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The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave

properties remains one of the outstanding challenges for the development of next generation

acoustic devices. We report on the numerical and experimental demonstration of a locally resonant

acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to

changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a

periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance

characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of

the airfoils and the speed on the incident fluid. The proposed concept expands the ability of

existing acoustic bandgap materials to autonomously adapt their dispersion properties through

fluid-structure interactions, and has the potential to dramatically impact a variety of applications,

such as robotics, civil infrastructures, and defense systems. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862643]

I. INTRODUCTION

Metamaterials are engineered micro-structural assem-

blies that exhibit unique properties not observed in nature or

in their constituent materials.1 An important characteristic of

acoustic metamaterials is their ability to tailor the propaga-

tion of elastic waves through bandgaps—frequency ranges of

strong wave attenuation. Bandgaps are either the result of

wave scattering at periodic impedance mismatch zones

(Bragg scattering),2 or can be generated by resonating units

within the medium.3 While Bragg-type bandgaps have been

successfully exploited in phononic crystals to filter, localize,

and guide acoustic waves,4 locally resonant metamaterials

are capable of generating low frequency attenuation zones,3

which have been primarily exploited for vibration and noise

radiation control applications.5,6

Most of the metamaterial configurations proposed so far

operate at fixed frequency ranges and it is often impractical,

if not impossible, to tune and control their bandgaps after

the assembly of the system. In an effort to design tunable

materials, it has been shown that Bragg-type bandgaps can

be controlled through changes in the periodic modulation of

impedance mismatch within the medium,7–9 while in locally

resonant metamaterials tuning of functionalities is typically

achieved by controlling the natural frequency of the resonat-

ing units.5,10,11 However, these approaches require either a

significant amount of energy for actuation, which can seri-

ously compromise the major functionality of the structure,

or complex hardware architectures which hinder their

implementation.

Inspired by the ability of many living organisms,

including fishes, insects, and bacteria of sensing the sur-

rounding fluid environment to direct their response,12–14

here we report on a new acoustic metamaterial, which

exploits fluid-structure interactions to self-regulate its wave

propagation characteristics. We consider a locally resonant

metamaterial comprising an elastic beam and a periodic

array of airfoil-shaped mechanical resonators bonded along

its length. The airfoils generate strong attenuation in the

beam at frequencies that depend both on their mechanical

properties and the speed of the incident fluid flow.

Therefore, a flow impinging on the system provides the ena-

bling mechanism to alter the bandgaps of the system and

achieve unusual wave mechanics. This concept can be con-

sidered as an example of an adaptive locally resonant meta-

materials capable of self-regulating its dispersion properties

in response to variations in the local environment.

II. CONCEPT AND MATERIALS

The considered acoustic metamaterial (Fig. 1(a)) consists

of an aluminum beam of thickness t¼ 1.27 mm and width

w¼ 2.54 mm with a periodic arrangement of six airfoil reso-

nators (Fig. 1(b)) equally spaced along its length (60 mm

apart). The resonating units comprise a flap connected to a

thin elastic bender. A 3D printer (Objet-500 Connex) is

used to fabricate the flaps out of an acrylic-based prototyping

material (Young’s modulus E� 3 GPa and density

q¼ 1050 kg/m3) with a NACA 0012 profile. The flap features

a rectangular planform with semi chord b¼ 10 mm and span

s¼ 45 mm. Given the modest size of and loads acting on the

flaps, they are considered as rigid in the following analysis. A

11 mm wide rectangular cutout is realized at the flap’s mid-

span near the leading edge to host a metallic hinge connecting

the flap and the bender. The hinge, machined form solid alu-

minum, allows for rotation of the flap along its span-wise

axis (pitch motion), and is connected to the flexible bender

using a small amount of superglue (Locktite). The benders

are made out of aluminum (Young’s modulus E¼ 69 GPa

and density q¼ 2700 kg/m3) and manually cut from a

0.38 mm thick plate into strips of width wb¼ 10 mm. Five

through-thickness holes with diameter d¼ 1.0 mm are
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realized (10 mm apart) along its centerline to adjust its bend-

ing stiffness. The bender is connected to the main beam by

means of a small socket-head hexagonal screw passing

through such holes.

