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Abstract

Many biological and optimal materials, at multiple scales, consist of what can be idealized as

continuous bodies joined by structural interfaces. Mechanical characterization of the microstructure

defining the interface can nowadays be accurately done; however, such interfaces are usually

analyzed employing models where those properties are overly simplified. To introduce into the

analysis the microstructure properties, a new model of structural interfaces is proposed and

developed: a true structure is introduced in the transition zone, joining continuous bodies, with

geometrical and material properties directly obtained from those of the interfacial microstructure.

First, the case of an elliptical inclusion connected by a structural interface to an infinite matrix is

solved analytically, showing that nonlocal effects follow directly from the introduction of the

structure, related to the inclination of the connecting elements. Second, starting from a discrete

structure, a continuous model of a structural interface is derived. The usual zero-thickness linear

interface model is shown to be a special case of this more general continuous structural interface

model. Then, a gradient approximation of the interface constitutive law is rigorously derived: it is the

first example of the analytical derivation of a nonlocal interface model from the microstructure

properties. The effects introduced in the mechanical behavior by both the continuous model and its

gradient approximation are illustrated by solving, for the first time, the problem of a circular
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inclusion connected to an infinite matrix by a structural interface and subject to remote uniform

stress.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Mechanical interfaces; Elliptical inclusions; Structural interfaces; Gradient models; Nonlocal effects

1. Introduction

There are many mechanical problems involving interfaces joining different parts of a
continuous body. These transition zones are often characterized by well-defined
microstructures: in Pinctada nacre, fibrils of organic matrix bridge the platelet lamellae
(detail (A) of Fig. 1); a truss-like structure made of glass fibers bridges a crack in a short
glass-fiber-reinforced polypropylene (detail (B) of Fig. 1); craze fibrils bridge the two bulk
polymer surfaces at a crack tip in polystyrene (detail (C) of Fig. 1); in the meninges
surrounding the human brain, trabeculae connect the subarachnoid space with the pia
mater (detail (D) of Fig. 1); in a palm petiole, the relatively dense vascular bundles are
distributed throughout a ‘web’ of parenchyma cells (detail (E) of Fig. 1). Currently, the
possibility to produce artificial material with this type of microstructure is being studied:
Fig. 1. Examples of structural interfaces in nature: (A) Pinctada nacre (figure from Jackson et al., 1988); (B) short

glass-fiber-reinforced polypropylene (taken from Geers, 1997); (C) crack tip in polystyrene (taken from Xiao and

Curtin, 1995); (D) meninges surrounding the human brain (adapted from Kahle and Frotscher, 2002); (E) cross-

section of a palm (chamaerops humilis) petiole (taken from Gibson et al., 1995); (F) pyrolyzed wood infiltrated

with Si (courtesy of Dr. L. Esposito, ISTEC CNR, Faenza, Italy).
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Fig. 2. A model of a structural interface.
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for example, the process of ceramization of wood (Esposito et al., 2004) is employed to
obtain porous components where the microstructure of the starting material is replicated
in the ceramic component (detail (F) of Fig. 1). In solid mechanics, discrete structures
joining continuous bodies can be found in cracks bridged by fibers (Rubinstein, 1994) and
in the description of atomic interactions in both contact and fracture mechanics (Movchan
et al., 2003; Gao et al., 2001).

Usually, mechanical interfaces are analyzed by employing the concept of a zero-thickness

imperfect interface, based on the transmission conditions

1rUn ¼ 0; rþn ¼ gð1uUÞ, (1)

where n is the unit vector normal to the interface, r is the stress tensor, u is the
displacement vector, rþ is the stress on one side of the interface, g denotes a vectorial
function of the displacement jump, and 1 � U denotes the jump operator, defined as

1fU ¼ f þ � f �, (2)

in which þ and � denote the two sides of the interface. When the function g is linear and
positive-definite, the formulation greatly simplifies, but it then allows unphysical
interpenetration of the material in contact (when the interface is subject to compressive
tractions). Interfacial nonlinearity may be introduced to model different situations of
interest [see, for instance, applications in: fragmentation and decohesion (Camacho and
Ortiz, 1996; Needleman, 1992; Rice and Wang, 1989), interactions between inclusions
(Levy and Hardikar, 1999), bifurcation (Radi et al., 1999), composites (Levy and Dong,
1998; Lipton and Talbot, 2001), biomechanics (Mann et al., 1997; Gei et al., 2002)] and
may avoid the interpenetration by the introduction of a suitable penalty in compression.
Recently, efforts have been made to provide models of thick interfaces, where the
boundary value problem consisting of a three-phase configuration is replaced by a problem
which involves only two phases plus some matching condition simulating the interphase
(Benveniste and Miloh, 2001; Hashin, 2002; Rubin and Benveniste, 2004).

Mechanical interfaces are characterized by a finite thickness and structural properties,
which are often overly simplified by the above model, Eqs. (1). To provide more realistic
models of thick interfaces, Bigoni and Movchan (2002) have suggested modelling the
interface as a truly discrete structure. In particular, they introduced the concept of a
structural interface which possesses a finite width and specific mechanical properties (see
the sketch in Fig. 2, specialized to two-dimensional deformations for simplicity). Not only
does this permit capturing the precise structure of the actual interface, the incorporation of
a specific structure in general introduces nonlocal effects, and these follow from the model
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in a natural and rational way.2 In other words, while a zero-thickness interface model is

phenomenological, a structural interface provides a direct description of the relevant
microstructure. The model proposed by Bigoni and Movchan (called ‘BM-model’ in the
following3) defines a quasi-local interface in the sense that nonlocality is confined to the
joining of opposite points on the interface. The BM-model is generalized in the present
paper to incorporate the full nonlocality induced by a generic truss structure joining two
continuous media, in general not at directly neighboring locations. For simplicity, the
continuous media are modelled as homogeneous, isotropic, linear elastic materials and
loaded on their boundaries (Fig. 2). In this discrete/continuum problem, a difficulty arises
in describing the contact between the structure and the elastic media. This is overcome by
working with mean values of displacements and tractions at the joints and assuming that
the joints are characterized by a given, small dimension. Following this approach, the
problem can be analytically4 tackled.
The paper is organized as follows. The governing equations for a structural inter-

face are introduced in Section 2. In Section 3, the problem of an elliptical inclusion
connected by a structural interface to an infinite medium loaded by a uniform remote
stress is analyzed. It is shown that this case can be solved analytically, and it permits
us to systematically investigate the effects of the interfacial nonlocality. Starting from a
discrete structure, a continuous model of a structural interface and its gradient
approximation are rigorously derived in Section 4, thus providing the first exa-
mple of analytical derivation of a gradient model. The particular case of a circular
inclusion is analytically solved both with the structural interface and with its gradient
approximation, allowing a rigorous comparison between the two models. These solutions
represent the first two-dimensional closed-form solutions to a problem involving a
nonlocal interface.
The solution of the problem of an elliptical inclusion in an infinite elastic matrix permits

analysis of possible neutrality (the inclusion does not perturb the ambient field) and of the
effective properties of dilute composites containing inclusions having structural interfaces.
Treatment of these problems is deferred to Part II of this article.
2. Governing equations for a structural interface

Two elastic continuous bodies connected by a structural interface represent a model of a
multistructure, namely, an elastic multidimensional body. These types of structure are very
common in many fields of engineering and have recently received much attention (Ciarlet
et al., 1989; Ciarlet, 1990, 1997; Puel and Zuazua, 1993; Argatov and Nazarov, 1994;
Conca and Zuazua, 1994; Kozlov et al., 1999, 2001).
2Zero-thickness nonlocal interfaces could obviously be introduced, but the nonlocality would enter the

formulation in a purely phenomenological way.
3The ‘smeared BM-model’ will denote the thick interface characterized by constitutive equations (10) and (11)

of Bigoni and Movchan (2002) with null shearing stiffness, sy ¼ 0, whereas ‘discrete BM-model’ will indicate a

thick interface with purely radial bars.
4The proposed approach can be easily implemented via a boundary element technique, which has been used to

check all analytical solutions presented in this paper. The numerical technique will be presented elsewhere.
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Fig. 3. Two elastic bodies connected by a filamentary structure.
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Inspired by the above formulations, a simple model for the analysis of two-
dimensional multistructures is developed below.5 This is based on the following
assumptions.
�

5

con

str
Solid/structure junctions: As illustrated in Fig. 3, let us denote by O� and Oþ (with
boundary qO� and qOþ, respectively) the two continuous linear elastic two-dimensional
bodies connected by the structural interface. The jth junction between a bar and the
continuous body is represented by a contact region x�j on qO�,

x�j ¼ qO� \ Bðx�j ;rÞ, (3)

where Bðx�j ;rÞ is the disk of radius r centered at x�j and � stands for either þ or �. In
addition, it is assumed that qO� possesses continuous curvature near x�j , so that there
exists a class C2 function

v�j : ½�‘j ; ‘j � ! x�j ; x� ¼ v�j ð‘Þ, (4)

mapping the segment ½�‘j ; ‘j� into the contact region x�j and transforming ‘ ¼ 0 into
the point x�j , so that

x�j ¼ v�j ð0Þ. (5)

