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Experimental observations clearly show that the performance of dielectric elastomeric-

based devices can be considerably improved using composite materials. A critical issue

in the development of composite dielectric materials toward applications is the

prediction of their failure mechanisms due to the applied electromechanical loads. In

this paper we investigate analytically the influence of electromechanical finite

deformations on the stability of multilayered soft dielectrics under plane-strain

conditions. Four different criteria are considered: (i) loss of positive definiteness of

the tangent electroelastic constitutive operator, (ii) existence of diffuse modes of

bifurcation (microscopic modes), (iii) loss of strong ellipticity of the homogenized

continuum (localized or macroscopic modes), and (iv) electric breakdown. While the

formulation is developed for generic isotropic hyperelastic dielectrics, results are

presented for the special class of ideal dielectrics incorporating a neo-Hookean elastic

response. The effect of material properties and loading conditions is investigated,

providing a detailed picture of the different possible failure modes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The application of a voltage through electrodes to soft dielectric elastomers deforms them substantially, giving us the
opportunity to use this principle to design a new class of actuators. Discovery and development of these materials were
first reported in the works of Pelrine and coworkers (Pelrine et al., 1998, 2000). Immediately, they attracted significant
interest because of tremendous potential in areas as robotics, aerospace and biomedical engineering. Currently, dielectric
elastomers are widely employed to manufacture devices as reliable electrically driven actuators, manipulators and energy
harvesters (see Bar-Cohen, 2001; Carpi et al., 2008a; Carpi and Smela, 2009, and references cited therein).

A significant challenge in the development of devices based on dielectric elastomers is that they often require the
application of extremely high voltages as a result of the material low dielectric constant. This represents a clear limitation
in their development toward further applications, but both experimental (Zhang et al., 2002; Huang et al., 2004; Carpi
et al., 2008b) and analytical (deBotton et al., 2007) investigations showed that composite materials can provide a solution
to this critical issue. When stiff and high-permittivity particles are included in a soft elastomeric matrix, the overall
dielectric constant of the material increases considerably, while its deformability may be only marginally affected.
deBotton et al. (2007) showed that the use of biphasic laminate dielectric composites can improve the actuation strain up
to 50% or, on the other hand, can provide the same actuation with a sensible decrease of the applied voltage. However, to
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design a new class of optimized devices based on dielectric composites, further investigations are necessary focusing both
on their failure under the applied loads and on the effect of inclusions volume fraction, geometry and material properties
on their performance. In this work we concentrate on the latter issue, investigating in a systematic way instabilities that
develop in finitely deformed multilayered dielectrics.

The optimization of the performance of dielectric elastomer actuators is a challenging task due to their multiple failure
modes. For single-phase actuators, electromechanical instabilities (unstable thinning of the actuator, local buckling
induced by coexistent states, electric breakdown) have been explored both analytically (Zhao and Suo, 2007; Zhao et al.,
2007; Moscardo et al., 2008; Liu et al., 2009) and experimentally (Plante and Dubowsky, 2006), providing also design
guidelines to prevent potential failures under operating conditions. Moreover, Dorfmann and Ogden (2010) recently
investigated surface instabilities for an electroelastic half space. In composite systems instabilities are even more critical
and a larger family of potential failure modes must be considered.

In this scenario modeling represents a fundamental tool. Motivated by the development of applications, the nonlinear
theory of soft dielectrics, first proposed by Toupin (1956), has been recently reviewed and further developed. In particular,
we refer to the work of McMeeking and Landis (2005), Dorfmann and Ogden (2005) and Suo et al. (2008), where both the
concepts of Maxwell and total stresses and the formulation of constitutive equations for conservative materials have been
discussed. In addition, based on this theory a variational formulation has been built and discretized using the finite
element method (Vu et al., 2007).

In this paper the stability of multilayered hyperelastic dielectric elastomers deforming at large strains is systematically
investigated. Four instability criteria for composites are introduced,1 namely
(i)
1

bifurc
loss of positive definiteness of the tangent electroelastic constitutive operator;

(ii)
 existence of diffuse modes of bifurcation (microscopic modes);
(iii)
 loss of strong ellipticity of single phases and of the homogenized continuum (localized modes or, in the latter case,
macroscopic modes);
(iv)
 electric breakdown.
The first three criteria follow from the theory of bifurcation and stability for nonlinear elastic solids developed by Hill
(1957) and Biot (1965) and applied subsequently to investigate loss of uniqueness of given loading paths in boundary-
value problems for both homogeneous solids (Hill and Hutchinson, 1975; Ogden, 1984; Needleman and Ortiz, 1991;
Triantafyllidis and Lehner, 1993) and composite materials (Triantafyllidis and Maker, 1985; Geymonat et al., 1993; Bigoni
and Gei, 2001; Triantafyllidis et al., 2006; Michel et al., 2007). Electric breakdown is instead specific for dielectric materials
that are characterized by a limit maximum value for the intensity of the electric field, beyond which electric discharges
may take place.

The four instability criteria are then specialized to rank-one layered composites finitely deformed under plane-strain
conditions. A detailed analysis of instabilities is reported for a multilayer with two phases made of ideal dielectrics
incorporating a neo-Hookean elastic response (Dorfmann and Ogden, 2005). Interestingly, the results clearly show that
depending on the heterogeneity contrast between the phases and on the loading conditions different failure modes
may occur.

2. Theory of elastic dielectrics

2.1. Basic notation

In this section we summarize the equations governing the nonlinear electrostatic deformation (electrodynamical effects
are excluded) of heterogeneous dielectrics following the formulation previously introduced by McMeeking and Landis
(2005), Dorfmann and Ogden (2005), deBotton et al. (2007) and Suo et al. (2008).

Let us consider an isolated system consisting of a multi-phase electroelastic body and the complemental surrounding
space (Fig. 1) and indicate by B0 and B0

sur ¼R3
\B0 the undeformed stress-free configuration of the body and the

surrounding space, respectively. We identify with @B0 the boundary separating B0 from the surrounding, while @B0
int

denotes the set of all the internal interfaces between heterogeneities in B0. The application of both mechanical loadings
and electric fields deforms quasi statically the body from B0 to the current configuration B and interfaces @B0 and @B0

int to
@B and @Bint, respectively. Such deformation is described by the function v that maps a reference point x0 in B0 to its
deformed position x¼ vðx0Þ in B. The associated deformation gradient will be denoted by F¼ @v=@x0, while J identifies its
determinant, J¼ detF. If the surrounding space does not consists of vacuum, the deformation v can be extended to B0

sur,
yielding Bsur ¼R3

\B¼ vðB0
surÞ.

At this point it is important to note that when electric and/or magnetic interactions are considered, the solution of a
boundary-value problem requires the integration of the governing equations over the entire system (i.e. the body and the
It is important to note that throughout the paper we refer generically to (i)–(iv) as ‘instability’ criteria. More precisely, (i)–(iii) detect a possible

ation point along the fundamental deformation path, while (iv) corresponds to a failure threshold for the solid.
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Fig. 1. An isolated system consisting of a heterogeneous dielectric body and the surrounding space in the current configuration. In the sketch

@Bint ¼ @B1
int [ @B2

int [ @B3
int, while @Bv and @Bt ð@B¼ @Bv [ @BtÞ denote the portions of @B where displacements and tractions are applied, respectively.
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surrounding space). As a consequence, specific relations for the jumps over @B must be satisfied by the relevant quantities
entering the governing equations.

2.2. Spatial formulation of the governing equations

Equilibrium of the dielectric body is ensured when the total stress s, electric displacement D and electric field E satisfy

div sþb¼ 0, sT ¼ s, div D¼ 0, curl E¼ 0 ðin B [ BsurÞ, ð1Þ

b being the ‘mechanical’ specific body force. Eqs. (1)1,2 are associated with equilibrium of momenta, while Eqs. (1)3,4 are
the relevant Maxwell’s equations in the quasi-electrostatic limit. Eq. (1)4 implies that the electric field is conservative, so
that it can be written as a function of the electric potential fðxÞ

E¼�gradf,

fðxÞ being a continuous function defined over the entire system, since double layers of charge are not considered.
The electric field causes the alignment of dipoles inside the body leading to its polarization, which is described by a vector
field P,

P¼D�e0E:

To specify boundary conditions, the subsets @Bv and @Bt ð@Bv [ @Bt ¼ @B, @Bv \ @Bt ¼ |Þ are introduced, where
displacements and surface tractions are prescribed, respectively. Thus the boundary conditions across @B are given
by (see Fig. 1)

1vU¼ 0, 1sUn¼ t ðon @BtÞ, v¼ ~v ðon @BvÞ,

1DUUn¼�o, n� 1EU¼ 0 ðon @BÞ, ð2Þ

where v denotes the finite displacement field, ~v and t are prescribed vector fields, n is the current outward normal to @B, o
is the surface charge density2 and 1UU is the jump operator defined on @B as 1fU¼ f solid�f sur.

Moreover, assuming that no mechanical tractions and surface charges are applied to @Bint and that heterogeneities in
the body are perfectly bonded, the boundary conditions across @Bint separating phases ‘a’ and ‘b’ are given by

1vU¼ 0, 1sUn¼ 0, 1DUUn¼ 0, n� 1EU¼ 0 ðon @BintÞ, ð3Þ

where now the jump operator is defined as 1fU¼ f b�f a and n is the unit normal pointing towards phase ‘a’.
In the particular case of the surrounding space consisting of vacuum, the boundary conditions (2)2,4 specialize to

sn¼ tþs�n, DUn¼�oþe0E�Un, ð4Þ

respectively, where s and D are evaluated in the body, whereas * denotes quantities evaluated in the vacuum,

s� ¼ e0 E� � E��
1

2
E�2I

� �
, D� ¼ e0E�,
2 Often charges are accumulated on the surface through electrodes connected to a battery which imposes a constant electric potential. In this case the

boundary condition (2)4 must be replaced by a boundary condition setting the appropriate value of f over the region where the electrodes are applied.
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e0 being the permittivity of vacuum ðe0 ¼ 8:85 pF=mÞ. Eq. (4)1 clearly shows that the Maxwell stress s� acting on the
boundary separating the dielectric body from vacuum affects the total stress s in the body.