III. AEROELASTIC RESPONSE OF THE RESONATING
UNIT

The coupled aero-elastic behavior of the system,

although well understood,15 is investigated here both numeri-

cally and experimentally to provide insights into the self-

regulating mechanism of the metamaterial.

We consider a single aerodynamic resonator with mass

ma and polar moment of inertia Ia, which is connected to the

primary structure through a flexible bender hinged at the

flap’s midspan (Fig. 1(b)). The bender is modeled as a linear

spring with elastic constant kh ¼ 3EIb=L3
b, Lb and EIb being

the length and bending stiffness of the bender, respectively

(Fig. 1(b)). A torsional spring with stiffness kh is introduced

to account for any mechanical interference in the hinge.

Denoting with h(t) and h(t) the pitch and plunge degrees of

freedom of the flap (Fig. 1(b)), the governing equations of

the system are obtained as

ma
€h þ mabðe� aÞ€hðtÞ þ khh ¼ L;

mabðe� aÞ€hðtÞ þ Ia
€hðtÞ þ khhðtÞ ¼ Mþ b

1

2
þ af

� �
L;

(1)

where b, e, and a, respectively, define the semi chord, center

of mass, and pivoting point of the flap (Fig. 1(b)). Moreover,

L andM denote the aerodynamic lift force and moment act-

ing on the airfoil. Here, the classical finite-state induced flow

theory by Peters et al.16 is used to approximate the unsteady

aerodynamic loads of the inviscid, incompressible flow. The

force and moment acting on the aerodynamic surface are

given by

L ¼ pq1sb2ð€hðtÞ þ V1 _hðtÞ � ba€hðtÞÞþ 2pq1sV1b

� _hðtÞ þ V1hðtÞ þ b
1

2
� a

� �
_hðtÞ � 1

2
bTkðtÞ

� �
;

M¼ �pq1sV1b
1

2
_hðtÞ þ V1 _hðtÞ þ b

1

8
� a

2

� �
€hðtÞ

� �
;

(2)

FIG. 1. Harnessing fluid-structure

interactions to design self-regulating

acoustic metamaterials. (a) One-

dimensional (1D) metamaterial con-

sisting of an aluminum beam with a

periodic array of airfoil resonators

bonded along its length. Here, we

investigate the effect of the incident air

speed V1 on the dynamic response of

the metamaterial. (b) The resonating

unit comprises a thin aluminum bender

connected to a rigid flap. The unit is

modeled as a rigid airfoil with pitch

(h) and heave/plunge (h) degrees of

freedom.
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where q1¼ 1.225 kg/m3 is the free stream air density, s the

airfoil span, and k is a vector containing the Np¼ 6 induced

flow terms kn (n¼ 1,… Np). The evolution of the state vector

k(t) is expressed in terms of Np first-order ordinary differen-

tial equations as

A _kðtÞ þ V1
b

k ¼ c €hðtÞ þ V1 _hðtÞ þ b
1

2
� a

� �
€hðtÞ

� �
; (3)

where A, b, and c denote arrays of known coefficients.16

Substituting Eqs. (2) and (3) into Eq. (1) and introducing the

state vector y(t)¼ [u(t) _u(t) k(t)]T with u(t)¼ [h(t) 0(t)]T, the

governing equations of the aeroelastic system can be conven-

iently rewritten in state space form as

_yðtÞ ¼ CðV1ÞyðtÞ: (4)

The effect of the air speed V1 on the natural frequencies of

the system is investigated calculating the eigenvalues of

CðV1Þ
Results of this analysis are shown in Figs. 2(a) and 2(b)

for airfoils with Lb¼ 50 mm (Fig. 2(a)) and 95 mm (Fig.