At the junction, the load is transmitted as if the bar were a ‘linear, filamentary structure’
connecting the junctions of central points xþh and x�j , defined by the direction specified
by the unit vector er

ðhjÞ, with components fcos aðhjÞ; sin aðhjÞg, where aðhjÞ denotes the angle
between the filament hj and the x1-axis of an arbitrary reference system. In addition, we
introduce for later use the function lðaðhjÞÞ, so that points on the opposite sides of the
interface connected by a bar are related via

xþh ¼ x�j þ lðaðhjÞÞe
r
ðhjÞ. (6)

The traction th transmitted at the h-junction is assumed to be a linear function of the bar
elongation, so that

tjðx�Þ ¼ kðhjÞ½ðuðx
þÞ � uðx�ÞÞ � er

ðhjÞ�e
r
ðhjÞ; xþ 2 xþh ; x� 2 x�j , (7)
This will be explained assuming for simplicity that the rods of the truss structure describing the interface

nect the two solids directly. The extension to the situation in which there are intermediate nodes in the

ucture is straightforward.
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where kðhjÞ is the stiffness coefficient of the filament connecting points xþ and x�. In
addition, the equilibrium of the filament hj requires that

thðxþÞ ¼ �tjðx�Þ; xþ 2 xþh ; x� 2 x�j . (8)

Since in a junction M different bars can converge, each characterized by a stiffness kðhjÞ

and inclination aðhjÞ, Eq. (7) is replaced by

tjðx�Þ ¼
XM
h¼1

kðhjÞ½ðuðx
þÞ � uðx�ÞÞ � er

ðhjÞ�e
r
ðhjÞ; xþ 2 xþh ; x� 2 x�j . (9)
�
 The boundary value problem: The stress field r in the continuous elastic bodies (in the
absence of body forces) satisfies

divrðxÞ ¼ 0; x 2 O�;

rðxþÞnðxþÞ ¼
PM
j¼1

kðhjÞ½ðuðx
þÞ � uðx�ÞÞ � er

ðhjÞ�e
r
ðjhÞ; xþ 2 xþh ; x

� 2 x�j ;

rðx�Þnðx�Þ ¼
PM
h¼1

kðhjÞ½ðuðx
þÞ � uðx�ÞÞ � er

ðhjÞ�e
r
ðhjÞ; xþ 2 xþh ; x

� 2 x�j ;

prescribed tractions or displacements on qO�
SN

q¼1

x�q

 !
;

-

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(10)

where n is the outward unit normal to the boundary of the two connected bodies and q is
an integer ranging between 1 and the number of junctions N, possibly taking different
values on qOþ and qO�. Note that the displacements, and therefore the tractions
transmitted by the interfacial structure to the continuous bodies at the junctions, have
an initially unknown distribution.

�
 Problem formulation in terms of averaged tractions and displacements at the junctions: A

simplification of problem (10) is pursued here by working with averaged quantities at the
junctions between bars and bodies. To this purpose, we introduce the averaged tractions
and displacements at junctions as (here the superscript � is omitted for conciseness)

tj ¼
1

jxjj

Z
xj

tðxÞ ¼
1

jxjj

Z ‘j

�‘j

tðvjð‘ÞÞjv
0
jð‘Þjd‘,

uj ¼
1

jxjj

Z
xj

uðxÞ ¼
1

jxjj

Z ‘j

�‘j

uðvjð‘ÞÞjv
0
jð‘Þjd‘, ð11Þ

so that the boundary value problem (10) is replaced by

divrðxÞ ¼ 0; x 2 O�;

rðxþÞnðxþÞ ¼
PM
j¼1

kðhjÞ½ðu
þ
h � u�j Þ � e

r
ðhjÞ�e

r
ðjhÞ; xþ 2 xþh ;

rðx�Þnðx�Þ ¼
PM
h¼1

kðhjÞ½ðu
þ
h � u�j Þ � e

r
ðhjÞ�e

r
ðhjÞ; x� 2 x�h ;

prescribed tractions or displacements on qO�
SN

q¼1

x�q

 !-
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(12)
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where the initially unknown traction distributions over the junctions is replaced by a
uniform distribution. Since we will replace the solution of problem (10) by the solution of
the simpler problem (12), a digression is now needed to comment on the difference between
the two solutions. In particular, we assume that the size of the junction zones is small when
compared to the dimension of the connected bodies, so that these zones ‘contract’ onto the
points xj . It can then be shown (Appendix A) by employing results due to Mises (1945),
Sternberg (1954) and Gurtin (1972) that the elastic energy evaluated by solving (10) differs
from that evaluated by solving (12) by terms Oð‘2j Þ.

Problem (12) is employed as the basis for analyzing structural interfaces. We proceed as
follows:
�
 The solutions in the jointed bodies O� for uniform traction distributions over the
junction regions xh is constructed, so that the displacements at the junction points uðxhÞ

are written as functions of the (for the moment unknown) uniform tractions tðxhÞ

applied at joint regions and of the prescribed ‘external’ boundary conditions.

�
 The conditions of equilibrium of all the nodes of the truss structure defining the

interface are imposed. To this purpose, Eq. (12)2 is employed to enforce equilibrium for
the nodes located at the junctions with the solid bodies, whereas for nodes internal to
the structure, equilibrium is imposed using classical methods of structural mechanics.
All tractions at junctions and normal stresses within the bars are obtained in this way.
3. Analytical solution for an elliptical inclusion connected by a structural interface to an

infinite medium

In order to apply the methodology described in Section 2 to the problem of an elliptical
elastic inclusion connected by a structural interface to an infinite elastic sheet, we need
some preliminary results. These are the three solutions corresponding to
�
 a self-equilibrated but otherwise arbitrary distribution of uniform loadings acting on
separated portions of an elliptical elastic disk;

�
 a self-equilibrated but otherwise arbitrary distribution of uniform loadings acting on

separated portions of an elliptical hole in an infinite elastic sheet;

�
 an elliptical hole in an infinite elastic sheet, loaded by a remote uniform stress.

The solution to the third problem above is well known and can be found in Muskhelishvili
(1953), whereas we were unable to find solutions of the first two problems in the literature.
Therefore, we have solved the first two problems in Appendices B and C by employing the
Kolossoff–Muskhelishvili (1953) complex potentials fðzÞ and cðzÞ. In terms of these
potentials, the general solution to plane equilibrium problems for homogeneous, isotropic
linear elastic materials can be expressed in polar components as

2mður þ iuyÞ ¼ e�iy½kfðzÞ � zf0ðzÞ � cðzÞ�,

srr þ syy ¼ 4Re½f0ðzÞ�,

syy � srr þ 2isry ¼ 2e2iy½zf00ðzÞ þ c0ðzÞ�, ð13Þ
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where z ¼ x1 þ ix2 ¼ reiy, prime denotes derivative with respect to a function’s argument,
overbar denotes complex conjugate, k ¼ 3� 4n for plane strain and k ¼ ð3� nÞ=ð1þ nÞ for
plane stress, and m and n are the shear modulus and the Poisson ratio, respectively. When
tractions ~t are prescribed on the boundary, the boundary condition can be written as

fðzÞ þ zf0ðzÞ þ cðzÞ ¼ f 1 þ if 2, (14)

where, for s denoting arc length along the boundary,

f 1 þ if 2 ¼ i

Z
s

½~t1ðsÞ þ i~t2ðsÞ�ds. (15)

Let us consider the complex plane z where the elliptical inclusion is represented by an
ellipse of semi-axes a and b. It is well known that the function oðzÞ, that conformally maps
the region interior to an ellipse into a disk, is very complicated. Following Muskhelishvili
(1953) it is expedient to introduce the analytic function

z ¼ oðzÞ ¼ R zþ
m

z

� �
, (16)

where

R ¼
aþ b

2
; m ¼

a� b

aþ b
. (17)

This function conformally maps the region corresponding to an elliptical inclusion in the z-
plane slit along the major axis of the ellipse between �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
to an annulus in the z-

plane, having unit external radius and internal radius equal to
ffiffiffiffi
m
p

. The actual physical
problem of a loaded elliptical inclusion is obtained from this slit inclusion by enforcing
continuity of the analytic functions across the slit (see Appendix B). Note that 0pmp1
and the limiting values 0 and 1 correspond to a circular and a line inclusion, respectively.
The same function (16) maps the region external to the ellipse into the region external to
the unit circle.