2.3. Lagrangian formulation of the governing equations

Integration of Eqs. (1) over B and change of variable from x to x0 yield3

Div Sþb0
¼ 0, SF¼ ðSFÞT , Div D0

¼ 0, Curl E0
¼ 0 ðin B0

[ B0
surÞ, ð5Þ

which represent the Lagrangian formulation of the field equations for the electroelastic response of the system. In the
equations above S¼ JsF�T is the total first Piola-Kirchhoff stress, D0= JF�1D is the Lagrangian (or nominal) electric
displacement, E0=FT E is the Lagrangian (or nominal) electric field4 and Div and Curl denote the div and curl operators in
B0. Since the electric field is conservative, in the reference configuration E0

¼�Gradf0, where f0
ðx0Þ ¼fðxÞ is the

Lagrangian (nominal) electric potential.
The boundary conditions (2) may be rewritten in Lagrangian form as

1v0U¼ 0, 1SUn0 ¼ t0 ðon @B0
t Þ, v0 ¼ ~v0

ðon @B0
vÞ,

1D0UUn0 ¼�o0, n0 � 1E0U¼ 0 ðon @B0
Þ, ð6Þ

where v0(x0)=v(x). The Lagrangian form of Eqs. (3) can be obtained analogously.
We would like to remark that when vacuum surrounds the body, there is no deformation associated with it, so that the

definition of Lagrangian quantities in B0
sur has no meaning. Therefore, Eqs. (4) can be rewritten in Lagrangian form as

Sn0
¼ t0þ Js�F�T

bndn0 and D0
Un0 ¼�o0þe0JF�1

bndE�Un0, ð7Þ

where Fbnd ¼ F
j@B0 .

2.4. Constitutive equations

Let us consider a conservative material whose response is described by the free-energy function W=W(F,D0).
Application of the first and second law of thermodynamics yields (McMeeking and Landis, 2005; Dorfmann and Ogden,
2005; Suo et al., 2008)

S¼
@W

@F
, s¼

1

J

@W

@F
FT , ð8Þ

whereas the electric field is obtained as

E0
¼
@W

@D0
, E¼ F�T @W

@D0
: ð9Þ

For an incompressible material (i.e. J=1) Eqs. (8) modify as

S¼
@W

@F
�pF�T , s¼

@W

@F
FT
�pI, ð10Þ

where p is an arbitrary hydrostatic pressure.
Objectivity requires the free energy W(F,D0) to be written as a function of the right Cauchy–Green tensor C=FT F and D0,

which are both invariant under arbitrary rigid-body motions. Moreover, for an isotropic hyperelastic dielectric body the
free energy W(C,D0) can be expressed as a function of the invariants of C (see Dorfmann and Ogden, 2005)

I1 ¼ tr C, I2 ¼
1
2½ðtr CÞ2�tr C2

�, I3 ¼ detC¼ J2,

and of three additional invariants depending on D0, namely

I4 ¼D0
UD0, I5 ¼D0

UCD0, I6 ¼D0
UC2D0:

Due both to the lack of available experimental data and to the desire of a simple enough formulation that allows a better
understanding of the material response, an uncoupled form for the free energy is often considered

W ¼WelasðI1,I2,I3ÞþWpolðI4,I5,I6Þ, ð11Þ

where Welas is the strain energy when electric effects are disregarded, whereas Wpol represents the contribution of the
polarization of the solid. Several investigations (Eringen and Maugin, 1989; McMeeking and Landis, 2005; Zhao et al., 2007;
Zhao and Suo, 2008) showed that the uncoupled free energy (11) well captures the behavior of large classes of soft
3 Denoting by dV0 an infinitesimal volume in B0, by dA0 an infinitesimal area on @B0 and by n0 its outward unit normal, b0 dV0 corresponds to the

infinitesimal current body force, t0dA0 to the infinitesimal current contact force and o0 dA0 to the infinitesimal current surface charge. Note that dA0 can

be expressed in terms of the current quantities using Nanson’s formula n dA= JF�Tn0dA0, whereas dV= J dV0.
4 We avoid to define a ‘Lagrangian polarization vector’ since there is no Maxwell’s equation associated with this field.
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dielectrics such us ideal dielectrics and electrostrictive materials. In Section 5 results will be presented for an
incompressible dielectric (I3=1) whose behavior is captured using the free energy

WnH ¼
m
2
ðI1�3Þþ

1

2e I5, ð12Þ

where a neo-Hookean form has been adopted for Welas and the dependency of Wpol on I4 and I6 has been neglected.
In Eq. (12) m is the shear modulus in the reference configuration and e¼ e0er denotes the dielectric constant of the solid
taken to be unaffected by the deformation, so that the free energy (12) predicts a linear proportionality between
electric displacement and electric field along any loading path. The adoption of the form (12) is justified by experimental
data on typical materials for soft dielectrics (see, e.g., Goulbourne et al., 2005; Kofod et al., 2003) showing that (i)
the simple form of the free energy WnH describes well the electromechanical behavior of these materials up to a maximum
tensile stretch of about two, while for highly strained specimens more refined models such those proposed by Ogden and
Yeoh must be employed; (ii) the dielectric permittivity e is almost insensitive on the large strain applied to the specimen.

2.5. Incremental boundary-value problem

The mechanics of incremental deformations superimposed upon a given state of finite deformation allows the
investigation of instabilities that develop in dielectric bodies subjected to nonlinear electrostatic deformations. Here, in the
spirit of Dorfmann and Ogden (2010), we focus on conservative dielectric materials that are isotropic in the reference
configuration and satisfy at each stage of deformation Eqs. (5) and (6).

2.5.1. Lagrangian formulation

Let us consider a perturbation _t
0

and _o0 of the tractions and the surface charges applied on @B0 that takes the body to a
new equilibrium configuration where Eqs. (5) and (6) are still satisfied and leaves the body force density b0 unchanged. The
incremental problem is governed by

Div _S ¼ 0, Div _D
0
¼ 0, Curl _E

0
¼ 0 ðin B0

[ B0
surÞ, ð13Þ

where _S, _D
0

and _E
0

denote the increments of total first Piola-Kirchhoff stress, nominal electric displacement and nominal
electric field caused by the perturbation. Moreover, the incremental jump conditions at the external boundary of the body
take the form

1 _xU¼ 0, 1 _SUn0 ¼ _t
0
ðon @B0

t Þ, _x ¼ 0 ðon @B0
vÞ,

1 _D
0
UUn0 ¼� _o0, n0 � 1 _E

0
U¼ 0 ðon @B0

Þ, ð14Þ

_x ¼ _vðx0Þ denoting the incremental deformation. Similar boundary conditions hold at @B0
int, namely

1 _xU¼ 0, 1 _SUn0 ¼ 0, 1 _D
0
UUn0 ¼ 0, n0 � 1 _E

0
U¼ 0 ðon @B0

intÞ: ð15Þ

When the dielectric body is surrounded by vacuum, the incremental counterpart of Eqs. (7) is given by

_Sn0 ¼ _t
0
þ _S
�
n0, _D

0
Un0 ¼� _o0

þ _D
0�
Un0, ð16Þ

where _S and _D
0

are evaluated in the body, while S� ¼ Js�F�T
bnd and D0�

¼ e0JF�1
bndE� are evaluated in vacuum.

Assuming that all incremental quantities are sufficiently small, the constitutive equations (8)1 and (9)1 can be linearized as

_S ¼C0 _FþB0 _D
0
, _SiJ ¼ C0

iJkL
_F kLþB0

iJM
_D

0

M ,

_E
0
¼B0T� _FþA0 _D

0
, _E

0

M ¼ B0
iJM
_F iJþA0

MN
_D

0

N , ð17Þ

where _F ¼Grad _v and ðB0T� ÞMiJ ¼ B0
iJM .

It follows from Eqs. (8)1 and (9)1 and (17) that the components of the electroelastic moduli tensors C0, B0 and A0 are given by

C0
iJkL ¼

@2W

@FiJ@FkL
, B0

iJM ¼
@2W

@FiJ@D0
M

, A0
MN ¼

@2W

@D0
M@D0

N

, ð18Þ

which imply the symmetries

C0
iJkL ¼ C0

kLiJ , A0
MN ¼ A0

NM : ð19Þ

For incompressible materials the incremental total first Piola-Kirchhoff stress tensor and Lagrangian electric field are
given by

_S ¼C0 _FþpF�T _F
T
F�T
� _pF�T

þB0 _D
0
, _E

0
¼B0T� _FþA0 _D

0
, ð20Þ

where the Lagrange multiplier _p has been introduced by the incompressibility constraint trð _FF�1
Þ ¼ 0.
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2.5.2. Updated Lagrangian formulation

Instabilities are often investigated formulating the incremental boundary value problem in an updated Lagrangian
formulation, where the reference configuration moves and is identified with the current configuration. Push-forward
transformations based on linear momentum balance and divergence theorem (see Appendix A) allow the introduction of
the incremental updated quantities

R¼
1

J
_SFT , D̂ ¼

1

J
F _D

0
: ð21Þ

The work-conjugate variables to R and D̂ can be easily obtained from the second-order work, namely