2(b)). At zero windspeed (i.e., V1¼ 0), the system features

two well distinct natural frequencies associated with the

heave and pitch degrees of freedom of the flap. The pitch fre-

quency monotonically increases for increasing values of V1,

while the opposite trend is observed for the frequency associ-

ated with the heave mode. Results also show that after a criti-

cal speed (�15 m/s in Fig. 2(a) and �5 m/s in Fig. 2(b)) the

two resonance frequencies of the airfoil coalescence, gener-

ating a dynamic instability of the resonator commonly

known as flutter.15 Above this critical speed, the dynamics of

the flap becomes highly nonlinear17 and the study of this re-

gime falls outside the scope of the present investigation.

Finally, comparison of the results obtained for the two

bender configurations shows that higher values of Lb

increase the compliance of the bender, which in turn lowers

both the natural frequencies of the flap and its flutter

airspeed.

Wind tunnel experiments have also been conducted to

validate the predictions of the model. Frequency response

measurements of the bender-flap resonator are conducted in

a low-speed wind tunnel in order to estimate the variation

of the system’s natural frequencies as a function of the

imposed airspeed. Tests are repeated for increasing values

of the airspeed from 10 m/s to 14 m/s for the first sample

(Lb¼ 50 mm), and from 0 m/s to 4 m/s for the second sam-

ple (Lb¼ 95 mm). The chosen values of V0 coincide with

the ones adopted for the transmission test on the finite-size

beam (discussed in Sec. IV). The natural frequencies of the

bender-airfoil system, estimated from the resonant peaks of

the measured frequency response function, are presented in

Fig. 2 showing excellent agreement with the adopted

model. Note that for the bender with Lb¼ 95 mm measure-

ments can only characterize the highest resonance fre-

quency (associated with the heaving mode), since the

adopted experimental apparatus has modest accuracy at fre-

quencies below 5 Hz.

IV. SELF-REGULATING ACOUSTIC METAMATERIAL

A. Analysis and testing of the periodic beam

The aero-elastic behavior of the airfoil units is exploited

to generate locally resonant bandgaps in the beam at frequen-

cies which can be controlled through the speed of the incident

flow. Finite element analyses are conducted to identify the

bandgaps’ frequency ranges in the beam and their depend-

ence on V0. Analyses are performed through the application

of Bloch’s theorem18 to a unit cell of the periodic assembly

comprising a portion of the main beam and one airfoil resona-

tor attached to it (see Fig. 1(a)). The main beam and the

bender are modeled using Euler-Bernoulli beam elements,

while Eqs. (1)–(3) are used to describe the rigid body dynam-

ics of the flap and its interaction with the surrounding fluid.

FIG. 2. Numerical and experimental results illustrating the aeroelastic

behavior of the resonating unit. (a) and (b) Comparison between the numeri-

cal (dashed lines) and experimental (markers) results showing the effect of

V1 on the natural frequencies of the resonators for two configurations char-

acterized by Lb¼ 50 mm (a) and Lb¼ 95 mm (b).
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Bloch-Floquet quasi-periodic conditions18,19 are applied to

the finite element equations of motion of the unit cell20 lead-

ing to a standard eigenvalue problem, which is solved for the

complex propagation constant l(x) of the system.20 The real

part of l, known as attenuation constant, denotes the rate of

exponential decay that a wave experiences as it propagates

through the medium. Wave propagation is, therefore, possible

within frequency bands, where l is purely imaginary, while

bandgaps occur at frequencies characterized by a nonzero

attenuation constant.