Employing the conformal mapping (16) and taking for z the polar form

z ¼ reib, (18)

Eqs. (13)–(14) give
�
 The displacement components

2mjo0ðzÞjður þ iuyÞ ¼
z
r
o0ðzÞ kfðzÞ �

oðzÞ

o0ðzÞ
f0ðzÞ � cðzÞ

� �
. (19)
�
 The stress components

srr þ syy ¼ 4Re½FðzÞ�,

syy � srr þ i2sry ¼
2z2

r2o0ðzÞ
½oðzÞF0ðzÞ þ o0ðzÞCðzÞ�, ð20Þ
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where

FðzÞ ¼
f0ðzÞ
o0ðzÞ

; CðzÞ ¼
c0ðzÞ
o0ðzÞ

. (21)
�
 The boundary conditions

fðsÞ þ
oðsÞ

o0ðsÞ
f0ðsÞ þ cðsÞ ¼ F ðsÞ, (22)

where s ¼ eib denotes a point on the unit circle r ¼ 1 and F ðsÞ is determined at the
boundary of the unit circle from the known values f 1 þ if 2 specified in the z-plane on
the boundary of the ellipse, Eq. (15).

3.1. Solution for an elliptical inclusion subject to uniform loadings distributed over portions

of its boundary

An elliptical inclusion is considered, with N uniform tractions having normal and
tangential components pk and sk, respectively, acting on the portion z�k zþk

_

of its boundary,
see Fig. 4. The resultant of all the loads acting on the inclusion is assumed to be zero. Since
the complex functions fðzÞ and cðzÞ, representing the solution of the problem, are
holomorphic in the circular ring limited by the radii rext ¼ 1 and rint ¼

ffiffiffiffi
m
p

, they can be
represented as Laurent series

fðzÞ ¼
Xþ1

k¼�1

akz
k; 1�

1

z2

� �
cðzÞ ¼

Xþ1
k¼�1

bkz
k. (23)

The complete derivation of the coefficients ak and bk appearing in Eq. (23) is given in
Appendix B yielding

a1 ¼
Ā1 �mĀ�1

2ð1�m2Þ
;

ak ¼
kckðm�m�1Þ � c̄kðm

k �m�kÞ

k2
ðm�m�1Þ2 � ðmk �m�kÞ

2
; k41;

bk ¼ Ā�k �mĀ�k�2 �mkāk þmkþ3ākþ2 � ðk þ 2Þakþ2 �mkak;

8>>>>>><
>>>>>>:

(24)
. 4. Elliptical inclusion with N applied uniform normal and tangential traction distributions in the z-plane, and

conformal mapping in the z-plane. The slit is not shown in the z-plane, since it is eliminated in the solution

cedure by enforcing continuity of the solution across it.
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where

ck ¼ Ā�k �
Āk

mk
(25)

and

Ak ¼
1

2p

XN

w¼1

ðpw þ iswÞ
i

k
ðz�w e

�ikb�w � zþw e
�ikbþw Þ þ

e�ikb
þ
w

k2
� 1
½iðbþ akÞ cos bþw

(

�ðaþ bkÞ sin bþw � �
e�ikb

�
w

k2
� 1
½iðbþ akÞ cos b�w � ðaþ bkÞ sin b�w �

)
. ð26Þ

When the inclusion is circular, so that m ¼ 0, and loaded by an arbitrary number of
distributed, uniform tractions, the solution has a closed form given by

fðzÞ ¼ �
R

4p

XN

k¼1

ðpk þ iskÞ½zðb
�
k � bþk Þ þ 2iðeib

�
k � zÞ log ð1� e�ib

�
k zÞ

� 2iðeib
þ

k � zÞ log ð1� e�ib
þ

k zÞ�,

cðzÞ ¼
R

2pz

XN

k¼1

f2skzðe�ib
�
k � e�ib

þ

k Þ þ ½2sk � ðipk þ skÞe
�ib�

k z�

� log ð1� e�ib
�
k zÞ � ½2sk � ðipk þ skÞe

�ibþ
k z� logð1� e�ib

þ

k zÞg. ð27Þ

In the limiting case of applied concentrated forces, obtained by letting the arc z�k zþk

_

tend to
zero while increasing the magnitude of the load in such a way that

ðpk þ iskÞjz
þ
k � z�k j ! Pk þ iSk (28)

remains a finite quantity, Eq. (26) reduces to

Ak ¼
1

2pk

XN

w¼1

ðPw þ iSwÞe
iðynw � kbwÞ, (29)

where ynw denotes the angle between the unit outward normal and the x1-axis at zw.
The limiting case of a circular disk subjected to a self-equilibrated but otherwise

arbitrary system of concentrated forces can be obtained from Eq. (27) as

fðzÞ ¼ �
1

2p

XN

k¼1

½ðPk þ iSkÞe
ibk log ð1� e�ibkzÞ� �

z
4p

XN

k¼1

ðPk þ iSkÞ,

cðzÞ ¼
1

2p

XN

k¼1

½ðPk � iSkÞe
�ibk log ð1� e�ibkzÞ� �

1

2p

XN

k¼1

Pk þ iSk

eibk � z
. ð30Þ

Muskhelishvili (1953) derived the solution for this particular case; Eqs. (30) are identical
with his results.
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Fig. 5. Elliptical hole in an infinite elastic matrix with N applied uniform normal and tangential traction

distributions in the z-plane, and its conformal mapping in the z-plane.
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3.2. Solution for an elliptical hole in an infinite matrix subject to uniform loadings distributed

over portions of the hole boundary

Here, we consider an infinite matrix containing an elliptical hole on which N piecewise
uniform traction distributions having normal and tangential components pk and sk act on
the parts z�k zþk

_

, see Fig. 5, and whose total resultant vanishes. The solution that is obtained
(derived in Appendix C) is a generalization of the case of an elliptical hole loaded by a
pressure on a part of the boundary treated by Muskhelishvili (1953) and reduces to his
solution in that special case; it is

fðzÞ ¼ �
1

2pi

XN

k¼1

ðpk þ iskÞ R sþk � s�k �
m

z
log

sþk
s�k
þ zþ

m

z

� ���

�log
sþk � z
s�k � z

� ��
þ z�k log ðs�k � zÞ � zþk log ðsþk � zÞ

�
,

cðzÞ ¼ �
1

2pi

XN

k¼1

ðpk � iskÞ R msþk �ms�k �
1

z
log

sþk
s�k
þ mzþ

1

z

� ���

�log
sþk � z
s�k � z

� ��
þ z�k log ðs�k � zÞ � zþk log ðsþk � zÞ

�
�

zð1þmz2Þ

z2 �m
f0ðzÞ. ð31Þ

The limiting case of concentrated forces applied on the elliptical hole surface is ob-
tained by the same procedure as in the case of the elliptical inclusion (see Eq. (28)), so
that the solution for an elliptic hole subjected to N concentrated loads is obtained from
Eq. (31) as

fðzÞ ¼
1

2p

XN

k¼1

ðPk þ iSkÞe
iyn

k log ðsk � zÞ,

cðzÞ ¼ �
1

2p

XN

k¼1

ðPk � iSkÞe
�iyn

k log ðsk � zÞ þ
1

2p
zð1þmz2Þ

z2 �m

XN

k¼1

ðPk þ iSkÞe
iyn

k

ðsk � zÞ
, ð32Þ

where ynk denotes the angle between the unit inward normal and the x1-axis at zk. The case
of a circular hole in an infinite matrix is recovered simply by putting m ¼ 0 and ynk ¼ bk in
Eqs. (31) and (32).
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3.3. Solution for an elliptical hole in an infinite matrix subject to uniform stress at infinity

The case of an infinite elastic plane with a traction-free elliptical hole loaded at infinity
by uniform stress of components s111;s

1
12; s

1
22 is well known. In this case the solution is

given by

fðzÞ ¼ G1R z�
m

z

� �
�

G2R

z
,

cðzÞ ¼ G2Rz�
G1R

z
�

R

zðz2 �mÞ
½G2 þmG1 þ ðG1 þmG2 þ 2m2G1Þz

2
�, ð33Þ

with

G1 ¼
s111 þ s122

4
; G2 ¼

s122 � s111
2

þ is112. (34)

3.4. Elliptical inclusion connected to an infinite matrix by a structural interface: results

As a first example, we consider an elliptical inclusion of minor (major) semi-axis b� (a�),
connected to an infinite matrix with an elliptical hole of minor (major) semi-axis bþ (aþ) by
three different structures: the discrete BM-model, a Warren truss structure, and a
hexagonal lattice structure (see Fig. 6). Besides the structure geometry and the remote
applied stress, the solution depends on

m�

mþ
; n�; m�;

tb

aþ
; N ; L,
TrianglesBM Lattice

�
�

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

N

A

BM
Triangles
Lattice

elliptical
hole

�22 /�22
∞A

�22
∞

Fig. 6. Stress concentration (at point A) for an elliptical inclusion connected to the infinite matrix by a structural

interface and loaded under uniaxial (vertical) stress, as a function of interfacial morphology and number N of

bars. The inclusion is stiffer than the matrix (m�=mþ ¼ 10) and nþ ¼ n� ¼ 1
3
, whereas the bars are characterized by

L ¼ 0:075 for the BM-model, L ¼ 0:075 ð2 sin2 aÞ for the triangular structures and L ¼ 0:075 sin2 a=ð1þ cos2 aÞ
for the hexagonal lattice.
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where þ (�) denotes the matrix (inclusion) properties, tb the bar thickness, N the number
of bars, and the dimensionless parameter

L ¼
2mþ

ðkþ þ 1Þktb
(35)

describes the bar compliance as related to the matrix stiffness, so that L ¼ 0 corresponds
to a rigid bar, whereas L ¼ 1 to a bar with vanishingly small stiffness.

