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The Instability Mechanism
of a Confined Rod Under
Axial Vibrations
We studied the stability of a confined rod under axial vibrations through a combination
of analytical and numerical analysis. We find that the stability of the system is signifi-
cantly different than in the static case and that both the frequency and magnitude of the
applied vibrational force play an important role. In particular, while larger vibrational
forces always tend to destabilize the system, our analysis indicates that the effect of the
frequency is not obvious and monotonic. For certain frequencies, a very small force is
sufficient to trigger an instability, while for others the rod is stable even for large forces.
Furthermore, we find that the stability of the confined rod is significantly enhanced by the
presence of frictional contact and that in this case also the magnitude of the perturbation
affects its response. [DOI: 10.1115/1.4031710]
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1 Introduction

Motivated by tubing operations in the oilfield [1–3], there have
been a number of studies on the stability of confined rods [4–20].
In fact, during insertion of a tubular rod into a horizontal wellbore
frictional forces result in a buildup of compressive axial load that
is often sufficient to trigger not only a sinusoidal mode but also
helical buckling. At that point, because of the rapidly increasing
contact force between the pipe and the well, lockup occurs, pre-
venting further injection. In an effort to delay the onset of buckling
and extend the reach, both passive [21–23] and active [24,25] meth-
ods have been investigated. In particular, axial vibrations generated
by devices attached to one end of the tubing have been commonly
used in the oil field to extend reach, as the elastic waves traveling
along the rod have been shown to reduce the effective frictional
load and therefore to delay the onset of buckling [26].

The effect of vibrations on the stability of mechanical systems
has been the topic of many studies [27–30] and it is a paradigm in
control theory that the stability of a pendulum can be completely
altered by vibrations [31,32]. However, the mechanism by which
axial vibrations affect the stability of a confined rod is currently
not well understood. This is because the ability of a rod to both
stretch and bend and the presence of frictional contact make the
problem much more difficult.

Here, we combine analytical methods, numerical analysis, and
dynamic simulations to investigate the buckling mechanism of a
confined slender rod subjected to axial vibrations. We first show
that in the absence of friction, the stability of such a rod is gov-
erned by Mathieu’s equation [33] and that both the vibration
amplitude and frequency affect the onset of buckling. Interest-
ingly, we find that the effect of frequency is complex and not
monotonic. For example, stable and unstable states may alternate
when the vibration frequency is gradually increased and for

specific excitation frequencies the rod can lose stability even
though the applied compressive force is significantly lower than
the force required to trigger buckling in the static case. Moreover,
for the case of frictional contact we also find that the onset of
buckling is strongly affected by the amount of perturbation set by
the environment, in agreement with observations recently reported
for the static case [19].

The paper is organized as follows. After describing the system
in Sec. 2, we investigate the stability of a constrained rod under
axial vibrations in the case of frictionless contact (Sec. 3). In par-
ticular, we first derive the governing equation (Sec. 3.1), then
numerically solve it using a leapfrog integration scheme (Sec. 3.2)
and finally compare the results to those obtained performing
dynamic simulations (Sec. 3.3), finding an excellent agreement. In
Sec. 4, we then focus on the stability of an elastic constrained rod in
the presence of frictional contact. Similarly, we first present the gov-
erning equation (Sec. 4.1), solve it numerically (Sec. 4.2), and then
compare the results to those of dynamic simulations (Sec. 4.3).

2 A Confined Rod Under Axial Vibration

In this study, we consider an elastic rod of length L with a cir-
cular cross section of radius Rrod confined by a horizontal cylindri-
cal channel of radius Rchannel (Fig. 1) and investigate its stability
when subjected to axial vibrations. We assume that the rod
initially lays straight on the channel bottom due to gravity
and study its stability when two axial forces of opposite direction
F ¼ Fave þ dF sinðxtÞ are applied at both of its ends. In particular,
we determine for which combinations of (Fave, dF, and x) the rod
buckles and takes a wavy configuration described by the deflec-
tion angle h(s, t), which is a function of arc length s and time t.