The tunable properties of the metamaterial are also veri-

fied experimentally through wave transmission tests per-

formed on the finite-size sample shown in Fig. 1. The

sample is positioned inside the test section of a low-speed

wind tunnel (Engineering Laboratory Design Inc.), which is

manually set to operate at a given airspeed. The beam is

clamped at one end and free to vibrate at the opposite end

(see Fig. 3(a)). An electrodynamic shaker (model

K2025E013 from The Modal Shop) provides a random

(broadband) input to the beam through a load cell (208C01

PCB Piezotronics) located near the clamp. The dynamic

response of the metamaterial is measured in terms of a trans-

mission coefficient defined as the ratio between the acceler-

ation signals measured at the two ends of the beam using

two identical accelerometers (352C22 PCB Piezotronics).

Measurements are recorded using a NI-cDAQ-9174 acquisi-

tion system and related software.

B. Results and discussion

Numerical and experimental results for the case with

Lb¼ 50 mm are reported in Figs. 3(b) and 3(c) showing the

evolution of the attenuation constant and transmission coeffi-

cient as a function of the frequency of wave propagation for

different wind speeds V1¼ 10, 12, and 14 m/s. Results indi-

cate that the system features two distinct frequency bandgaps,

identified by peaks of the attenuation constant and corre-

sponding valleys of the transmission coefficient. These occur

in the vicinity of the pitch and plunge resonance frequencies

of the corresponding airfoils shown in Fig. 2(a), confirming

the locally resonance nature of the attenuation regions.

Remarkably, because of the modal behavior of the resonating

unit, an increase in V1 results in a shift of the bandgaps’ fre-

quencies, which gradually approach each other. These results

clearly demonstrate the self-regulating properties of the struc-

ture, whose bandgaps autonomously adapt to different flow

speeds. The analysis is conducted up to a maximum speed

V1¼ 14 m/s after which the model predicts the onset of a

flutter instability of the airfoils. Interestingly, for this value of

V1 the two bandgaps of the system merge in a single broad

attenuation region centered at �35 Hz (see Fig. 3(b)).

To demonstrate the robustness of the proposed concept,

in Figs. 3(d) and 3(e) we report the results corresponding to

a longer bender (Lb¼ 95 mm). As shown in Fig. 3(d), a more

flexible connection between the airfoils and the main beam

lowers the airfoils resonance frequencies between 2 Hz and

FIG. 3. Self-regulating attenuation properties. (a) Schematic of the experimental setup used to characterize the dynamic response of the system. (b) and (d)

Attenuation constant of the beam computed for Lb¼ 50 mm (b) and Lb¼ 95 mm (d). Peaks of the attenuation constant identify frequency regions of strong

wave attenuation (bandgaps), which occur in the vicinity of the pitch and plunge resonance frequencies of the corresponding airfoils shown in Figs. 2(a) and

2(b). Results computed for different flow velocities show that the bandgaps tend to coalesce as V1 increases, and that they fully coalesce at the flutter speed.

(c) and (e) Transmission coefficient measured on the finite size beam with six airfoil resonators attached along its length. The presence of bandgaps is indicated

by frequency regions where the transmission coefficient suddenly drops (valleys) about 15 dB. The experimental results (c) and (e) are in excellent agreement

with the trend predicted by FE analysis (b) and (d).
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10 Hz. Because of the modest accuracy of the experimental

apparatus at frequencies below 5 Hz, the experimental results

presented in Fig. 3(e) only capture the highest bandgap asso-

ciated with the heaving mode of the airfoil. It is also worth

noting the excellent agreement between the numerical results

and the experimentally identified bandgaps occurring at fre-

quencies centered in the vicinity of the attenuation peaks

predicted by the numerical analysis, which also coincide

with the natural frequencies associated with the pitch and

plunge motion of the airfoils (Fig. 2(b)).