The two materials forming the inclusion and the matrix have properties m�=mþ ¼ 10 and
nþ ¼ n� ¼ 1

3
, whereas the elliptical inclusion and the elliptical hole in the matrix are

characterized by m� ¼ 1
2
and mþ ¼ 4

9
. A uniform uniaxial stress s122 ¼ mþ=100 is applied at

infinity. The bars are characterized by tb=aþ ¼ 3=1000 and L ¼ 0:075 in the case of the
BM-model, whereas L ¼ 0:075 ð2 sin2 aÞ (with a shown in the detail of Fig. 6) for the
triangular structures and L ¼ 0:075 sin2 a=ð1þ cos2 aÞ for the hexagonal lattice, providing
the same global stiffness in the radial direction. The largest stress concentration, namely,
s22 at point A, is plotted in Fig. 6 for different numbers of interfacial bars N (2N in the
Fig. 7. von Mises stress distribution (normalized by remote stress) for a matrix connected by a structural interface

to an elliptical inclusion, loaded by remote uniaxial (vertical) stress, as a function of interfacial morphology

(discrete BM-model left, Warren truss structure right) and density of bars (number of bars increases from top to

bottom). The inclusion is stiffer than the matrix (m�=mþ ¼ 10) and nþ ¼ n� ¼ 1
3
, whereas the bars are

characterized by L ¼ 0:075 for the BM-model and L ¼ 0:075 ð2 sin2 aÞ for the triangular structures.
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case of triangles and 5N for lattice structures, but with the same global stiffness). It can be
seen from the figure that the stress concentration is greater for the discrete BM-model than
for the others, where the nonlocality introduced by the inclination of the bars decreases the
severity of the stress field. For an elliptical hole the maximum stress concentration is given
by the well-known formula

s22
s122
¼ 1þ 2

a

b
, (36)

so that in our case it is equal to 6.2, the value approached in the graphs when the number
of bars approaches zero, while for an increasing number of bars, the stress intensity tends to

an asymptotic value that depends on the interface structure type. Specifically, for high
density of bars the stress concentration at point A tends to 3.9 in the case of the BM-model,
1.60 for the triangular structures, and 0.97 for the hexagonal lattice.
Since there is not much difference between results obtained employing the Warren truss

structure and the hexagonal lattice, only the cases of the discrete BM-model and of the
Fig. 8. von Mises stress distribution (normalized by remote stress) for a matrix connected by a structural interface

to an elliptical inclusion, loaded by remote shear stress, as a function of interfacial morphology (discrete BM-

model left, Warren truss structure right) and density of bars (number of bars increases from top to bottom). The

inclusion is stiffer than the matrix (m�=mþ ¼ 10) and nþ ¼ n� ¼ 1
3
, whereas the bars are characterized by L ¼ 0:075

for the BM-model and L ¼ 0:075 ð2 sin2 aÞ for the triangular structures.
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Warren truss structure are considered in Figs. 7 and 8, where level sets of the von Mises
stress, defined as

sVM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðs1 � s2Þ

2
þ ðs1 � s3Þ

2
þ ðs3 � s2Þ

2
�=2

q
, (37)

with si denoting the principal stresses, are plotted in a region near the inclusion (note that
sVM has been normalized by the remote stress). Fig. 7 corresponds to uniaxial vertical
traction at infinity, while Fig. 8 corresponds to pure shear at infinity.
The figures show clearly the stress reduction caused by the interfacial structure,
which becomes increasingly important as the density of the bars increases.
Note that for shear applied at infinity the inclusion remains almost unstressed when it is
connected to the matrix by equally spaced single bars (the BM-model), Fig. 8 (left). In
closure, we emphasize that all obtained results are analytical. Furthermore, they capture
effects absent in all previous interface models: namely, the stress/deformation field effects
due to a discrete-interface structure and the great stress concentration reduction due to the
nonlocality that occurs as a direct consequence of the interface’s discrete structure.

4. Continuous model and gradient approximation to structural interfaces

4.1. Continuous model for a double Warren truss structural interface—circular inclusion

Let us consider a circular inclusion of radius R connected to an infinite matrix by a
double Warren truss structure of thickness d, as shown in Fig. 9(B). We note that the
angles a, b, and g (see Fig. 9(A)) characterizing the interface are related as

a ¼ bþ g; b ¼ arctan
R sin g

Rþ d� R cos g
; b ¼ arcsin

R

Rþ d
sin a

� �
. (38)

For this particular geometry, the x1-axis of the reference system drawn in Fig. 3 is chosen
coincident with the outward normal of the inclusion (therefore identified with r, whereas
the x2 direction is identified by y). Recalling from Eq. (6) that the two nodes xþh and x�j
connected by the filament hj are related via the function lðaðhjÞÞ, for this particular case, the
continuous
structural
interface

x1

x2
�

�

x-
0

A
B

CD

x+
0x+

1 x+
2

x-
1 x-

2

�

	

R

Fig. 9. Smearing of a double Warren truss structure into a continuous structural interface.
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six points of the basis structural element shown in Fig. 9(A) can be easily described as

xþ1 ¼ x�0 þ lðaÞerðaÞ; xþ2 ¼ x�0 þ lðaÞerð�aÞ;

x�1 ¼ xþ0 � lðaÞerð�bÞ; x�2 ¼ xþ0 � lðaÞerðbÞ;
(39)

where for the considered geometry, the function lðaÞ describing the hole as seen from the
inclusion is given by

lðaÞ ¼ �R cos aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 cos2 aþ 2Rdþ d2

p
. (40)

In addition, we observe that there is the following correspondence between the local and
global coordinates of the six nodes of the basis structural element

x�0 ! fR; yg; xþ0 ! fðRþ dÞ; yg;

x�1 ! fR; ðyþ gÞg; xþ1 ! fðRþ dÞ; ðyþ gÞg;

x�2 ! fR; ðy� gÞg; xþ2 ! fðRþ dÞ; ðy� gÞg;

ð41Þ

where the angle g is shown in Fig. 9(A). In order to develop a continuous model for the
interface, one has:
�
 To consider a basic structural element, for instance, the truss element shown in
Fig. 9(A).

�
 To combine the constitutive equation for each fiber meeting at a junction to get the

structural behavior. For instance, for the geometry shown in Fig. 9(A), assuming that
all filaments are characterized by the same stiffness k, we have

t�ðx�0 Þ ¼ k½DþðaÞerðaÞ þ Dþð�aÞerð�aÞ�;

tþðxþ0 Þ ¼ �k½D�ðbÞerðbÞ þ D�ð�bÞerð�bÞ�;
(42)

where tþ and t� are the tractions acting at the points xþ0 and x�0 of the junctions, and we
have defined

DþðaÞ ¼ ½uðx�0 þ lðaÞerðaÞÞ � uðx�0 Þ� � e
rðaÞ;

D�ðaÞ ¼ ½uðxþ0 Þ � uðxþ0 � lðaÞerðbÞÞ� � erðbÞ:
(43)

Introduction of Eq. (40) into Eq. (42) and using Eqs. (43) and (41), yields

tþ1 ¼ � k cos bf2uþr ðyÞ cos b� cos a½u�r ðyþ gÞ þ u�r ðy� gÞ�

þ sin a½u�y ðyþ gÞ � u�y ðy� gÞ�g,

tþ2 ¼ � k sin bf2uþy ðyÞ sin bþ cos a½u�r ðyþ gÞ � u�r ðy� gÞ�

� sin a½u�y ðyþ gÞ þ u�y ðy� gÞ�g,

t�1 ¼ k cos af�2u�r ðyÞ cos aþ cos b½uþr ðyþ gÞ þ uþr ðy� gÞ�

þ sin b½uþy ðyþ gÞ � uþy ðy� gÞ�g,

t�2 ¼ k sin af�2u�y ðyÞ sin aþ cos b½uþr ðyþ gÞ � uþr ðy� gÞ�

þ sin b½uþy ðyþ gÞ þ uþy ðy� gÞ�g. ð44Þ
�
 To assume that an infinite number of truss elements exist, one at each point
of the interface, so that the traction/displacement prescriptions of Eq. (44) hold for
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every y:

sþrr ¼ �tþ1 ; sþry ¼ �tþ2 ; s�rr ¼ t�1 ; s�ry ¼ t�2 , (45)

where the traction components t�i are given by Eqs. (44). We remark that Eqs. (45)
define the interface constitutive law.