Pext ¼

Z
@B0
f _f

0
_o0
þ _t

0
U _xgdA0:

Substitution of Eqs. (14)2,4 and application of the divergence theorem yield

Pext ¼

Z
B0[B0

sur

f _E
0
U
_D0
þ _SU _FgdV0

¼

Z
B[Bsur

fÊUD̂þRULgdV , ð22Þ

where

Ê ¼ F�T _E
0

ð23Þ

is the updated incremental Lagrangian electric field, uðxÞ ¼ _x, L=grad u and Eqs. (15) have been taken into account. Eq. (22)
highlights the analogy between surface charge and surface tractions, displacements and electric potentials. Introduction of
the incremental updated quantities into Eqs. (13) yields (see Appendix A)

div R¼ 0, div D̂ ¼ 0, curl Ê ¼ 0 ðin B [ BsurÞ, ð24Þ

which represent the updated Lagrangian formulation of the field equations governing the incremental problem. The
incremental boundary conditions relating the jumps in the updated Lagrangian formulation to the perturbations in the
reference configuration can be written as

1uU¼ 0, 1RUn dA¼ _t
0

dA0
ðon @BtÞ, u¼ 0 ðon @BvÞ,

1D̂UUn dA¼� _o0 dA0, n� 1ÊU¼ 0 ðon @BÞ, ð25Þ

and

1uU¼ 0, 1RUn¼ 0, 1D̂UUn¼ 0, n� 1ÊU¼ 0 ðon @BintÞ: ð26Þ

When vacuum surrounds the dielectric body Eqs. (25)2,4 reduce to

Rn dA¼ _t
0

dA0
þR�n dA, D̂Un dA¼� _o0 dA0

þD̂
�
Un dA, ð27Þ

where

R� ¼ _T �þs�½tr Ljbnd I�ðLjbndÞ
T
�, D̂

�
¼ e0½

_E
�
þðtr LjbndI�LjbndÞE

�
�,

_E
�

denoting the increment of the electric field in the vacuum and with Ljbnd ¼ ðgrad uÞj@B .
Introduction of Eq. (21) into Eqs. (17) yields

R¼CLþBD̂, Ê ¼BT�LþAD̂, ð28Þ

where the components of the updated constitutive tensors are given by

Ciqkp ¼
1

J
C0

iJkLFpLFqJ , Biqa ¼ B0
iJMFqJF

�1
Ma , Aab ¼ J A0

MNF�1
MaF�1

Nb : ð29Þ

For an incompressible material Eq. (28)1 modifies as

R¼CLþpLT
� _pIþBD̂, ð30Þ

whereas Eq. (29) are still valid substituting J=1.
Analogously to C0 and A0 the updated constitutive tensors C and A possess major symmetries

Ciqkp ¼ Ckpiq, Aab ¼ Aba:

Moreover, as pointed out by Dorfmann and Ogden (2010), substitution of Eq. (28)1 into the equality R�RT
¼ Ls�sLT provides

Ciqkpþtipdkq ¼ Cqikpþtpqdik, Biqa ¼ Bqia, ð31Þ

for compressible materials, while for incompressible materials Eq. (31)1 becomes

CiqkpþðtipþpdipÞdkq ¼ CqikpþðtpqþpdpqÞdik:
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In Section 5.1 the components of the incremental constitutive tensors defined above will be given for the class of
dielectrics whose response is described by the free energy (12).

3. Homogenization of multilayered soft dielectrics

Failure mechanisms occurring in composite materials are often predicted by investigating appropriately homogenized
properties of the composite. Thus at this stage, following deBotton (2005) and deBotton et al. (2007), the homogenized
response of incompressible rank-one layered soft dielectrics finitely deformed under plane-strain conditions is derived.
Here we focus on a biphasic layered structure whose constituents, a and b, have volume fractions ca=h0 a/(h0 a+h0 b) and
cb=1�ca, h0 a and h0 b denoting the thicknesses of the two phases in the reference configuration B0 (see Fig. 2).

The macroscopic deformation gradient Fav, the macroscopic total first Piola-Kirchhoff stress Sav, the Lagrangian electric
field E0 av and the Lagrangian electric displacement D0 av are defined as

Fav
¼ caFa

þcbFb, Sav
¼ caSa

þcbSb, E0 av
¼ caE0 a

þcbE0 b, D0 av
¼ caD0 a

þcbD0 b, ð32Þ

respectively.
In the absence of charges along the interface the electric displacement continuity equation ð1D0UUn0 ¼ 0Þ can be recast as

D0 a
Un0 ¼D0 b

Un0,

and can be alternatively expressed as

D0 a
�D0 b

¼ bm0, ð33Þ

where n0 is the unit normal to the layers, b is a real parameter and m0 is a unit vector parallel to the layers, such that
n0 �m0 ¼ 0. It follows from Eqs. (32)4 and (33) that the electric displacement field in the two phases can be written as

D0 a
¼D0 av

þcbbm0, D0 b
¼D0 av

�cabm0: ð34Þ

Following a similar approach, deBotton (2005) has shown that interface compatibility ð1FUm0 ¼ 0Þ requires

Fa
¼ Fav

ðIþa cbm0 � n0Þ, Fb
¼ Fav

ðI�a cam0 � n0Þ, ð35Þ

where a is a real parameter. Therefore, the macroscopic free energy of the composite is given by

Wav ¼ caWaðFav,D0 av,a,bÞþcbWbðFav,D0 av,a,bÞ, ð36Þ

where a and b are the scalar parameters previously introduced. Their values are obtained imposing continuity of tractions
ð1SUn0 ¼ 0Þ and tangential components of the electric field ðn0 � 1E0U¼ 0Þ at the interface. Once a and b are determined,
the macroscopic total stress and electric field can be obtained through Eqs. (32)2,3.

In Section 5.2 the formulation will be specialized to the case of a layered structure made of two phases whose response
is described by the free energy (12).

4. Instabilities of multilayered soft dielectrics

Since a limiting factor in the design of composite materials is their failure under the applied loads, following the
pioneering work of Hill (1957) the investigation of the stability of composites subjected to purely mechanical loadings has
attracted considerable attention (Ogden, 1984; Triantafyllidis and Maker, 1985; Geymonat et al., 1993; Triantafyllidis et al.,
2006; Michel et al., 2007). Here, guided by well-established criteria for the ‘pure’ mechanical case, for the first time the
onset of instabilities for elastic dielectric composites finitely deformed by the application of both electrical and mechanical
loadings is investigated.

Three classical bifurcation criteria widely used in the mechanical case are considered and adapted, namely, (i) loss of

positive definiteness of the tangent electroelastic constitutive operator, (ii) diffuse-mode (microscopic) instability, (iii) loss of
strong ellipticity (macroscopic instability when the analyzed solid is the homogenized continuum). In addition, (iv) electric

breakdown is investigated, which may represent a critical failure mode when electric fields are considered.
Taking as reference the theory developed by Hill (1957) (see also Petryk, 1993) for nonlinear elastic solids, loading

processes producing a unique response – the ‘principal equilibrium path’ – that can be parameterized in terms of a scalar
D0av

n0
m0x0

x0

b a

RVE

h0b

h0a

1

2

Fig. 2. Schematic representation of a biphasic multilayered dielectric deformed under plane-strain conditions.
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loading parameter t are considered. For each tZ0, an admissible set of incremental deformation and Lagrangian electric
displacement is defined as a pair ð _v, _D

0
Þ, with both fields not identically zero, that satisfies the continuity conditions (15) at

internal interfaces and such that

_v ¼ 0 ðon @B0
vÞ, 1 _D

0
UUn0 ¼ 0 ðon @B0

Þ:

At a critical point tcr along the principal equilibrium path a bifurcation may occur, so that two solutions (1 and 2) of the
incremental boundary-value problem illustrated in Section 2.5 exist. We indicate by D the differences between the two
possible solutions in any field quantity, i.e. Dð�Þ ¼ ð�Þð1Þ�ð�Þð2Þ. Moreover, dead-loading conditions are considered with the
applied tractions t0 and the surface charge o0 independent of the deformation, so that _t

0
¼ 0 and _o0

¼ 0.
When the incremental boundary conditions are given by Eqs. (14) with _t

0
¼ 0 and _o0

¼ 0, it is easy to show that the set
fD _v,D _S,D _D

0
,D _E

0
g satisfies the incremental boundary-value problem. Application of the principle of virtual displacements

and of the divergence theorem yieldsZ
B0[B0

sur

fD _SUD _FþD _E
0
UD _D

0
gdV0

¼ 0: ð37Þ

Noting that _vð2Þ ¼ _D
0ð2Þ
¼ 0 represents a solution of the considered homogeneous incremental boundary-value problem, it

follows from Eq. (37) that a sufficient condition excluding any bifurcation isZ
B0[B0

sur

f _SðtÞU _Fþ _E
0
ðtÞU _D

0
gdV040 ð38Þ

for all admissible sets, where superscript (1) has been omitted for notational simplicity.
Since in the reference configuration, identified by t=0, condition (38) is certainly satisfied, a bifurcation along the

loading path occurs as soon as the functional in (38) becomes positive semi-definite, with the equality holding for at least
an admissible set called primary eigenmode and indicated by ð _vcr , _D

0

crÞ, i.e.Z
B0[B0

sur

f _ScrðtÞU _Fcrþ
_E

0

crðtÞU
_D

0

crgdV0
¼ 0, ð39Þ

where _ScrðtÞ and _E
0

crðtÞ are given by the incremental constitutive equations (17).
Although in this study we focus on infinitely extended solids, we note that condition (38) can be easily adapted to

investigate dielectric bodies surrounded by vacuum [with boundary conditions specified by Eq. (16)].
We are now in the position to introduce and briefly discuss the four bifurcation criteria investigated in the paper.
	