Although this study is conducted on a one-dimensional

configuration realized at the centimeter scale, the proposed

concept has the potential to be extended to arbitrary two-and

three-dimensional configurations and to a broader range of

length scales. In particular, in Fig. 4 we investigate numeri-

cally the relationship between the resonance frequency of the

airfoils, their overall length scale, and the incident airspeed

V1. Since the aerodynamic model adopted in this study

assumes an inviscid and irrotational flow,16 our analysis cor-

rectly captures the response of systems characterized by

Reynolds numbers (Re) approximately greater than 100 (i.e.,

Re> 102). Remarkably, our results indicate that the flow re-

gime remains inviscid and irrotational even when the overall

size of the system is reduced at the sub-millimeter length

scale, although this will inevitably affect its frequency range

of operation.

V. CONCLUDING REMARKS

We have investigated fluid-structure interactions in

locally resonant materials and shown how they can be

exploited to design structures with self-regulating dispersion

properties. Our results demonstrate that the airspeed imping-

ing on the system provides an effective mechanism to autono-

mously alter its bandgap frequency ranges without resorting

to additional stimuli. This intriguing dynamic behavior is

enabled by the use of airfoil-type resonating units that behave

as aeroelastic systems subjected to modal convergence. A

combination of numerical and experimental analyses is used

to illustrate the concept and to gain insights into the correla-

tion between the aeroelastic behavior of the resonators and

the dynamic properties of the periodic system.

By harnessing fluid-structure interactions, we expand

the capabilities of existing acoustic bandgap materials and

design systems capable of sensing the surrounding environ-

ment and change their dynamic response accordingly. This

concept has the potential to dramatically impact a variety of

applications, such as robotics, civil infrastructures, and

defense systems. For example, the proposed mechanism can

lead to the design of sustainable and self-regulating vibra-

tion suppression devices capable of autonomously tracking

and controlling the dynamic response of structures over a

broad range of operative conditions. Furthermore, the grow-

ing opportunities offered by novel micro-fabrication techni-

ques allow its integration with other micro-scale devices

leading to complex hierarchical systems capable of self-

responding to local environmental variations. Finally, the

possibility of extending the concept to two- and three-

dimensional configurations promises the development of

novel self-adaptive coatings for stress wave management

applications.

ACKNOWLEDGMENTS

This work has been partially supported by the Wyss

Institute through the Seed Grant Program. K.B. acknowledges

startup funds from the School of Engineering and Applied

Sciences, Harvard. F.C. and K.B. are also grateful to Michael

Smith and Professor Robert J. Wood for their support with

the wind tunnel experiments.

1J. Pendry, A. J. Holden, D. Robbins, and W. Stewart, “Magnetism from

conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave

Theor. Tech. 47, 2075–2084 (1999).
2C. Kittel, “Introduction to solid state physics,” Am. J. Phys. 35, 547–548

(1967).
3Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, and P. Sheng,

“Locally resonant sonic materials,” Science 289, 1734–1736 (2000).
4F. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C. Chen, and V. Laude,

“Waveguiding inside the complete band gap of a phononic crystal slab,”

Phys. Rev. E 76, 056601 (2007).
5F. Casadei, M. Ruzzene, L. Dozio, and K. Cunefare, “Broadband vibration

control through periodic arrays of resonant shunts: Experimental investiga-

tion on plates,” Smart Mater. Struct. 19, 015002 (2010).
6F. Casadei, L. Dozio, M. Ruzzene, and K. Cunefare, “Periodic shunted

arrays for the control of noise radiation in an enclosure,” J. Sound Vib.

329, 3632–3646 (2010).
7K. Bertoldi and M. Boyce, “Wave propagation and instabilities in mono-

lithic and periodically structured elastomeric materials undergoing large

deformations,” Phys. Rev. B 78, 184107 (2008).
8N. Boechler, J. Yang, G. Theocharis, P. Kevrekidis, and C. Daraio,

“Tunable vibrational band gaps in one-dimensional diatomic granular

crystals with three-particle unit cells,” J. Appl. Phys. 109, 074906 (2011).
9Y. Yao, Z. Hou, and Y. Liu, “The two-dimensional phononic band gaps

tuned by the position of the additional rod,” Phys. Lett. A 362, 494–499

(2007).
10F. Casadei, T. Delpero, A. Bergamini, P. Ermanni, and M. Ruzzene,

“Piezoelectric resonator arrays for tunable acoustic waveguides and meta-

materials,” J. Appl. Phys. 112, 064902 (2012).