It is important to note that the model of a zero-thickness linear interface, connecting a
circular inclusion to an infinite matrix, can be obtained from Eqs. (45) by taking g ¼ cd (c
being a real constant) and letting d go to zero. In this particular case the angles a and b
reduce to the same value, namely

b0 ¼ lim
d!0

arctan
R sin g

Rþ d� R cos g

� �
g¼cd
¼ arctanðcRÞ, (46)

so that the constitutive Eqs. (45) become

1srrU ¼ 1sryU ¼ 0; srr ¼ kr1urU; sry ¼ ky1uyU, (47)

where

kr ¼
2k

1þ c2R2
; ky ¼

2kc2R2

1þ c2R2
. (48)

These equations are identical to those used by a number of authors (see, for instance,
Bigoni et al., 1998 and references quoted therein).
4.2. Full-field solution for a circular inclusion with a continuous double Warren truss

structural interface

When an infinite matrix connected to a circular inclusion by a continuous double
Warren truss structure is loaded by a uniform stress applied at infinity, the stress and
displacement fields in both continuous bodies are derived from

fþðzÞ ¼ G1z� 2G2
Bm

z
; cþðzÞ ¼ G2zþ 4G1

F m

z
� 2G2

Mm

z3
,

f�ðzÞ ¼ 4G1Aiz� 2G2Biz
3; c�ðzÞ ¼ �2G2Diz, ð49Þ

where

G1 ¼
s111 þ s122

4
; G2 ¼

s122 � s111
2

þ is112, (50)

and the coefficients Bm, F m, Mm, Ai, Bi, and Di are determined by imposing the boundary
conditions at both sides of the interface, Eqs. (45)1–(45)2 at r ¼ Rþ d and Eqs. (45)3–(45)4
at r ¼ R, holding for every y. The results are

Ai ¼
kð1þ kþÞðRþ dÞm� cos b cos a

4½2m�mþ þ 2kðRþ dÞm�cos2 bþ kðk� � 1ÞRmþcos2 a�
,

Fm ¼
ðRþ dÞ2½�2m�mþ þ kðkþ � 1ÞðRþ dÞm�cos2 b� kðk� � 1ÞRmþcos2 a�

2½2m�mþ þ 2kðRþ dÞm�cos2 bþ kðk� � 1ÞRmþcos2 a�
,
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Bi ¼
Gð1Þ

Dð1ÞR2
f6m�mþ cosð2bþ 3gÞ � k½ðRþ dÞm� sin 2b sin 3gþ 3Rmþ sin g sin 2a�g,

Di ¼ �
6Gð1Þ cos a

Dð1Þ
f6m�mþ cosðbþ 2gÞ þ k½ðRþ dÞm� sin 2b sinðb� 2gÞ

þ Rmþ sin aðk� sinð2bþ 3gÞ � 3 sin gÞ�g,

Bm ¼
Dð0ÞðRþ dÞ2

2Dð1Þ
,

Mm ¼ BmðRþ dÞ2 �
Gð1ÞðRþ dÞ4mþ

Dð1Þ
f�6m� cos 2bþ kR½3 sinð2b� gÞ sin g

� k� sin 3g sinð2bþ 3gÞ�g, ð51Þ

where

GðiÞ ¼ kð1þ kþÞiðRþ dÞm�,

DðiÞ ¼ 6ðmþÞ2fk2k�R2 sin2 2aþ 2m�½kRð3þ k�Þ þ 6m��g þ 2�iGð0Þmþ

� f�2ð�1� 3kþÞi½kRð3þ k�Þ þ 12m�� � 2ikR½3 cosð4b� 2gÞ

þ k� cos 6g� 3ð�kþÞið3 cos 2gþ k� cosð4bþ 6gÞÞ�g � 6ð�kþÞiðGð0ÞÞ2sin2 2b.

ð52Þ

In the limit case of a zero-thickness linear interface, the coefficient DðiÞ given by Eq. (52)
reduces to

DðiÞ ¼ 72ðmþm�Þ2 þ 6krkyR2ðm� þ k�mþÞ½mþ � m�ð�kþÞi� þ 6ðkr þ kyÞRmþm�

� ½ð3þ k�Þmþ � 21�im�ð�1� 3kþÞi�, ð53Þ

whereas the coefficients given in Eqs. (51) become

Ai ¼
krð1þ kþÞRm�

4f4m�mþ þ krR½2m� þ ðk� � 1Þmþ�g
,

Bi ¼
3Rð1þ kþÞðkr � kyÞmþðm�Þ

2

Dð1ÞR2
,

Di ¼ �
3Rð1þ kþÞkrm�½6m�mþ þ kyRðm� þ k�mþÞ�

Dð1Þ
, ð54Þ

Bm ¼
Dð0ÞR2

2Dð1Þ
; F m ¼

R2

2
ð4Ai � 1Þ; Mm ¼ R2ðBm þ R4BiÞ,

which are identical to those found by Bigoni et al. (1998).
4.3. The gradient approximation of a continuous structural interface

In the particular case of an interface comprising fibers characterized by a small
angle a, its behavior can be well captured by a gradient approximation of the interface
constitutive law. First, we assume that the fiber stiffness k is inversely proportional to
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the fibers’ length

k ¼
EA

lðaÞ
. (55)

Thus, the traction transmitted from the interfacial fiber to the elastic body at x�j is a
function of the angle a and it can be expanded in Taylor series with remainder about a ¼ 0
as

t�ðaÞ ¼
Xn

m¼0

am

m!
tðnÞ�ð0Þ þ

Z a

0

tðnþ1Þ�ðtÞ
ða� tÞn

n!
dt, (56)

where tðnÞ� denotes the nth derivative of t� with respect to a.
4.3.1. The zeroth-order approximation

If we retain only the zeroth order terms in Eq. (56), where tractions are given by Eq. (9),
we get

t�1 ¼
EA

lð0Þ
1u1U; t�2 ¼ 0, (57)

where the jump operator is defined as

1quantityU ¼ ðquantity at x�j þ lð0Þe1ÞSþ � ðquantity at x�j ÞS� . (58)

Note that for a zero-thickness interface, the operator (58) reduces to the usual jump
operator defined in Eq. (2). Eqs. (57) give the conditions analyzed by Bigoni and Movchan,
[2002; their Eqs. (8) and (9) with b ¼ 0 or their Eqs. (10) and (11) for the circular geometry
with sy ¼ 0]; we term this the smeared BM-model. When the thickness of the interface is
reduced to zero, Eq. (57) reduces to the usual linear interface constitutive law, but with
only normal stiffness.
4.3.2. The first- and second-order approximations: the gradient model

Retaining terms through first order in the Taylor series expansion (56), where tractions
are given by Eq. (9), we obtain

t�1 ¼
EA

lð0Þ
1u1Uþ

EA

lð0Þ2
lð0Þ1u2U� l0ð0Þ1u1Uþ lð0Þ

quþ1
qa

� �
a¼0

� �
a,

t�2 ¼
EA

lð0Þ
1u1Ua, ð59Þ

where the derivative with respect to a can be evaluated by employing the chain
rule as

quþ1
qa
¼

quþ1
qxþ
�
qxþ

qa
. (60)
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Retaining terms through second order in the Taylor series expansion of Eq. (56), we obtain

t�1 ¼
EA

lð0Þ
1u1Uþ

EA

lð0Þ2
lð0Þ1u2U� l0ð0Þ1u1Uþ lð0Þ

quþ1
qa

� �
a¼0

� �
a

þ
EA

lð0Þ
1u1U

l0ð0Þ2

lð0Þ2
�

l00ð0Þ

2lð0Þ
� 1

� �
� 1u2U

l0ð0Þ

lð0Þ
þ

quþ2
qa

� �
a¼0

"

þ
1

2

q2uþ1
qa2

 !
a¼0

�
l0ð0Þ

lð0Þ

quþ1
qa

� �
a¼0

#
a2,

t�2 ¼
EA

lð0Þ
1u1Uaþ

EA

lð0Þ2
lð0Þ1u2U� l0ð0Þ1u1Uþ lð0Þ

quþ1
qa

� �
a¼0

� �
a2. ð61Þ

It is evident that Eqs. (59) and (61) contain gradient terms related to the geometry
of the surfaces joined by the bars. Eqs. (57)–(61) can be employed to develop a continuous
model for an interface following the same approach used for the continuous model of
Section 4.1.

