing on structures
characterized by 50% porosity, pores characterized by a ‘þ ’ shape have the tendency to compress in the direction of the
applied strain, leading to microscopic instabilities. In contrast, ‘� ’ shaped pores accommodate compression by allowing a
shear along one of the axes of the ‘� ’, leading to macroscopic instabilities.
Please cite this article as: Overvelde, J.T.B., Bertoldi, K., Relating pore shape to the non-linear response of periodic
elastomeric structures. J. Mech. Phys. Solids (2013), http://dx.doi.org/10.1016/j.jmps.2013.11.014i

http://dx.doi.org/10.1016/j.jmps.2013.11.014
http://dx.doi.org/10.1016/j.jmps.2013.11.014
http://dx.doi.org/10.1016/j.jmps.2013.11.014


Fig. 12. (i) Evolution of the macroscopic Poisson's ratio with respect to the reference configuration νref as a function of the macroscopic strain ε for four
representative structures. (ii) Contour map showing νref at an applied strain ε ¼ �0:1 as a function of c1 and c2. (iii) Evolution of the macroscopic Poisson's
ratio with respect to the deformed configuration νdef as a function of the macroscopic strain ε for four representative structures. (iv) Contour map showing
νdef at an applied strain ε ¼ �0:1 as a function of c1 and c2.

Fig. 13. Comparison of Constraint A and Constraint C for ϕ0 ¼ 0:5 and ϕ0 ¼ 0:45, considering t ¼ tmin=L0 ¼ 0:15. The domains in which microscopic
instabilities are critical correspond to the gray highlighted region for ϕ0 ¼ 0:5 and to both the gray and yellow regions for ϕ0 ¼ 0:45. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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In an effort to reduce the number of design variables and highlight the effect of pore shape, in this paper we present
results for porous structures characterized by 50% initial porosity. However, the same numerical strategy can be applied to
structures characterized by different levels of porosity. As an example, in Fig. 13 we compare the domains in which
microscopic instabilities are critical for porous structures characterized by 50% and 45% initial porosity, considering
t ¼ tmin=L0 ¼ 0:15. The domains in which microscopic instabilities are critical correspond to the gray highlighted region for
ϕ0 ¼ 0:5 and to both the gray and yellow regions for ϕ0 ¼ 0:45. Therefore, the results indicate that a small reduction in
porosity leads to a larger number of pore shapes for which microscopic instability is critical.

Although in this study we only focused on the non-linear response of the structures under uniaxial compression, we also
expect that the pore shape significantly affects their behavior for different loading conditions. As an example, inspired by
recent observations reported by Michel et al. (2007), we investigated the stability of the porous structures under equibiaxial
tension, so that

F ¼ ð1þεÞe1 � e1þð1þεÞe2 � e2þe3 � e3: ð33Þ
The results for four representative porous structures characterized by ϕ0 ¼ 0:50 and ðc1; c2Þ ¼ ð0:00;0:00Þ, ð0:08; �0:10Þ,
ð�0:20;0:20Þ and ð�0:10;0:00Þ (corresponding to structures B, D, F and H in Fig. 5, respectively) are shown in Fig. 14.
In Fig. 14i we report the evolution of the squared angular frequency ω2 of a wave with wavelength equal to 2L0 along both
lattice vectors as a function of the applied strain ε. Initially all structures are characterized by positive values of ω2, but for a
critical value of the loading parameter we find that ω2 ¼ 0, marking the onset of instability. Remarkably, the shape of the
pores is found to significantly affect this onset. In particular, a very high critical strain occurs for pores characterized by a ‘þ ’

shape (see pores B and D). In contrast, the instability is encountered much earlier along the loading path in the case of ‘� ’

shaped pores (see pores H and F). In particular, for the investigated shapes, the lowest critical strain is observed for shape F,
which becomes unstable at εFcr ¼ 1:47. Finally, in Fig. 14ii we show the critical mode superimposed on the deformed
configuration at the onset of the instability, further highlighting the significant effect of pore shape on the critical strain. We
note that all structures are characterized by a similar mode, leading to an alternation of pores with different sizes.

Interestingly, porous solids for which microscopic instabilities are critical open avenues for the design of reconfigurable
and foldable structures. Unlike many other examples of foldable structures, our system does not contain rigid links, but only
comprises a continuous distribution of soft material. Our structures take advantage of mechanical instabilities, allowing the
actuation to be fast, reversible and applicable over a wide range of length scales. Our results demonstrate that by simply
changing the shape of the pores, the response of porous structure can be easily tuned and soft structures with optimal
compaction can be designed. Surprisingly, we show that circular pores do not lead to optimal response and that the
compaction of the system can be significantly improved through a careful design of the pore shape. The insights gained by
performing a numerical parametric exploration serve as an important design guideline in fabricating practical materials
towards applications.

Finally, while it has been successfully shown that in the case of structures with linear response, topology optimization
can be applied to find structures that exhibit extreme properties (Sigmund and Torquato, 1997; Sigmund, 1994, 1994;
Schwerdtfeger et al., 2011; Sigmund and Søndergaard Jensen, 2003), the extension of these algorithms to highly non-linear
Fig. 14. (i) The evolution of the squared angular frequency ω2 of a wave with wavelength equal to 2 L0 along both lattice vectors as a function of the applied
strain ε for four representative porous structures (corresponding to structures B, D, F and H in Fig. 5). (ii) The critical mode for pore shapes B, D, F and H
superimposed on the deformed configuration at the onset of the instability.
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problems still remains unresolved. The insights gained through this parametric study can be utilized to guide the design of
structures with desired non-linear response. In terms of shape optimization, we have investigated the (c1; c2) design space.
We have also defined constraints that enclose regions for which either microscopic or macroscopic buckling is critical. In
these regions the macroscopic properties vary continuously as a function of the parameters (c1; c2). Therefore, our study
provides a first important step toward the development of efficient topology optimization algorithms for highly non-linear
problems.
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