3 Instability Analysis for the Frictionless Case

In this section, we first derive the partial differential equation
(PDE) which governs the stability of the rod (Sec. 3.1) and then
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solve it numerically using a leapfrog integration scheme
(Sec. 3.2). Finally, we compare the results with those obtained
performing dynamic simulations (Sec. 3.3).

3.1 Governing Equation. To identify the onset of instability
for the case of frictionless contact, we start by determining the
Euler–Lagrange equation for our system. If we assume that the
period of the excitation force is much larger than the time for an
axial wave to travel through the rod (i.e.,

ffiffiffiffiffiffiffiffi
E=q

p
� xL=2p, E and

q denoting the Young’s modulus and density of the material,
respectively), the axial force in the rod can be treated as uniform
through the rod and by minimizing the Lagrangian of the system,
its governing equation is obtained as [19]

qA
@2h
@t2
þ EI

@4h
@s4
þ Fave þ dF sin xtð Þ½ � @

2h
@s2
þ qAgh

R
¼ 0 (1)

where R¼Rchannel�Rrod and A and EI denote the cross-sectional
area and bending rigidity of the rod, respectively. To study the sta-
bility of the rod, we first decompose h into Fourier series

hðs; tÞ ¼
X1
m¼1

AmðtÞsinðxmsÞ (2)

where xm¼mp/L. Substitution of Eq. (2) into Eq. (1) yields the
governing equation for the Fourier modes

@2Am

@s2
¼ bm þ am sin sð ÞAm; m ¼ 1; 2;…;1 (3)

where s¼xt and

am ¼
x2

mdF

qAx2

bm ¼ �
EIx4

m

qAx2
þ g

x2R
� Favex2

m

qAx2

 ! (4)

Equation (3) is the well-known Mathieu’s equation [33] and indi-
cates that the stability of the mth mode in case of frictionless con-
tact only depends on the two parameters am and bm and not on the
initial conditions.1

Note that in the limit of an axial force applied statically (i.e.,
dF¼ 0), am vanishes and Eq. (3) reduces to

@2Am

@s2
� bmAm ¼ 0; m ¼ 1; 2;…;1 (5)

so that bm¼ 0 identifies the onset of instability for the mth mode
[19]. In fact, if the linearized system described by Eq. (5) is per-
turbed and bm> 0, the magnitude of the initial perturbation grows
exponentially with time. However, this conclusion is not true any-
more in the presence of axial vibrations (am> 0).

3.2 Numerical Solution of the PDE. To investigate the sta-
bility of the mth mode of the rod, we start by solving numerically
Eq. (3) (Note that an analytical solution of Eq. (3) can also be
derived—see Appendix). In particular, we implemented a classic
leapfrog integration scheme [37] and updated Am incrementally,
using a small time increment (ds¼ 5� 10�4) to ensure that the
solution does not diverge because of numerical instabilities. More
specifically, we assigned zero displacement (Am(0)¼ 0) and an
initial nonzero velocity (A0mð0Þ ¼ �) as initial conditions and
monitored the evolution of Am. If the mth mode is stable, Am

remains bounded within a small interval; by contrast, when it is
unstable, Am grows indefinitely as a function of time. Operation-
ally, the mth mode of the system is considered to be stable if after
100 cycles

Am 200pð Þ
A0m 0ð Þ

< 1� 106 (6)

To numerically explore the influences of am and bm, we solved
Eq. (3) 10,000 times for different combinations of am � [0, 6] and
bm � [�4, 3] and determined the stability of each point using
Eq. (6). We then report the stable modes using a red marker in
Fig. 2(a). As expected, in the limit of the load applied statically
(i.e., am¼ 0), the mth mode is unstable for bm> 0. However, as
the load is applied dynamically, the axial vibrations significantly
affect the stability of the system, even for very small values of am.
Interestingly, the effect of axial vibrations is not obvious and
monotonic. For example, for bm¼�0.25, an increase in am as
small as 1� 10�8 is enough to make the mth mode unstable. By
contrast, for bm¼�0.80, the mth mode is stable up to am¼ 1.5.
Additionally, the results reported in Fig. 2(a) indicate that for spe-
cific dynamic conditions, a mode can be stable even for bm> 0.
Interestingly, this means that in some rare cases the axial vibra-
tions can stabilize a given mode.