4.4. Gradient model for a continuous double Warren truss structure—circular inclusion

In the particular case when Sþ and S� are two concentric circles with radii R and Rþ d
connected by a double Warren truss structure (see Fig. 9) characterized by a small angle a,
Eqs. (57)–(61) specialize to
�
 Zeroth- and first-order approximation

t�1 ¼
2EA

d
1urU; tþ1 ¼ �t�1 ; tþ2 ¼ t�2 ¼ 0. (62)
�
 Second-order approximation

tþ1 ¼ �
2EA

d
1u1U�

EA

d
�

Rð3Rþ dÞ

ðRþ dÞ2
1u1Uþ

2R

Rþ d
qu�2
qa

� �
a¼0
�

q2u�1
qa2

� �
a¼0

� �
a2,

tþ2 ¼ �
2EAR

dðRþ dÞ
R

Rþ d
1u2Uþ

qu�1
qa

� �
a¼0

� �
a2,

t�1 ¼
2EA

d
1u1Uþ

EA

d
�
3Rþ 2d

Rþ d
1u1Uþ 2

quþ2
qa

� �
a¼0
þ

q2uþ1
qa2

 !
a¼0

" #
a2,

t�2 ¼
2EA

d
1u2Uþ

quþ1
qa

� �
a¼0

� �
a2. ð63Þ

Note that Eqs. (63) can also be derived directly from Eqs. (44) by expressing the angles b
and g as functions of a, taking into account that

u1 ¼ ur cos g� uy sin g; u2 ¼ ur sin gþ uy cos g, (64)

and retaining terms through second order in the Taylor series expansion
about a ¼ 0.
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4.5. Full-field solution for a circular inclusion with a gradient– model interface

When a homogeneous stress field is applied at infinity, the analytical solution for a
circular inclusion connected to an infinite matrix by a thick interface obeying conditions
(63) for every y and subjected to uniform remote stress (note that condition (62) is a
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Fig. 10. Stress distribution (in components normalized by the remote stress) at r ¼ Rþ 3d=2 in an infinite matrix

(with a circular hole of radius Rþ d) connected to a circular inclusion (of radius R) by a double Warren truss

structure as a function of the angular coordinate y, for the discrete model with a high bar density (600 truss

elements), the continuous model, and its second-order gradient approximation. A remote shear stress s112 is

applied and different bar inclinations are considered, corresponding to g ¼ f0; p=50; p=20; p=5g (see Fig. 9(A)).

The inclusion is stiffer than the matrix (m�=mþ ¼ 10), nþ ¼ 0:35 and n� ¼ 0:2, whereas the bars are characterized
by Lc ¼ 0:077.
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particular case of (63)) is obtained in the same form as given by Eqs. (49). The coefficients
in Eqs. (49) can be found by imposing the boundary conditions at both sides of the
interface, Eqs. (63)1–(63)2 at r ¼ Rþ d and Eqs. (63)3–(63)4 at r ¼ R, holding for every y.
Alternatively, these coefficients can be directly obtained from Eq. (51) by retaining terms
through second order in the Taylor series expansion about a ¼ 0.

4.6. Continuous versus discrete interface models: comparison of results

We are now in a position to compare full-field solutions for a circular inclusion
connected by a double Warren truss structure to an infinite sheet subjected to uniform far
Fig. 11. von Mises stress distribution (normalized by remote stress s112) for a circular inclusion connected to an

infinite matrix by a double Warren truss structure and loaded by a remote shear stress for the discrete (with high

bar density—600 truss elements, left), continuous (center), and gradient (right) models as a function of the bars’

inclination g, see Fig. 9(A). The inclusion is stiffer than the matrix (m�=mþ ¼ 10), nþ ¼ 0:35, and n� ¼ 0:2, and the

bars are characterized by Lc ¼ 0:077.
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field loading. The solutions are obtained by using: (i) the analytical discrete-interface
approach, (ii) the continuous-interface model, (iii) the interface gradient approximations of
various orders. While the first of the three above approaches is completely general, the
continuous-interface model and its gradient approximation have been developed for the
double Warren truss structure, which reduces to the smeared BM-model and to the zero-
thickness linear interface as particular cases. We assume now d ¼ R=10 and m�=mþ ¼ 10,
whereas the Poisson ratio for the matrix and the inclusion has been selected—as in Hashin
(2002)—equal to nþ ¼ 0:35 and n� ¼ 0:2. A uniform shear stress s112 ¼ mþ=100 is applied
at infinity.

The stress distributions obtained by employing the continuous model and its second-
order gradient approximation are compared with that obtained from the discrete model
with a large number of bars, namely, 600 truss elements. For the continuous model, the
dimensionless compliance parameter

Lc ¼
2mþ

ðkþ þ 1ÞkR
(65)

has been taken as Lc ¼ 0:077, so that in its gradient approximation EA has been chosen
equal to 2mþl=½LcRðkþ þ 1Þ�, with l denoting the bar length, whereas in the discrete model
the bar compliance has been chosen as L ¼ LcR=tb, with tb=R ¼ 1=1000. The stress
components (normalized by the remote shear stress) evaluated along a concentric circular
path at radius r ¼ Rþ 3d=2 in the matrix are plotted in Fig. 10 as a function of the angular
coordinate y. In the graph, continuous lines denote results obtained with the continuous
model, dashed lines denote results obtained with its second-order gradient approximation,
while symbols denote results of the discrete model. The stress distribution corresponding to
the zeroth order approximation is not reported for brevity, since it is coincident with the
second-order approximation when g ¼ 0, so that there are no gradient effects.
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Fig. 12. Stress concentration for a circular inclusion connected to an infinite matrix (d=R ¼ 0:25) by a discrete

(with high bar density—600 truss elements) and a continuous double Warren truss structure, loaded under

uniaxial (vertical) stress as a function of the angle g. The inclusion is stiffer than the matrix (m�=mþ ¼ 10),

nþ ¼ n� ¼ 1
3
, and the bars are characterized by Lc ¼ 0:077. Note that the second-order gradient approximation

also included gives realistic results only for gop=16.
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In Fig. 11, the level sets of the von Mises stress (normalized by s112) are plotted in a
region near the inclusion. Excellent agreement between the discrete and the continuous
model is clearly seen from the figure for any angle g, whereas the second-order gradient
model is precise only for small values of g.
Figs. 10 and 11 show another important feature, namely, that the gradient effects

completely change the stress distribution. This is evident by comparison of the von Mises
stress distribution for g ¼ 0 (which, in other words, is a smeared BM-model) with that for
g ¼ p=5.
Fig. 13. von Mises stress distribution (normalized by remote stress s122) for a circular inclusion connected to an

infinite matrix by a double Warren truss structure and loaded by a uniaxial (vertical) remote stress for the discrete

(with high bar density—600 truss elements, left), continuous (center), and gradient (right) models as a function of

the bars’ inclination g, see Fig. 9(A). The inclusion is stiffer than the matrix (m�=mþ ¼ 10), nþ ¼ n� ¼ 1
3
, and the

bars are characterized by Lc ¼ 0:077.
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Finally, the stress concentration is analyzed at a circular hole of radius Rþ d containing
a circular inclusion of radius R so that d=R ¼ 0:25, in an infinite sheet loaded by a uniaxial
stress s122 ¼ mþ=100 at infinity. Results are reported in Fig. 12 for material properties
nþ ¼ n� ¼ 1

3 and m�=mþ ¼ 10, and bars characterized by thickness tb=R ¼ 1=1000 and
compliance Lc ¼ 0:077. As in the example above, for the discrete structural interface 600
truss elements have been employed. Cases corresponding to the discrete BM-model (i.e.
g ¼ 0) and the double Warren truss structure are considered together with the continuous
model and its second-order gradient approximation. It can be noted that the gradient
model gives a good approximation of the stress distribution for g smaller than p=16,
whereas for larger values of the angle it becomes inaccurate. The stress concentration is
strongly influenced by the angle g (and thus a): increasing the opening of the truss structure
causes a larger stress redistribution.

Continuing with this example, the level sets of the von Mises stress for the discrete
model, the continuous model, and its second-order gradient approximation are reported in
Fig. 13. Also in this case good agreement between the three different models can be
observed for g smaller than p=20, whereas for g ¼ p=5 the gradient model is no longer
reliable.