FIG. 4. Scaling properties of the proposed concept. Numerical results indi-

cating the relationship between the first natural frequency of a resonating

unit, the overall length scale of the resonator, and the magnitude of the inci-

dent air speed V1. The thick-dashed line represents configurations charac-

terized by Re> 102. Below this line, the flow regime can be considered as

inviscid and irrotational, so that the elastic and aerodynamic behavior of the

airfoil resonators is accurately predicted by the present model, regardless of

the specific scale of the system.

034907-5 F. Casadei and K. Bertoldi J. Appl. Phys. 115, 034907 (2014)

http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1119/1.1974177
http://dx.doi.org/10.1126/science.289.5485.1734
http://dx.doi.org/10.1103/PhysRevE.76.056601
http://dx.doi.org/10.1088/0964-1726/19/1/015002
http://dx.doi.org/10.1016/j.jsv.2010.04.003
http://dx.doi.org/10.1103/PhysRevB.78.184107
http://dx.doi.org/10.1063/1.3556455
http://dx.doi.org/10.1016/j.physleta.2006.10.061
http://dx.doi.org/10.1063/1.4752468


11I. Shadrivov, S. Morrison, and Y. Kivshar, “Tunable split-ring resonators for

nonlinear negative-index metamaterials,” Opt. Express 14, 9344–9349

(2006).
12H. C. Fu, T. R. Powers, R. Stocker et al., “Bacterial rheotaxis,” Proc. Natl.

Acad. Sci. U.S.A. 109, 4780–4785 (2012).
13J. C. Montgomery, C. F. Baker, and A. G. Carton, “The lateral line can

mediate rheotaxis in fish,” Nature 389, 960–963 (1997).
14D. A. Lytle, J. D. Olden, and L. E. McMullen, “Drought-escape behaviors

of aquatic insects may be adaptations to highly variable flow regimes char-

acteristic of desert rivers,” Southwest. Natural. 53, 399–402 (2008).
15A. Collar, “The first fifty years of aeroelasticity,” Aerospace 5, 12–20

(1978).

16D. A. Peters, S. Karunamoorthy, and W.-M. Cao, “Finite state induced

flow models. I Two-dimensional thin airfoil,” J. Aircraft 32, 313–322

(1995).
17I. Garrick and W. H. Reed III, “Historical development of aircraft flutter,”

J. Aircraft 18, 897–912 (1981).
18L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters

and Crystal Lattices (Courier Dover Publications, 2003).
19F. Bloch, “Uber die quantenmechanik der elektronen in kristallgittern,” Z.

Phys. 52, 555–600 (1929).
20D. J. Mead, “Wave propagation in continuous periodic structures:

Research contributions from southampton, 1964–1995,” J. Sound Vib.

190, 495–524 (1996).

034907-6 F. Casadei and K. Bertoldi J. Appl. Phys. 115, 034907 (2014)

http://dx.doi.org/10.1364%2FOE.14.009344
http://dx.doi.org/10.1073/pnas.1120955109
http://dx.doi.org/10.1073/pnas.1120955109
http://dx.doi.org/10.1038/40135
http://dx.doi.org/10.1894/JS-19.1
http://dx.doi.org/10.2514/3.46718
http://dx.doi.org/10.2514/3.57579
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1006/jsvi.1996.0076

	s1
	s2
	s3
	d1
	d2
	f1a
	f1b
	f1
	d3
	d4
	s4
	s4A
	f2a
	f2b
	f2
	s4B
	f3a
	f3b
	f3c
	f3d
	f3e
	f3
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	f4
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20