Although the results reported in Fig. 2(a) can be easily used to
determine the stability of the mth mode of an elastic rod under

Fig. 1 Schematic of a confined rod in a cylindrical channel. Two identical axial forces with
opposite direction, F 5 Fave 1 dF sin(xt), are applied to its ends. When buckling occurs, the
rod takes a wavy configuration.

1Although the rigorous proof of the fact that the stability of the mth mode is not
affected by the initial conditions involves the Floquet’s theorem [34–36], it can be
intuitively seen by noting that the solution of Eq. (3) does not change when Am is
multiplied by an arbitrary constant.
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specific loading conditions, it is not trivial to use them to infer
whether the system is stable or not. In fact, this requires checking
whether all modes are stable. To more easily identify the loading
conditions (compression force, Fave, vibration force, dF, and
vibration frequency, x) resulting in unstable configurations, we
focus on a lab setup consisting of a Nitinol rod confined by a poly-
plastic channel, which has recently been used to investigate the
buckling and post-buckling behavior of an elastic rod injected into
a horizontal, frictional, and cylindrical constraint [20]. The rod
has a Young’s modulus E¼ 68 GPa, density q¼ 6500 kg/m3,
radius Rrod¼ 0.8 mm, and length L¼ 3.1 m. Moreover, the chan-
nel has radius Rchannel¼ 9.4 mm. For such confined rod, the criti-
cal force under static uniaxial compression is given by
Fcr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqAg=R

p
¼ 1:70 N and the corresponding critical mode

is mcr¼ [qAgL4/(p4REI)]1=4¼ 6 [4].
We start to investigate the effect of the loading conditions on

the stability of the rod keeping two loading parameters constant
and varying the third one. In particular, in Figs. 2(b)–2(d) we
report with markers the first ten modes of the rod when we varied
x, Fave, and dF, respectively. Note that the shape of the markers
indicates a specific set of loading conditions, while their color rep-
resents the mode number. As expected from Eq. (4)1, am increases
monotonically with the mode number. On the other hand, as the
mode number increases, bm is found to increase, reach a maxi-
mum, and then decrease. Focusing on Fig. 2(b), we find that for
x¼ 60 rad/s (triangular markers) and x¼ 85 rad/s (square
markers), all modes stay within the stable region, indicating a sta-
ble configuration of the rod. By contrast, for x¼ 110 rad/s (circu-
lar markers) there is one mode (the sixth mode) which lies outside
the stable zone, so that the rod is unstable. Similar trends are
observed when Fave and dF are varied, as shown in Figs. 2(c) and
2(d). Although these results do not provide a complete stability

map, they indicate that by increasing either x or Fave or dF the
system may become unstable, since some of the modes fall out-
side the numerically determined stable region (shaded area).
Finally, we note that we were not able to identify a stable rod with
a mode characterized by bm> 0.

To further explore the stability of the rod, in Figs. 3(a)–3(d) we
indicate with markers all stable configurations in the x–Fave space
for dF¼ 0.1, 0,2, 0.3, and 0.5 Fcr. Note that the maps are determined
numerically by checking the first 25 modes. Although this criterion
is empirical, its accuracy was ensured by comparing the results with
those obtained by checking the stability of more modes.

As expected, the maps shown in Figs. 3(a)–3(d) indicate that by
increasing the amplitude of the vibrational force, dF, the system
tends to be more unstable. For example, for dF¼ 0.1Fcr (Fig. 3(a)),
most of the loading conditions with Fave<Fcr result in stable config-
urations. This is expected since as dF! 0, the rod is always stable
for Fave<Fcr. However, if dF is increased to 0.5Fcr the stable do-
main dramatically shrinks and becomes limited to a small region
characterized by low frequencies and low static compressive forces.