 Loss of positive definiteness of the tangent electroelastic constitutive operator (PD). Let us start focusing on the pure
mechanical problem, so that the critical bifurcation condition (39) specializes to

R
B0
_SðtÞU _F dV0

¼ 0 for at least a
_v ¼ _vcra0, while

R
B0
_SðtÞU _F dV040 for all other admissible _v. When only dead-load tractions are applied to the

boundary (i.e. @B0
v ¼ |) and _F is a homogeneous field, for compressible materials the bifurcation condition can be

rewritten as (Hill, 1967) C0
ðtÞ _FU _F ¼ 0, for at least a _F ¼ _Fcra0, which corresponds to loss of positive definiteness of the

fourth-order tangent constitutive tensor. Therefore, for a homogeneously deformed body with only tractions applied to
its boundary, the global bifurcation condition reduces to a local condition that depends only on the principal
equilibrium path.
Similarly, for a soft dielectric body homogenously deformed applying only dead-load tractions/charges to its boundary,
introduction of the incremental constitutive equations (17) into the critical bifurcation condition (39) yields

C0
ðtÞ _FU _Fþ2B0

ðtÞ _D
0
U _FþA0

ðtÞ _D
0
U _D

0
¼ 0 for at least a pair ð _F, _D

0
Þ ¼ ð _Fcr , _D

0

crÞa0; ð40Þ

when homogeneous _F and _D
0

are considered. Therefore, bifurcation is predicted when positive definitiveness is lost by
the quadratic form in Eq. (40), which can be identified as the ‘tangent electroelastic constitutive operator’.
For an incompressible material the incremental total first Piola–Kirchhoff stress tensor is given by (20)1, so that the
bifurcation condition (40) modifies as

C0
ðtÞ _FU _FþpðtÞ tr½ð _FF�1

Þ
2
�þ2B0

ðtÞ _D
0
U _FþA0

ðtÞ _D
0
U _D

0
¼ 0

for at least a pair ð _F, _D
0
Þ ¼ ð _Fcr , _D

0

crÞa0 with trð _FcrF�1
Þ ¼ 0: ð41Þ

The critical loading parameter t at which either condition (40) or (41) is satisfied will be denoted by tPD.
In Section 4.1.2 the formulation will be specialized to the case of a multilayered consisting of two phases whose
response is described by the free energy (12).

	
 Existence of diffuse modes of bifurcations (microscopic modes). Diffuse buckling modes with a length scale comparable to

the size of the heterogeneity may be explored investigating the propagation of small-amplitude perturbations of
arbitrary wavelength superimposed on the current state of deformation (Dowaikh and Ogden, 1991; Triantafyllidis
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and Lehner, 1993; Bertoldi et al., 2008; Gei, 2008). While a real natural frequency corresponds to a propagating wave,
a complex natural frequency identifies a perturbation exponentially growing with time. Therefore, the transition
between a stable and an unstable configuration identified by the critical loading parameter tMicro is detected when the
frequency vanishes and can be investigated using the quasi-static formulation of the incremental problem.
For the purely mechanical case the relation between the failure of Hill’s condition (38) and the existence of zero-speed
waves has been investigated in detail (see, i.e., Needleman, 1976; Triantafyllidis, 1980), showing that diffuse modes
can be alternatively identified at the failure of the critical condition (39) expressing the admissible incremental
deformations in Fourier series.
For periodic solids of infinite extent, Geymonat et al. (1993) (see also Triantafyllidis and Bardenhagen, 1996;
Triantafyllidis et al., 2006) rigourously showed that in the pure mechanical case the same approach can be used and
that it is sufficient to investigate the incremental boundary-value problem of the elementary unit cell of the composite
and apply the Floquet–Bloch boundary conditions, which automatically introduce in the governing equations for the
unit cell the information regarding the periodicity of the solid. As diffuse modes strongly depend on the microstructure
of the unit cell, they are often called microscopic bifurcation modes. The results presented by Triantafyllidis and Maker
(1985) were the first obtained for multilayered nonlinear composites applying this method. A relevant result of the
study was the close relationship between onset of long-wavelength microscopic modes and localization of deformation
of the homogenized continuum.
For electroelastic nonlinear solids, the investigation of zero-speed waves has been used by Dorfmann and Ogden (2010)
to explore surface instability, revealing that the critical loading parameter is crucially dependent on the magnitude of
the applied electric field and on the magnitudes of the electromechanical coupling parameters in the constitutive
equations.
The microscopic bifurcation analysis for a periodic bilayered nonlinear dielectric solid under plane-strain conditions will
be presented in Section 4.1.3.

	
 Loss of strong ellipticity of single phases and of the homogenized continuum (localized or macroscopic modes). Periodic

perturbations do not represent an effective way to describe a critical bifurcation mode corresponding to fields localized
along a narrow band with homogeneous deformation and electric field outside the band. In the pure mechanical case
localized modes are identified with shear bands (Hill and Hutchinson, 1975) which appear at loss of positive
definiteness of the acoustic tensor, also indicated as loss of strong ellipticity.5

In the mechanics of nonlinear composites Geymonat et al. (1993) showed that the loss of strong ellipticity for the
homogenized properties coincides with the long-wavelength limit of microscopic diffuse modes, providing macroscopic

bifurcation modes.
The investigation of macroscopic bifurcation modes at critical loading parameter t=tMacro for soft multilayered
dielectrics will be presented in Section 4.1.4.

	
 Electric breakdown (EB). When the electric field in a part of the system reaches a critical level, failure of the whole

system may occur due to electric discharges. Similarly to Moscardo et al. (2008), the critical loading parameter tEB

corresponds to the attainment of the critical value of electric field, EEB, in one phase.

4.1. Bifurcation analysis for multilayered composite soft dielectrics

In this Section the instability criteria outlined above are specialized to the case of an infinite, incompressible,
multilayered body finitely deformed under plane-strain conditions. The solid consists of alternating identical and perfectly
bonded incompressible layers of materials a and b with initial thicknesses h0a and h0b in the undeformed, stress-free
configuration, which is used as the reference configuration.

Note that the formulation presented in the following part of this Section can be generalized to any number of layers and is
valid for incompressible phases whose response is described by a free-energy function W(I1, I2, I4, I5, I6) [see Section 2.4].
The results can be easily specialized to a specific material introducing the appropriate incremental moduli given by Eqs. (29).

4.1.1. Fundamental pre-bifurcation path

Let us introduce a fixed cartesian coordinate system Ox0
1x0

2x0
3 with orthonormal basis vectors ei (i=1, 2, 3), and with x2

0

perpendicular to the direction of lamination in the reference configuration (see Fig. 3). A pure homogeneous plane-strain
deformation in the x0

1�x0
2 plane is considered, so that the deformation is completely described by

x1 ¼ lx0
1, x2 ¼ x0

2=l, x3 ¼ x0
3, ð42Þ

where l is the stretch along direction x0
1. Homogeneity and perfect bonding between layers require that all phases r share

the same longitudinal stretch, namely lr ¼ l ðr¼ a, bÞ.
5 In the pure mechanical case, a theorem due to van Hove (1947), proved for elasto-plasticity but easily adapted in elasticity, states that failure of

ng ellipticity is the critical condition for bifurcation, Eq. (39), for a homogeneous body, homogeneously deformed, subject uniquely to incremental

lacements on the boundary.
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Fig. 3. Schematic representation of the composite under investigation.
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The nominal electric displacement vector D0 is taken to be aligned to the x0
2 direction and to be independent of x0

1

and x0
3. This assumption is compatible, for instance, with electrodes placed at the external boundary of the multilayered

solid and parallel to the direction of lamination. It follows from Eq. (5)3 that D0
2 is constant throughout each phase,

so that

D0
1 ¼ 0, D0

2a0, D0
3 ¼ 0, ð43Þ

in the reference configuration, while in the current configuration

D1 ¼D3 ¼ 0, D2 ¼D0
2=l: ð44Þ

Moreover, continuity of the electric displacement vector implies D0r
2 ¼D0

2 ðr¼ a,bÞ.
A consequence of the above assumptions is that the free-energy function W introduced in Section 2.4 depends only on l

and D0
2, W ¼W ðl,D0

2Þ, and that the only non-zero in-plane stress components are related through

S11�
S22

l2
¼
@W

@l
, t11�t22 ¼ l

@W

@l
: ð45Þ

Additionally, the normal component of the total stress is assumed to vanish along direction x0
2 throughout the body

S22 ¼ 0, or t22 ¼ 0, ð46Þ

so that continuity of tractions at the interface between the two phases requires

Sr22 ¼ 0 ðr¼ a,bÞ: ð47Þ

Notice that condition (46) is often met in soft dielectric devices where the material can deform and expand under the
action of attractive forces between electrodes. Thus, Eqs. (45) specialize to

S11 ¼
@W

@l
, t11 ¼ l

@W

@l
, ð48Þ

while the nominal electric field is given by

E0
2 ¼

@W

@D0
2

, E0
1 ¼ E0

3 ¼ 0: ð49Þ

In each phase the solution of the plane-strain incremental problem must satisfy the updated field equations [see Eqs. (24)]

S11,1þS12,2 ¼ 0, S21,1þS22,2 ¼ 0, D̂1,1þD̂2,2 ¼ 0, Ê1,2�Ê2,1 ¼ 0, ð50Þ

together with incremental jump conditions at all interfaces between layers given by (26).

4.1.2. Loss of positive definiteness of the tangent electroelastic constitutive operator

For the considered principal equilibrium path loss of positive definiteness of the tangent electroelastic constitutive
operator can be investigated using directly the constitutive Eqs. (48) and (49).