In closure, we emphasize that the analytical solution for a circular inclusion connected
to an infinite matrix by a continuous double Warren structure has been obtained.
Furthermore, for a structural interface with bars characterized by a small angle a, the
gradient approximation of the constitutive law has been derived, characterized by an
analytical representation simpler than that of the continuous model. This is the first
example of the analytical derivation of a nonlocal interface model. Finally, we note that a
gradient model of the type illustrated here would be especially useful in situations where an
exact solution is not possible.
5. Conclusions

In this paper, a novel model of a structural interface capturing the actual physical
structure present in the interface has been derived. The model is characterized by a finite
thickness and a specific structure, providing a direct description of the relevant
microstructure. From the proposed model, nonlocality emerges in a natural, rather than
empirical, way, induced directly by the structure joining the two continuous media. The
model captures effects absent in all previous interface models including the stress/
deformation field effects due to the discrete structure and the great stress concentration
reduction due to nonlocality. Starting from the discrete model, a continuum model of a
structural interface has been derived. It is interesting to note that the usual zero-thickness
linear interface model represents a simple special case of the structural continuum model.
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Appendix A. The elastic energies evaluated solving problems (10) and (12) differ by terms of

Oð‘2j Þ

Taking Taylor series expansions of the displacements and tractions in Eqs. (10)2
and (10)3 about ‘ ¼ 0, we note the following relationship with the mean values
(11)

t j ¼ tðxjÞ þOð‘2j Þ; uj ¼ uðxjÞ þOð‘2j Þ, (A.1)

so that, if the junction regions are sufficiently small, a uniform traction corres-
ponds to a uniform displacement, up to Oð‘2j Þ. Moreover, let us consider the strain
energy of a continuous elastic body connected to other bodies by a structural
interface

E ¼
1

2

XN

j¼1

Z
xj

t jðxÞ � ujðxÞ þ
1

2

Z
qOt

~t � uþ
1

2

Z
qOu

t � ~u, (A.2)

where qOt and qOu are, respectively, the boundary portions where the tractions ~t and the
displacements ~u are prescribed. Introduction of the Taylor series expansion for u and t into
the first integral on the right-hand side of Eq. (A.2) yields

1

2

XN

j¼1

Z
xj

t jðxÞ � ujðxÞ ¼
1

2

XN

j¼1

ðt j � u jÞjxjj þOð‘2j Þ. (A.3)

Solving problem (12) instead of (10) means that we substitute a general
traction distribution within the junction region with a uniform traction t̄ j , so that the
discrepancy t	ðxÞ with the actual traction distribution tðxÞ can be expanded in a Taylor
series as

t	ðxÞ ¼ tðxÞ � t̄ j ¼
qtðxjÞ

q‘
‘ þOð‘2Þ. (A.4)

The surface traction t	ðxÞ has null resultant force (but possibly nonnull resultant moment)
and assume for the moment that the displacement field associated with it is Oð‘2j Þ.
Therefore, also the tractions induced on qOu by t

	ðxÞ are Oð‘2j Þ. As a conclusion, the energy
of the two problems (10) and (12) differs by terms of O(‘2j ).
It remains now to prove that the displacement field associated with t	ðxÞ applied on the

junctions is Oð‘2j Þ. This fact can be inferred from von Mises (1945), Sternberg (1954) and
Gurtin (1972). However, von Mises only refers to the behavior in specific cases (a half
space and a circular disk) and Sternberg and Gurtin refer to a three-dimensional setting.
For completeness, we sketch a nonformal proof of this result for the present two-
dimensional framework. The displacement at a boundary point y 2 On

SN
j¼1xj is given by

the boundary integral equation

ugðyÞ ¼

Z
xj

~t jðxÞ � ugðx� yÞdx, (A.5)
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where ugðx� yÞ is the Green’s function for the solid body O. Employing Eq. (A.4) in
Eq. (A.5) we get

ugðyÞ ¼
qtðxjÞ

q‘
�

Z ‘j

�‘j

ugðvð‘Þ � yÞ‘ d‘, (A.6)

which expanded in a Taylor series with respect to the variable ‘j becomes

ugðyÞ ¼
2

3

qugðvð0Þ � yÞ

q‘
‘3j ¼ Oð‘2j Þ, (A.7)

representing the expected result.

Appendix B. Solution for an elliptical inclusion subject to uniform loadings distributed over

portions of its boundary

With reference to the problem described in Section 3.1, since the Cartesian components
of the outward unit normal to the ellipse n can be written as

n1 ¼
dx2

ds
and n2 ¼ �

dx1

ds
, (B.1)

the boundary conditions on the portions of the boundary where tractions are applied can
be written as

ið~t1 þ i~t2Þds ¼ ðpk þ iskÞdz, (B.2)

so that

F ðsÞ ¼

0; 0obob�1

T
n�1

þðpn þ isnÞ R sþ
m

s

	 

� z�n

h i
; b�n obobþn ; n ¼ 1; . . . ;N

T
n

; bþn obob�nþ1; n ¼ 1; . . . ;N � 1

0; bþNobo2p;

8>>>>>><
>>>>>>:

(B.3)

where

zk ¼ Rðsk þms�kÞ,

T
0

¼ 0 and T
n

¼
Xn

k¼1

ðpk þ iskÞðz
þ
k � z�k Þ for na0. ðB:4Þ

In the limiting case of a concentrated load, since (see Eq. (28))

ðpk þ iskÞðz
þ
k � z�k Þ ! iðPk þ iSkÞe

iyn
k , (B.5)

where ynk denotes the angle between the unit outward normal and the x1-axis at zk,
Eq. (B.3) reduces to

F ðsÞ ¼

0; 0obob�1Pn
k¼1

iðPk þ iSkÞe
iyn

k ; bnobobnþ1; n ¼ 1; . . . ;N � 1

0; bNozo2p:

8>>><
>>>:

(B.6)
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Since the complex functions fðzÞ and cðzÞ are holomorphic in the circular ring limited by
the radii rext ¼ 1 and rint ¼

ffiffiffiffi
m
p

, they can be represented as Laurent series

fðzÞ ¼
Xþ1

k¼�1

akz
k; cðzÞ ¼

Xþ1
k¼�1

dkz
k, (B.7)

convergent for
ffiffiffiffi
m
p

ojzjo1. Let us consider the conformal mapping of Eq. (16) and two
generic points lying on the circle jzj ¼

ffiffiffiffi
m
p

, inclined at b and �b with respect to the x1-axis.
These points correspond to adjacent points on the upper and lower slit faces in the z-plane,
so that the continuity conditions

fð
ffiffiffiffi
m
p

eibÞ ¼ fð
ffiffiffiffi
m
p

e�ibÞ; cð
ffiffiffiffi
m
p

eibÞ ¼ cð
ffiffiffiffi
m
p

e�ibÞ (B.8)

hold for any b. Substitution of (B.7) into (B.8) gives

a�k ¼ mkak; d�k ¼ mkdk. (B.9)

Since tractions are prescribed on the boundary of the elliptical body in the z-plane,
insertion of (B.7) into the complex conjugate of Eq. (22) and multiplication of both sides
by o0=R yields

ð1�me�2ibÞ
Xþ1

k¼�1

āke
�ikb þ ðe�ib þmeibÞ

Xþ1
k¼�1

kake
iðk�1Þb

þ
Xþ1

k¼�1

bke
ikb ¼ F ð1�me�2ibÞ, ðB:10Þ

where

Xþ1
k¼�1

bkz
k
¼ 1�

m

z2

� �
cðzÞ ¼

Xþ1
k¼�1

ðdk �mdkþ2Þz
k, (B.11)

so that

bk ¼ dk �mdkþ2. (B.12)

Since the function F, given in Eq. (B.3), can be expanded in Fourier series as

F ¼
Xþ1

k¼�1

Ake
ikb; with Ak ¼

1

2p

Z 2p

0

Fe�ikbdb, (B.13)

yielding

Ak ¼
1

2p

XN

w¼1

ðpw þ iswÞ
i

k
ðz�w e

�ikb�w � zþw e
�ikbþw Þ þ

e�ikb
þ
w

k2
� 1
½iðbþ akÞ cos bþw

(

�ðaþ bkÞ sin bþw � �
e�ikb

�
w

k2
� 1
½iðbþ akÞ cos b�w � ðaþ bkÞ sin b�w �

)
, ðB:14Þ

the right-hand side of Eq. (B.10) can be rewritten as

F ð1�me�2ibÞ ¼
Xþ1

k¼�1

ðĀ�k �mĀ�k�2Þe
ikb. (B.15)
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Thus, insertion of Eq. (B.15) into Eq. (B.10) and equating terms of equal order yields

ā�k �mā�k�2 þ ðk þ 2Þakþ2 þmkak þ bk ¼ Ā�k �mĀ�k�2, (B.16)

which, since ā�k ¼ mkāk and ā�k�2 ¼ mkþ2ākþ2, can be rewritten as

ākmk � ākþ2m
kþ3 þ ðk þ 2Þakþ2 þmkak þ bk ¼ Ā�k �mĀ�k�2. (B.17)

Putting k ¼ �k � 2 and observing that

b�k�2 ¼ d�k�2 �md�k ¼ mkþ2dkþ2 �mkþ1dk ¼ �mkþ1bk, (B.18)

Eq. (B.16) becomes

ākþ2 �māk � ka�k �mðk þ 2Þa�k�2 �mkþ1bk ¼ Ākþ2 �mĀk. (B.19)