Small perturbations of stretch l and electric displacement D0
2 modify the current stress and electric field as

_S11 ¼
@2W

@l2
_lþ

@2W

@l@D0
2

_D
0

2, _E
0

2 ¼
@2W

@l@D0
2

_lþ
@2W

@ðD0
2Þ

2
_D

0

2: ð51Þ

The matrix associated with the linear system (51) is the Hessian of the free energy, which coincides with the tangent
electroelastic stiffness at the current state. Eq. (51) represents the specialization of Eq. (20), with the electroelastic moduli
tensors (18) replaced by partial derivatives of the free energy with respect to the independent variables l and D0

2.
Under dead-load tractions/charges applied to the whole boundary, uniqueness of the incremental response is ensured

by positive definiteness of the Hessian, namely

@2W

@l2
40,

@2W

@l2

@2W

@ðD0
2Þ

2
4

@2W

@l@D0
2

 !2

: ð52Þ
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Failure of the former inequality corresponds to a possible mechanical instability, while failure of the latter condition, which
involves both stretch and electric displacement, detects an electromechanical instability. Recently Zhao and Suo (2007,
2009) and Zhao et al. (2007) used a similar bifurcation criterion to investigate electromechanical instabilities in
homogeneous three-dimensional actuators subjected to loading conditions similar to those described in Section 4.1.1.
Their analyses revealed that the critical bifurcation point corresponds to a peak in the D0

2–E0
2 curve.

We remark that for composites the bifurcation conditions (52) may be critical either for a single phase or for the
homogenized continuum.

4.1.3. Existence of diffuse-mode bifurcations (microscopic modes)

Here diffuse modes corresponding to inhomogeneous response of the composite with wavelengths (given by 2p=k1,
where k1 is the wavenumber) on the same order of the characteristic length of the heterogeneities are investigated
applying the Bloch–Floquet quasi-periodicity condition. Moreover, the limit case of long-wavelength limit ðk1-0Þ is
analytically studied, allowing investigation of the relation between microscopic and macroscopic instabilities.

To solve the incremental boundary-value problem given by Eqs. (50) in each phase r, we seek solutions in the form

urðx1,x2Þ ¼ trðx2Þexp½ik1x1�, _pr
ðx1,x2Þ ¼ qrðx2Þexp½ik1x1�, D̂

r
ðx1,x2Þ ¼Dr

ðx2Þexp½ik1x1�: ð53Þ

The incompressibility constraint requires

ik1u1þuu2 ¼ 0, ð54Þ

whereas Eq. (50)3 implies

ik1D1þDu2 ¼ 0, ð55Þ

where the dependency of t and D on x2 and r has been omitted for notational simplicity and ðUÞu¼ dðUÞ=dx2.
Substitution of Eqs. (53)–(55) into Eqs. (50)1,2 and (50)4 leads to the following system of ordinary differential equations

in each phase r

�ik1qþk2
1ðC1122þC1221�C1111Þu1þC1212u001þ ik1B112D2þB121Du1 ¼ 0,

iquþ ik2
1C2121u2þðC1221þC1122�C2222Þk1uu1þ k1ðB121�B222ÞD1 ¼ 0,

B121u001þðB112þB121�B222Þk
2
1u1þA11Du1�iA22k1D2 ¼ 0: ð56Þ

Displacement continuity at the interface [Eq. (26)1] reduces to

1u1U¼ 0, 1u2U¼ 0, ð57Þ

whereas traction continuity [Eq. (26)2] implies

1B121D1þ ik1ðC1221þpÞu2þC1212uu1U¼ 0, 1B222D2þ ik1ðC1122�C2222�pÞu1�qU¼ 0:

Electrostatic interface conditions (26)3 and (26)4 are given by

1D2U¼ 0, 1A11D1þB121uu1þ iB121k1u2U¼ 0: ð58Þ

In each layer the general solution to Eqs. (56) is found to be the sum of six linearly independent partial solutions

yðx2Þ ¼Waexp½k1Z
ax2�a

� ð0ox2ohaÞ,

yðx2Þ ¼Wbexp½k1Z
bx2�b ðhaox2ohbÞ,

yðx2Þ ¼Waexp½k1Z
ax2�a

þ ðhbox2ohaþhbÞ, ð59Þ

where Zr ¼ diag zr, a�, aþ and b are vectors of unknown constants and yr ¼ ½ur1 ðu
r
1 Þu u

r
2 Dr

1 Dr
2 qr�. Vector zr and matrix

Wr contain the eigenvalues and eigenvectors of the 6�6 matrix Vr with non-zero entries

V12 ¼ 1, V21 ¼
k2

1

d1
½B121ðB222�B112�B121ÞþA11ðC1122þC1221�C1111Þ�, V25 ¼

ik1

d1
ðA11B112þA22B121Þ,

V26 ¼�
ik1A11

d1
, V31 ¼�ik1, V41 ¼

k2
1

d1
½C1212ðB112�B222ÞþB121ðC1111�C1122þC1212�C1221Þ�, ð60Þ

V45 ¼�
ik1

d1
ðB121B112þA22C1212Þ, V46 ¼

ik1B121

d1
, V54 ¼�ik1, V62 ¼ ik1ðC1221þC1122�C2222Þ,

V63 ¼�k2
1C2121, V65 ¼ ik1ðB121�B222Þ,

with d1=B121
2
�A11C1212.

The quasi-periodic character of the solution along x2 is ensured imposing of the Bloch–Floquet type relation

yrðx2þhÞ ¼ yrðx2Þexp½ik2h�; ðh¼ haþhbÞ, ð61Þ



K. Bertoldi, M. Gei / J. Mech. Phys. Solids 59 (2011) 18–42 29
with k2 lying in the unit cell of the reciprocal lattice, i.e. 0rk2o2p=h. The wavenumber k2 is frequently termed ‘Bloch
parameter’ and sets the shape of modes along the transverse direction. Substituting Eq. (59) into Eq. (57), (58) and (61) is
found that a non-trivial solution to the problem exists when

detðK�exp½ik2h�IÞ ¼ 0, ð62Þ

with

K¼ ðGa
Þ
�1Gbexp½iZbhb�ðGb

Þ
�1Gaexp½iZaha�, Gr

¼QrWr, ð63Þ

Qr being a 6�6 matrix with the following non-zero components:

Q11 ¼Q23 ¼ Q55 ¼�Q46 ¼ 1, Q32 ¼ C1212, Q33 ¼ ik1ðC1221þpÞ, Q34 ¼ B121,

Q41 ¼ ik1ðC1122þC2222�pÞ, Q45 ¼ B222, Q62 ¼ B121, Q63 ¼ ik1B121, Q64 ¼ A11:

It follows from Eq. (62) that the critical loading parameter at the onset of the bifurcation point (tMicro) corresponds to
the first occurrence of an eigenvalue L¼ exp½ik2h� of unitary magnitude for the matrix K. Since detK¼ 1 and trK¼ trK�1,
the eigenvalues of K can be calculated from

L6
�trKðL5

þLÞþ
1

2
½trK2

�ðtrKÞ2�ðL4
þL2
Þ �

1

6
½ðtrKÞ3�3trKðtrKÞ2þ2trK3

�L3
þ1¼ 0: ð64Þ

The critical eigenmode is determined observing that the constant vector a� appearing in Eq. (59) corresponds to the critical
eigenvector of K, whereas aþ and b are obtained introducing Eq. (59) into Eqs. (57), (58) and (61),

aþ ¼ exp½ik2h�exp½�k1Z
ah�a�, b¼ exp½ik2h�exp½�k1Z

bh�ðGb
Þ
�1Gaa�:

The long-wavelength limit. The long wavelength limit k1-0 is now considered to establish a relation between
microscopic and macroscopic instabilities. Here we extend the formulation of Triantafyllidis and Maker (1985) for the pure
mechanical case and perform a matrix series expansion of K – defined in Eq. (63) – in powers of k1 ¼ k1h. Collection of the
terms of the same order yields

trK¼ 6þx1k
2

1þx2k
4

1þx3k
6

1, trK2
¼ 6þ4x1k

2

1þð16x2þx4Þk
4

1þð64x3þx5Þk
6

1,

trK3
¼ 6þ9x1k

2

1þð81x2þ6x4Þk
4

1þð729x3þx6Þk
6

1, ð65Þ

where coefficients xi ði¼ 1, . . . ,6Þ are given in Appendix B.
Substituting Eqs. (65) into Eq. (64) and recalling that L¼ exp½ik2h� we obtain

�x3
1þ36x1x2�720x3þ3x1x4þ12x5�2x6þ3ðx4þ12x2�x

2
1Þc

2
�6x1c

4
�6c6

¼ 0, ð66Þ

with c¼ k2=k1. Therefore, a long wavelength bifurcation mode exists when a real solution for Eq. (66) is found. For the
purely mechanical case, Geymonat et al. (1993) rigorously showed the equivalence between long wavelength bifurcation
modes and localized, macroscopic instability. Here, in Section 5, the solutions of Eq. (66) will be compared with those for
localized modes of the homogenized continuum, allowing us to determine a clear relationship between microscopic and
macroscopic instabilities.

4.1.4. Loss of strong ellipticity of single phases and of the homogenized continuum (localized or macroscopic modes)

Bifurcation modes consisting of localized fields in a narrow band surrounded by homogeneous electroelastic
deformation are now investigated. In general, for composites, this instability may be critical either for each single phase or
for the homogenized continuum. As previously recalled, for the latter case, it can be related to long wavelength
diffuse modes.

The analysis represents an extension of the formulation presented by Hill and Hutchinson (1975) for incompressible
materials and can be used for all isotropic, elastic dielectrics that are deformed according to Eqs. (42) and (43).

The solution for the field equations (50) is sought in the form

u¼ ~tf ðnUxÞ, _p ¼ ~qf uðnUxÞ, D̂ ¼ ~Df uðnUxÞ, ð67Þ

where f is a continuous and piecewise continuous differentiable function and n is the normal to the band. Incompressibility
and Eq. (50)3 require that

~tUn¼ 0, ~DUn¼ 0, ð68Þ

so that for the plane-strain problem under consideration the amplitude vectors ~t and ~D are related through

~D ¼ Z~t, ð69Þ

Z being a real parameter.
To obtain the localization condition in a homogeneous phase of the composite, Eqs. (28)2, (30), (67), (68)1 and (69) are

substituted in the incremental field (50)1,2,4, providing four equations in ~q, Z, ~u1 and ~u2. Elimination of the first three



K. Bertoldi, M. Gei / J. Mech. Phys. Solids 59 (2011) 18–4230
unknowns yields the condition of band localization as

G6n6þG4n4þG2n2þG0 ¼ 0, ð70Þ

where n¼ n2=n1 and we have assumed n1a0 and n2A11þA22a0. Coefficients Gi ði¼ 0,2,4,6Þ depend on the incremental
moduli as

G6 ¼ B2
211�A11C1212,

G4 ¼�A22C1212�A11ðC1111�2C1122�2C2112þC2222Þ�2B211ðB112þB211�B222Þ,

G2 ¼�A11C2121�A22ðC1111�2C1122�2C2112þC2222ÞþðB112þB211�B222Þ
2,

G0 ¼�A22C2121:

Therefore, localization of the deformation into a band occurs when a real solution n� of Eq. (70) exists. In this case the
amplitude ratio Z in Eq. (69) is given by

Z¼ n�ðB112þB211�B222Þ�n3
�B211

n2
�A11þA22

: ð71Þ

For the homogenized continuum, the procedure can be repeated employing the pertinent homogenized constitutive
moduli.

4.1.5. Electric breakdown

Electric breakdown represents a possible failure mode that occurs when the current electric field reaches a critical value
EEB in one of the phases of the composite. Since for the specific geometry and loading conditions considered here the only
non-zero component of the electric field is that along direction x2, electric breakdown takes place at a critical loading
parameter tEB when

Er2 ¼ EEB,

either in phase a or b.

5. Results

5.1. Material properties and constitutive laws

In the following sections results are presented for dielectric bodies whose response is captured using the extended neo-
Hookean free energy given by Eq. (12). For this specific material the constitutive equations (9) and (10) specialize to

S¼�pF�T
þmFþ

1

e
FD0
�D0, E0

¼
1

e
CD0

ð72Þ

in the Lagrangian formulation and

s¼�pIþmBþ
1

e D� D, E¼
1

e D ð73Þ

in the Eulerian formulation,6 a result fully consistent with the general Eqs. (45) and (49); Eq. (73)2 clearly shows the linear
proportionality between D and E.

The incremental moduli are obtained substituting the free energy (12) into Eqs. (18), yielding7

C0
iJkL ¼ mdikdJLþ

1

e dikD0
J D0

L , ð74Þ
6 We remark that in (72)1 and (73)1 the hydrostatic pressure p is calculated imposing the boundary conditions. Therefore, p can be replaced by an

equivalent expression, such as p¼ ~pþEUE=2, so that Eq. (73)1 can be reformulated as

s¼� ~pIþmBþ
1

e D�D�
1

2eDUD,

an expression equivalent to that reported by Zhao et al. (2007) in their Eq. (26) and obtained adapting the compressible theory of nonlinear dielectrics to

the incompressible case.
7 Eqs. (74) and (75) are obtained using the derivatives of the invariants I1, I5 with respect to F and D0

@I1

@F
¼ 2F,

@I5

@F
¼ 2D� D0 ,

@I5

@D0
¼ 2CD0 ,

@I5

@F@D0

� �
iJK

¼ 2dJK FiRD0
Rþ2D0

J FiK :
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A0
MN ¼

1

e CMN , B0
iJM ¼

1

e ðFiMD0
J þFiSD0

SdJMÞ, ð75Þ

while the use of Eqs. (29) provides the updated constitutive tensors

Ciqkp ¼ mdikBpqþ
1

e dikDpDq, Biqa ¼
1

e ðdiaDqþDidqaÞ, Aab ¼
1

e dab:

For the geometry and loading conditions described in Sections 4.1.1, it follows from Eq. (72) that the only non-zero
components of the total first Piola–Kirchhoff stress and nominal electric field are

S11 ¼ ml�
p

l
, S22 ¼

m
l
þ
ðD0

2Þ
2

le �pl, S33 ¼ m�p, E0
2 ¼

D0
2

l2e
, ð76Þ

whereas the only non-vanishing in-plane entries of the updated incremental constitutive tensors are

C1111 ¼ C2121 ¼ ml2, C2222 ¼ C1212 ¼ m
1

l2
þ

1

e D2
2,

B121 ¼ B211 ¼
1

e D2, B222 ¼
2

e D2, A11 ¼ A22 ¼
1

e :

Note that the hydrostatic pressure in Eqs. (76)1–3 can be determined using Eq. (46), yielding

p¼ m1þD
2

l2
,

so that the longitudinal stress S11 is given by

S11 ¼ m l�
1þD

2

l3

 !
, ð77Þ

with D ¼D0
2=

ffiffiffiffiffiffimep .
To illustrate the effect of the material parameters m and e on the electromechanical response of a homogeneous layer,

we focus on a sample subjected to a given longitudinal nominal stress S11. In this case the stretch l can be obtained from
Eq. (77) as a function of the electric displacement D0

2 and then can be used to calculate the electric field from Eq. (76)4.
In Fig. 4 the behavior of two specimens whose response is characterized by two sets of parameters, fm1,e1g and fm2,e2g

with m2=m1 ¼ e2=e1 ¼ 10, are reported. Focusing on the case for fm1,e1g, Fig. 4a shows that the l�D0
2 curve can be

decomposed into three parts: an initial quadratic response is followed by a linear behavior for moderate values of D0
2, while

l�
ffiffiffiffiffiffi
D0

2

q
for D0

2=
ffiffiffiffiffiffiffiffiffiffim1e1
p

44. Moreover, we observe that the response for the specimen characterized by fm2,e2g is

qualitatively similar to that for fm1,e1g. However, for the material characterized by fm2,e2g an electric displacement hundred

times larger than that for fm1,e1g must be applied to reach a given stretch l. In Fig. 4b the evolution of the dimensionless

nominal electric field is reported as a function of the applied electric displacement. As expected from Eq. (76)4, at a given
electric displacement D0

2 a high electric field is reached in the material with lower permittivity. Interestingly, for applied
compressive longitudinal tractions (see curve for S11=m1 ¼�1) the nominal electric field curve displays a maximum. The

peak corresponds to loss of positive definiteness of the tangential electroelastic constitutive operator and occurs at failure
of condition (52)2. However, in a longitudinally compressed layer a buckling instability may occur earlier along the loading
path, preventing the structure to reach the peak.
5.2. Homogenized response

Here the general results obtained in Section 3 for rank-one layered dielectrics are specialized to the extended
neo-Hookean free energy (12). Initially we consider the case of layers with an arbitrary inclination with respect
to the external electric displacement (n0ae2, Fig. 2). Then the results are further specialized to the specific geometry
and loading conditions considered in this work, characterized by layers perpendicular to the electric displacement field
(n0=e2, Fig. 3).

For the case of a laminated body with layers arbitrarily oriented with respect to the electric displacement field and
whose response is described by the free energy (12), parameters a and b introduced in Eq. (36) are given by

a¼ mb�ma

cambþcbma

Favn0
UFavm0

Favm0UFavm0
, b¼

maea�mbeb

ðcambþcbmaÞðcaeaþcbebÞ

FavD0 av
UFavm0

Favm0UFavm0
þ

mb�ma

cambþcbma
D0 av

Um0: ð78Þ
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The jump in hydrostatic pressure across each interface is obtained by multiplying the traction continuity condition
ð1SUn0 ¼ 0Þ with the vector ðFav

Þ
�T n0, yielding

pa�pb ¼
eb�ea

ebea
ðD0 av

Un0Þ
2
þma�mb

� �
1

ðFav
Þ
�T n0UðFav

Þ
�T n0

: ð79Þ

Results given in Eqs. (78) and (79) are consistent with those obtained by deBotton (2005) for neo-Hookean rank-one
laminates finitely deformed by the application of only mechanical loadings.