It is now possible to eliminate bk from Eqs. (B.17) and (B.19), obtaining

ākþ2ðm
�k�1 �mkþ3Þ þ ākðm

k �m�kÞ þ kakðm�m�1Þ þ ðk þ 2Þakþ2ð1�m2Þ

¼ Ā�k �mĀ�k�2 þ
Ākþ2

mkþ1
�

Āk

mk
, ðB:20Þ

so that the coefficients ak can be calculated recursively when a0 and a1 are known. From
the recursion formula (B.20), we obtain

ða1 þ ā1Þð1�m2Þ ¼ Ā1 �mĀ�1, (B.21)

from which Re½a1� can be determined, whereas Im½a1� remains arbitrary. However, a0 and
Im½a1� correspond to a rigid-body motion, so that both are selected equal to zero. In
addition, Eq. (B.20) shows that a2, a3 and hence all the other even coefficients do not
depend on a0 and Im½a1�. Defining

ck ¼ kak m�
1

m

� �
þ āk mk �

1

mk

� �
, (B.22)

the recursion formula (B.20) becomes

ck �mckþ2 ¼ Ā�k �mĀ�k�2 þ
Ākþ2

mkþ1
�

Āk

mk
, (B.23)

so that

ck ¼ Ā�k �
Āk

mk
. (B.24)

A closed-form expression for ak can be found by writing the complex conjugate of
Eq. (B.22) and solving for ak obtaining

ak ¼
kckðm�m�1Þ � c̄kðm

k �m�kÞ

k2
ðm�m�1Þ2 � ðmk �m�kÞ

2
; k41, (B.25)

these coefficients, together with a1, render function f known from Eq. (B.7)1.
To complete the solution, namely, to evaluate function c, we may determine coefficients

bk from Eq. (B.17) or (B.19) in the form

bk ¼ Ā�k �mĀ�k�2 � ākmk þ ākþ2m
kþ3 � ðk þ 2Þakþ2 �mkak. (B.26)
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Therefore,

1�
1

z2

� �
cðzÞ ¼

Xþ1
k¼�1

bkz
k
¼
Xþ1
k¼0

bkz
k
þ
Xþ1
k¼1

b�kz
�k, (B.27)

is known and, since (from Eq. (B.18)) b�k ¼ �mk�1bk�2 and (from Eqs. (B.21) and (B.26))
b�1 ¼ 0, it can be rewritten as

1�
1

z2

� �
cðzÞ ¼

Xþ1
k¼0

bk zk
�

mkþ1

zkþ2

� �
, (B.28)

which together with Eq. (B.25) represents the solution of the elliptical inclusion
problem.

B.1. The particular case of the circular inclusion

The particular case of a circular inclusion of radius R subject to a
system of N equilibrated forces is analyzed. Here, the conformal mapping of Eq. (16)
reduces to

z ¼ Rz, (B.29)

since m ¼ 0; therefore, coefficients ak in Eq. (B.25) simplify to

ak ¼

0 if ko0;

Ak if k41;
A1

2
if k ¼ 1;

8>><
>>: (B.30)

so that the function f in the z-plane becomes

fðzÞ ¼
A1

2
zþ

X1
k¼2

Akz
k. (B.31)

Substitution of Eq. (B.30) into Eq. (B.26) yields

bk ¼
0 if ko0;

Ā�k � ðk þ 2ÞAkþ2 if k40;

(
(B.32)

so that for the particular case of a circle of radius R the function c reduces to

cðzÞ ¼
X1
k¼1

½Ā�k � ðk þ 2ÞAkþ2�z
k. (B.33)

For a circular disk of radius R, Eq. (B.14) simplifies to

Ak ¼
iR

2pkðk � 1Þ

XN

w¼1

fðpw þ iswÞ½e
iðkb�wþb

þ
w Þ � eiðb

�
wþkbþw Þ�g, (B.34)
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so that Eqs. (B.31) and (B.33) give the solution for a circular disk loaded by an arbitrary
number of distributed, uniform loads:

fðzÞ ¼ �
R

4p

XN

k¼1

ðpk þ iskÞ½zðb
�
k � bþk Þ þ 2iðeib

�
k � zÞ log ð1� e�ib

�
k zÞ

� 2iðeib
þ

k � zÞ logð1� e�ib
þ

k zÞ�,

cðzÞ ¼
R

2pz

XN

k¼1

f2skzðe�ib
�
k � e�ib

þ

k Þ þ ½2sk � ðipk þ skÞe
�ib�

k z�

� log ð1� e�ib
�
k zÞ � ½2sk � ðipk þ skÞe

�ibþ
k z� logð1� e�ib

þ

k zÞg. ðB:35Þ

The limiting case of a disk subject to an arbitrary system of concentrated forces can be
obtained from Eqs. (B.35) as

fðzÞ ¼ �
1

2p

XN

k¼1

½ðPk þ iSkÞe
ibk log ð1� e�ibkzÞ� �

z
4p

XN

k¼1

ðPk þ iSkÞ,

cðzÞ ¼
1

2p

XN

k¼1

½ðPk � iSkÞe
�ibk log ð1� e�ibkzÞ� �

1

2p

XN

k¼1

Pk þ iSk

eibk � z
, ðB:36Þ

in agreement with Muskhelishvili (1953).

Appendix C. Solution for an elliptical hole in an infinite matrix subject to uniform loadings

distributed over portions of the hole boundary

To solve the problem described in Section 3.2, the conformal mapping (Eq. (16)) is
substituted into the boundary conditions (Eq. (22)), yielding

fðsÞ þ
s2 þm

sð1�ms2Þ
f0ðsÞ þ cðsÞ ¼ F ðsÞ, (C.1)

or in complex conjugate form

fðsÞ þ
sð1þms2Þ
s2 �m

f0ðsÞ þ cðsÞ ¼ F ðsÞ. (C.2)

Since the resultant of the applied external loads is zero (this load will be transmitted by the
structural interface at the contacts) and the stress vanishes at infinity, fðzÞ and cðzÞ are
holomorphic for jzj41, including the point at infinity. Therefore, Cauchy’s formula for the
infinite region can be employed,

1

2pi

Z
jzj¼1

fðsÞ
ds

s� z
¼ �fðzÞ, (C.3)

so that multiplication of Eqs. (C.1) and (C.2) by 1=½2piðs� zÞ� and integration over the
contour yields

fðzÞ ¼ �
1

2pi

Z
jzj¼1

F ðsÞ
s� z

ds, (C.4)
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and

cðzÞ ¼ �
1

2pi

Z
jzj¼1

F ðsÞ
s� z

ds� z
1þmz2

z2 �m
f0ðzÞ. (C.5)

The Eqs. (C.4) and (C.5) have been obtained by taking into account that

1

2pi

Z
jzj¼1

fðsÞ
s� z

ds ¼ 0,

and

1

2pi

Z
jzj¼1

s
1þms2

s2 �m

f0ðsÞ
s� z

ds ¼ �z
1þmz2

z2 �m
f0ðzÞ.

When N constant tangential and normal loads pk and sk are applied at the boundary of the
elliptical hole, the function F ðsÞ in Eq. (C.1) is obtained in the same way as for the elliptical
inclusion, yielding again Eq. (B.3). Introducing Eq. (B.3) into (C.4) and (C.5) and using the
facts thatZ sþ

k

s�
k

ds
s� z

¼ log
sþk � z
s�k � z

� �
, (C.6)

Z sþ
k

s�
k

sþ
m

s

	 
 ds
s� z

¼ sþk � s�k �
m

z
log

sþk
s�k
þ zþ

m

z

� �
log

sþk � z
s�k � z

� �
, (C.7)

Z sþ
k

s�
k

msþ
1

s

� �
ds

s� z
¼ msþk �ms�k �

1

z
log

sþk
s�k
þ mzþ

1

z

� �
log

sþk � z
s�k � z

� �
, (C.8)

and the resultant applied force is zero, i.e.XN

k¼1

ðpk þ iskÞðz
þ
k � z�k Þ ¼ 0, (C.9)

we finally obtain the solution for an elliptical hole in an elastic matrix loaded by piecewise
constant normal and tangential tractions:

fðzÞ ¼ �
1

2pi

XN

k¼1

ðpk þ iskÞ R sþk � s�k �
m

z
log

sþk
s�k
þ zþ

m

z

� �
log

sþk � z
s�k � z

� �� ��

þ z�k log ðs�k � zÞ � zþk log ðsþk � zÞ
�
.

cðzÞ ¼ �
1

2pi

XN

k¼1

ðpk � iskÞ R msþk �ms�k �
1

z
log

sþk
s�k
þ mzþ

1

z

� �
log

sþk � z
s�k � z

� �� ��

þz�k log ðs�k � zÞ � zþk log ðsþk � zÞ
�
�

zð1þmz2Þ

z2 �m
f0ðzÞ, ðC:10Þ
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where f0ðzÞ is the first derivative of f with respect to z. In Eqs. (C.10), the term log sþk =s
�
k

corresponds to iY, with Y being the angular distance between the points from s�k to sþk ,
measured counter-clockwise.
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