For the geometry and loading conditions described in Section 4.1.1 (i.e. n0=e2 and m0=e1), the only non-vanishing
components of the homogenized stress and electric field obtained using Eqs. (32)2,3 are

Sav
11 ¼ m

avl�
mav

l3
½1þðD

av
Þ
2
�, E0 av

2 ¼

ffiffiffiffiffiffiffiffiffi
mav

eHav

r
D

av

l2
, ð80Þ

where

mav ¼ camaþcbmb, eHav ¼
ca

ea
þ

cb

eb

� ��1

, D
av
¼

D0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maveHav
p : ð81Þ

The analysis of macroscopic modes for the composite requires the macroscopic incremental constitutive tensors
Cav, Bav, and Aav. It follows from the introduction of (78) in Eqs. (34) and (35) and the use of (32), (20) and (29) that their
only in-plane non-zero components are

Cav
1111 ¼ l2mav, Cav

1212 ¼
mHav

l2
þ
ðD

av
Þ
2eHavmav

eavl2
, Cav

2222 ¼
mav

l2
þ
ðD

av
Þ
2mav

l2
, ð82Þ

Cav
1221 ¼ Cav

2112 ¼
mHav�mav

l2
þ
ðD

av
Þ
2mav

l2

eHav�eav

eav
, Cav

2121 ¼ Cav
1221þCav

1111,

Bav
211 ¼ Bav

121 ¼
D

av ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maveHav

p
eavl

, Bav
222 ¼ 2

D
av

l

ffiffiffiffiffiffiffiffiffi
mav

eHav

r
, Aav

11 ¼
1

eav
, Aav

22 ¼
1

eHav
, ð83Þ

where

eav ¼ caeaþcbeb and mHav ¼
ca

ma
þ

cb

mb

� ��1

: ð84Þ

On the other hand, the investigation of loss of positive definiteness of the tangent electroelastic operator requires the
specialization of the macroscopic free energy (36) to the specific geometry and loading conditions considered here, leading to

Wav ¼W
av
ðl,D0

2Þ ¼
mav

2
l2
þ
ðD

av
Þ
2
þ1

l2
�2

" #
: ð85Þ

To illustrate the effect of phases volume fraction and contrast in material properties on the overall electromechanical
response, we investigate the behavior of a multilayered dielectric deformed by the application of an electric displacement
field perpendicular to the layers, while leaving the body free to expand laterally (i.e. S11

av =0). The analysis is fully
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characterized by the dimensionless material parameters

m¼ ma=mb and r¼ ea=eb: ð86Þ

Fig. 5 shows the electromechanical response of the multilayered structure in the D
b
�l space with

D
b
¼D0

2=
ffiffiffiffiffiffiffiffiffiffi
mbeb

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mav

cbmbþ
cama

mr

s
D

av
: ð87Þ

We note that in both Figs. 5a and b for ca=0 the curve corresponds to that for fm1,e1g in Fig. 4a, as in this case the solid is
composed uniquely of the soft phase. The effect of phases volume fraction on the material response is investigated for two
sets of material parameters, m=r=10 in Fig. 5a and m=r=100 in Fig. 5b. For the geometry considered in this study an
increase of parameters m and r is found to strongly reduce the longitudinal elongation.

5.3. Nonlinear fundamental electromechanical paths

Although a generic state of deformation described by the pair ðl,D0
2Þ can be reached following multiple loading histories,

here we focus on two fundamental nonlinear electromechanical paths:
	

Fig
app
Path A: a uniaxial macroscopic stress Sav
11 ¼

~S
av

11 is applied and kept constant while increasing the external electric
displacement field (Fig. 6a).

	
 Path B: a stretch l¼ ~l is applied and kept constant while increasing the external electric displacement field (Fig. 6b).

Here these two nonlinear pre-bifurcation paths are studied assuming a material response defined by the free energy
(12), so that stress and electrical displacement fields in each phase of the multilayered body are given by Eqs. (76).

Path A. A constant longitudinal stress Sav
11 ¼

~S
av

11 is applied to the multilayered structure, so that

~S
av

11 ¼ ca ~S
a

11þcb ~S
b

11, ð88Þ

where ~S
a

11 and ~S
b

11 are obtained from Eq. (77) as

~S
a

11 ¼ m
a l�

1þðD
b
Þ
2=m r

l3

 !
, ~S

b

11 ¼ m
b l�

1þðD
b
Þ
2

l3

 !
: ð89Þ

Substitution of Eq. (89) in Eq. (88) provides an equation that can be solved for the unknown stretch l. The longitudinal stress in

each phase, ~S
a

11 and ~S
b

11, respectively, that in general changes along the deformation path, can then be obtained by introducing l
into Eqs. (89). Moreover, the nominal electric fields in the two phases follow from Eq. (76)4 and can be written in dimensionless
form as

E
a
¼ E0 a

2

ffiffiffiffiffiffi
ea

ma

s
¼

D
b

l2 ffiffiffiffiffiffiffi
mr
p , E

b
¼ E0 b

2

ffiffiffiffiffiffi
eb

mb

s
¼

D
b

l2
:

Path B. Devices based on soft dielectrics are usually prestretched before the application of the electric field, since it
has been observed experimentally that the prestretch increases considerably the performance of the actuator,
mainly increasing the maximum electric field before breakdown (Pelrine et al., 2000). Here a longitudinal prestretch
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l¼ ~l (with ~l41) is applied to the multilayer and, since S22=0 throughout the solid, the stress component S11 associated
with the prestretch in the two phases is given by

Spre,a
11 ¼ ma ~l�

1

~l
3

 !
, Spre,b

11 ¼ mb ~l�
1

~l
3

 !
:

Subsequently an increasing electric displacement D2 is applied (note that D2 
D0
2 as the current stretch does not vary

due to incompressibility), so that the longitudinal stresses change as

Sa
11 ¼ Spre,a

11 �
D2

2

~l
3
ea

, Sb
11 ¼ Spre,b

11 �
D2

2

~l
3
eb
:

The electric excitation introduces a compressive stress in the bilayer, so that S11
a and S11

b drop to zero when D2 reaches the
intensities D2

s0a and D2
s0b, respectively, where

Ds0a
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maeað ~l

4
�1Þ

q
, Ds0b

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbebð ~l

4
�1Þ

q
:

Note that when D24minfDs0a
2 ,Ds0b

2 g part of the system is compressed and this may lead to a buckling instability. Although
traditionally buckling instabilities have been viewed as an inconvenience, recently they have been exploited to design
actuators able to sustain transverse large displacements (Carpi et al., 2008c; Koo et al., 2008).

5.4. Analysis of instabilities

Loss of uniqueness of the incremental response is now investigated for biphasic periodic multilayers whose response is
described by the extended neo-Hookean free energy (12), so that the formulation presented in Section 4 specializes as follows:
	
 Loss of positive definiteness of the tangent electroelastic constitutive operator (PD). This criterion is applicable to structures
with only tractions/surface charges applied to their boundary, so that it represents a critical condition only for
multilayers loaded following type-A loading paths, since along type-B loading paths displacements are prescribed on
portion of the boundary. For the effective free energy (85), conditions (52) reduce to

mav

l4
½3þ3ðD

av
Þ
2
þl4
�40,

ðmavÞ
2

l6
½3�ðD

av
Þ
2
þl4
�40: ð90Þ
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It is clear that inequality (90)1 is always satisfied, whereas (90)2 fails when l4rðD
av
Þ
2
�3, with the equality setting the

critical limit represented by the equation

lPD ¼ ½ðD
av
Þ
2
�3�1=4, ð91Þ

that can be rewritten, using (87), as

lPD ¼
cbmbþ

cama

mr

mav
ðD

b
Þ
2
�3

" #1=4

: ð92Þ

Introduction of the critical condition (92) into (80)1 yields

E
av

PD ¼
D

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD

b
Þ
2
�

3mav

cbmbþ
cama

mr

s , ð93Þ

while substituting Eq. (91) into Eq. (80)1 we obtain

S11,PD ¼�
4

l3
PD

¼�4
cbmbþ

cama

mr

mav
ðD

b
Þ
2
�3

" #�3=4

, ð94Þ

where S11 ¼
~S

av

11=mav. Eq. (94) shows that the tangent moduli of the homogenized continuum looses positive definiteness

only when longitudinal homogenized compressive stresses are applied. Moreover, the results reveal that the critical

condition (91) corresponds to a peak in the D
b
�E

av
curve. Depending on the way the electric excitation is applied to the

system, the peak may or may not correspond to loss of stability. When the charge on the electrodes is controlled along the
loading path, it is possible to go beyond the peak maintaining the homogeneous quasi-static response. On the other hand,
when the voltage is controlled, and as a consequence the value of the electric field, the system cannot sustain an electric

field E
av

higher than that at the peak. Finally, we remark that in all our calculations the failure of Eqs. (90) has been
monitored both in each single phase and in the homogenized continuum. For the considered geometry and loading
conditions, we have found that loss of positive definiteness of the electroelastic tangent operator occurs earlier along the
loading path for the homogenized continuum than for each single phase.

	
 Existence of diffuse bifurcation modes: microscopic modes (Micro). Diffuse-mode bifurcations are investigated

numerically as described in Section 4.1.3. The only simplification introduced in the analysis by the choice of
the extended neo-Hookean free energy is that the eigenvalues zri of matrices Vr

ðr¼ a,bÞ satisfy the characteristic
equation

½k2
1�ðz

rÞ2�2½k2
1l

4
�ðzrÞ2� ¼ 0, ð95Þ

providing six real values for each phase.
In the long-wavelength limit ðk1-0Þ the critical stretch is obtained solving Eq. (66), yielding

l1Micro ¼ 1�
mHav

mav
þðD

av
Þ
2 1�

eHav

eav

� �� �1=4

, ð96Þ

which can be easily reformulated in terms of D
b

using Eq. (87). Note that when D0=0, Eq. (96) reduces to the well-
known expression reported by Triantafyllidis and Maker (1985), namely

l1MicrojD0
¼ 0 ¼ 1�

mHav

mav

� �1=4

: ð97Þ
	
 Loss of strong ellipticity of single phases and of the homogenized continuum: macroscopic modes (Macro). While band localization
within each layer for the considered material model is excluded [Eq. (70) does not provide any real solution n], for the
homogenized continuum substitution of the incremental moduli (83) and (84) in the same equation leads to the same
critical loading parameter reported in Eq. (96), so that lMacro ¼ l1Micro. Therefore, a remarkable result of this analysis is that
along electromechanical loading paths localization is found to correspond to diffuse modes of infinite wavelengths. Similar
results were found by Triantafyllidis and Maker (1985) and Geymonat et al. (1993) for the purely mechanical
case.

	
 Electric breakdown (EB). For the geometry and loading conditions described in Section 4.1.1, Eq. (73)2 and results of

Fig. 4 show that the electric field is significantly higher in the phase with lower permittivity. Therefore, taking b as the
phase characterized by shear modulus and permittivity lower than those of phase a, electric breakdown may occur first in
phase b. Indicating by EEB the critical value of the electric field, introduction of Eq. (44)3 into Eq. (73)2 leads to the critical
condition

lEB ¼

ffiffiffiffiffiffi
mb

eb

s
D

b

EEB
, ð98Þ
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in the D
b
�l plane. Alternatively, in the D

b
�E

av
space it can be expressed as

E
av
¼

eb

mb

E2
EBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mav

cbmbþ
cama

mr

r 1

D
b
: ð99Þ

Here we investigate electric breakdown using a set of parameters typical for silicones (EEB=350 MV/m, eb
r ¼ 3, mb ¼ 100 kPa,

see Kornbluh and Pelrine, 2008).
For the considered multilayered structures the critical curves corresponding to the four instability criteria investigated
in this paper are reported in Figs. 7–11 with continuous lines; black lines correspond to loss of positive definiteness of the
tangent electroelastic constitutive operator (PD), blue lines correspond to microscopic modes, while red and brown lines
denote macroscopic mode and electric breakdown limits, respectively. Moreover, in the figures loading paths of both type A
and type B are reported to visualize the critical point along them.

In Figs. 7, 9 and 10 the critical conditions are sketched in the D
b
�l space, while Figs. 8 and 11 show the results in the

D
b
�E

av
diagram where, using (80)2,

E
av
¼ E0 av

2

ffiffiffiffiffiffiffiffiffi
eHav

mav

s
¼

D
av

l2
: ð100Þ

The background color in Figs. 7 and 10 identifies the dimensionless longitudinal stress S11 ¼ Sav
11=mav. In Figs. 8, 9 and 11 the

gray shaded areas denote the region of allowable states for type-A loading paths, while for type-B loading paths the
material is stable both in the gray and in the green areas.

The figures clearly highlight the important effect on the failure modes of both the volume fraction of phases and the
contrast in material properties. All these effects are investigated separately below.

Effect of phases volume fraction. To explore the influence of phases volume fraction on the failure modes of the bilayer,
for a contrast in material properties set by m=r=10 we investigate four different values of ca, namely ca=0.05, 0.2, 0.4, 0.6,
and the results are reported in Figs. 7 and 8.

Focusing on the four instability criteria, we observe that
	
 for a very low value of ca (Fig. 7a, where ca=0.05), microscopic instability represents the limit of the region of allowable states

at low values of the applied electric displacement field D
b

(D
b
o1 in the inset in Fig. 7a), while for higher D

b
macroscopic

bifurcation and loss of positive definiteness of the tangent electroelastic constitutive operator (PD) are critical;

	
 for moderate values of the volume fraction ca (Fig. 7b, where ca=0.2), only band-localization (Macro) and PD criteria set

the limit for instability over the considered range of D
b
;

for higher values of ca (Fig. 7c and d), macroscopic instability is again dominant for low D
b

(approximately D
b
o5), while

for D
b
45, microscopic instability represents the critical bifurcation;
	
 electric breakdown is never critical for the considered range of D
b

and ca.
To illustrate the transition between macroscopic and microscopic instabilities occurring for high ca we focus on the

case of Fig. 7c (m=r=10 and ca=0.6). Fig. 9a shows both the evolution of l (on the left vertical axis) and of the

critical wavenumbers k1,cr and k2,cr (on the right vertical axis) as a function of D
b
. At low values of the applied

electric displacement field (approximately D
b
o5) macroscopic instability prevails. The results clearly show that

at this stage the wavenumber k1,cr of the diffuse mode tend to zero, consistently with the long wavelength limit
analysis. Moreover, the macroscopic instability analysis detects the formation of a band of localized fields orthogonal to the
layers (n=e1). Thus, since Z¼ 0 [Eq. (71)], only the deformation localizes into the band, while the electric field is
continuous.

Interestingly, for larger values of the applied electric displacement field ðD
b
45Þ the microscopic instability analysis

detects diffuse modes characterized by a critical Bloch parameter k2,cr different from zero. Therefore, phases a and b at

bifurcation deform out-of-phase, as shown in Fig. 9b and c, where the bifurcation modes at D
b
¼ 5 and 10 are reported.

Differently, when microscopic instability is critical at low values of D
b

(D
b
o1, see Fig. 7a), the analysis predicts critical

diffuse modes with a vanishing Bloch parameter (k2
cr=0), so that both phases a and b at bifurcation deform in-phase. This

result is consistent with that obtained in the pure mechanical case by Triantafyllidis and Maker (1985), where only in-
phase bifurcation modes were found for neo-Hookean materials.

Turning now the attention on the loading paths introduced in Section 5.3, we observe that for type-A loading paths the
equilibrium is stable when specimens are subjected to a tensile longitudinal stress ðS

av

1140Þ for cao0:5. On the other hand,
for type-B loading paths we note that depending on the applied prestretch ~l and on ca, the critical mode may correspond
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either to a microscopic or a macroscopic instability. Finally, it is interesting to remark that an increase of the prestretch ~l not
only leads to a change of the bifurcation mode from a localized band to a diffuse mode, but also to an expansion of the
region where the structure is stable.

Effect of contrast in material properties. Although composite dielectrics characterized by a wide range of contrast in
material properties have been fabricated (Zhang et al., 2002; Huang et al., 2004), here the effect of contrast in material
properties on instabilities is explored focusing on m=r=10 and m=r=100. For the same volume fractions as for m=r=10,
results pertaining to the case m=r=100 are reported in Figs. 10 and 11, revealing that
	
 loss of positive definiteness of the tangent electroelastic constitutive operator (PD) does not represent a limiting
condition for the region of allowable states in the considered range of D

b
and ca;
	
 electric breakdown represents a critical condition at large values of ca;

	
 independently of the volume fraction of phase a, band localization is critical for D

b
approximately lower than 3, while

for larger values of D
b

microscopic instabilities become dominant.
When tractions are controlled (type-A loading paths), an increase of m and r has a dramatic effect on the stability of the
multilayer. Focusing on ca=0.05 and 0.2, Figs. 7a, b show that for m=r=10 the solid loaded by a longitudinal stress S11Z0
can deform homogeneously up to a large longitudinal stretch l, whereas for m=r=100 (Figs. 10a and b) the critical point is
reached at a much smaller longitudinal stretch.
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For type-B loading paths the situation is completely different, since an increase of parameters m and r allows the
application of a slightly higher electric displacement prior to bifurcation, specially for weakly prestretched composites
with a low volume fractions ca.
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We conclude noting that an increase of m and r reduces the occurrence of band-localization and PD instabilities,
promoting microscopic bifurcations and electric breakdown failure modes.

6. Conclusions

Soft composite dielectrics show great potential in the design of smart devices based on electrosensitive polymers, since
their use allows the application of lower voltages as a result of the increased overall dielectric constant. A critical issue
related to their development is the prediction of both global and local instabilities that may occur at the macro or at the
micro-scale, respectively. Instabilities can be investigated analytically extending to soft dielectrics the well-known theory
of bifurcation and stability of nonlinear elastic solids.

In this paper a detailed analysis of instabilities of layered soft dielectric composites under plane deformations has been
developed. Four instability criteria have been formulated, namely:
(i)
 loss of positive definiteness of the tangent electroelastic constitutive operator of the homogenized continuum (PD);

(ii)
 existence of diffuse modes of bifurcation (microscopic instability);
(iii)
 existence of localized solutions of the homogenized solid (microscopic instability, corresponding to the loss of
ellipticity of the homogenized continuum);
(iv)
 electric breakdown.
The critical conditions associated with these four criteria have been obtained for a periodic bilayered composite obeying

an extended form of the neo-Hookean free-energy function and subjected to a transverse electric displacement field.
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The results provide for the first time an analysis of failure mechanisms which may occur in a heterogeneous dielectric
under external electrical excitation.

The effect of phases volume fraction and contrast in material properties on instabilities has been investigated, revealing
that for low volume fractions of the stiffer phase – a relevant case in the application – an increase of the contrast in
material properties of the two phases promotes a shift from PD to microscopic instabilities. Moreover, while for
constituents not strongly dissimilar band-localization is critical, for high-contrast phases microscopic instabilities and
electric breakdown are the dominant failure modes for composite soft dielectrics.
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Appendix A. Push-forward operations defining quantities in the updated Lagrangian formulation

The integration of (14)2,4 over @B and the change of variables from reference to current configurations, observing that F
is continuous across the interface @B, provide the following push-forward transformations:Z

@B0
1 _SUn0 dA0

¼

Z
@B
1 _SU

1

J
FT n dA¼

Z
@B
1RUn dA, ðA:1Þ
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and Z
@B0

1 _D
0
UUn0 dA0

¼

Z
@B
1 _D

0
UU

1

J
FT n dA¼

Z
@B
1D̂UUn dA, ðA:2Þ

which yield the identities (21).
The integrals in (A.1) and (A.2) represent the total incremental force and charge in the system, respectively, that vanish

as incremental body forces and volume charge are null. Therefore, application of the divergence theorem to (A.1) and (A.2)
yields the incremental field equations (24)1,2 in the updated Lagrangian formulation.

The updated Lagrangian formulation of Eq. (24)3 is obtained considering an arbitrary integration path G0 in the reference
configuration and an infinitesimal fibre dl0 tangent to G0. In the current configuration G¼ vðG0

Þ and dl=Fdl0, so thatZ
G0

_E
0
Udl0
¼

Z
G

_E
0
UF�1 dl¼

Z
G

ÊUdl: ðA:3Þ

Eq. (A.3) provides (in a way alternative to Eq. (22)) the relationship (23). Since the electric field is conservative, the integral
(A.3) evaluated along a close path G0

c is null. Therefore, application of Stokes’ theorem to (A.3) provides Eq. (24)3.

Appendix B. Coefficients of the expansion (65)
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