Interestingly, Fig. 3(a) also indicates that the effect of the fre-
quency x is not obvious and monotonic. In fact, given a certain
value of dF, for some frequencies the rod is stable even for large
compressive forces, while for other frequencies the instability is
triggered for very low values of Fave. As an example, for
dF¼ 0.2Fcr (Fig. 3(b)) the rod is immediately unstable when
x� 120 rad/s. By contrast, for x� 20 rad/s a compressive force
Fave¼ 0.8Fcr needs to be applied to trigger the instability. We also
note that for x> 110 rad/s, the stable and unstable regimes alter-
nate, indicating that for some frequencies the onset of instability
can be delayed by increasing the compressive forces Fave.

To further study the effect of x and Fave on the stability of the
rod, we consider dF¼ 0.2Fcr and focus on two frequencies,

Fig. 2 Stability map obtained by solving Eq. (3) numerically. (a) The markers indicate the sta-
ble configurations as determined by solving numerically the PDE. (b)–(d) First 10 modes for a
Nitinol rod superimposed on the stability map, when we varied (b) x, (c) Fave, and (d) dF. The
shape of the markers indicates a specific set of loading conditions, while their color repre-
sents the mode number.
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x¼ 85 rad/s (left vertical line in Fig. 3(b)) and x¼ 150 rad/s
(right vertical line in Fig. 3(b)). In Figs. 3(e) and 3(f), we use col-
ored pixels to indicate the evolution of the unstable modes as a
function of Fave for these two frequencies. The results again
clearly show that the frequency of the excitation affects the stabil-
ity of the system. In fact, for x¼ 85 rad/s (Fig. 3(e)) all modes are
stable for Fave< 0.45Fcr, while we find at least one unstable mode
for Fave> 0.45Fcr. By contrast, for x¼ 150 rad/s an alternation of
stable and unstable configurations is found when Fave is progres-
sively increased. In fact, the rod is stable for Fave¼ 0.05, 0.34,
and 0.63 Fcr, but unstable for Fave¼ 0.20 and 0.52 Fcr. Finally, we
also note that the unstable modes are always close to the critical
mode under static loading (in this case mcr¼ 6), but change as the
applied force Fave is increased.

3.3 Dynamic Simulations. Next, we perform dynamic simu-
lations and compare the results with the predictions from our

analysis. Following an approach that has been previously success-
fully applied to study the stability of frictionally confined rods
[19], the rod (with the same geometric and material properties as
those described in Sec. 3.2) is discretized into segments (in this
case 250 segments), each of which is characterized by its position
and orientation. To obtain the deformed configuration of the rod,
we apply a step-by-step integration scheme (computation time
step dt¼ 2.5 ls). At each computational time step, the extension,
bending, twisting, and shear strains are computed for each seg-
ment using the current position and orientation of the rod follow-
ing the Kirchhoff model [38]. The stresses along the rod are then
computed from these strains, assuming an isotropic linear elastic
material. The force loading on each segment, acceleration of the
segments, and the positions for the next time step are then succes-
sively updated. Additionally, the channel is modeled as a visco-
elastic frictional contact using a modified Hertzian contact
formulation [39,40].

Fig. 3 (a)–(d) Numerically obtained stability maps for a Nitinol rod when (a) dF 5 0.1Fcr, (b)
dF 5 0.2Fcr, (c) dF 5 0.3Fcr, and (d) dF 5 0.5Fcr. All stable configurations are indicated by dots.
(e) and (f) Evolution of the unstable modes as a function of Fave for dF 5 0.2Fcr. Results for
both (e) x 5 85 rad/s and (f) x 5 150 rad/s are reported.
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To compare the results of the dynamic simulations with those
reported in Fig. 3, we set the rod initially straight and statically
load it by applying a prestrain �pre¼Fave/(EA). Then, we assign to
each node a random initial transverse velocity and apply two axial
forces of magnitude dF sinðxtÞ to the ends of the precompressed
rod. Each simulation is run until t¼ 2 s and we monitor the evolu-
tion of the rod. Note that, if buckling occurs, it typically happens
within 50 ms and results in an increasing amplitude for the dis-
placements of the nodes. Practically, the rod is judged to be unsta-
ble if the maximum angle h for all nodes exceeds 0.087 rad
(5 deg) after 1 s.

In Fig. 4, we report numerical snapshots showing a top view of
the deformed rod at t¼ 1.5 s. All results are obtained for
dF¼ 0.2Fcr and two representative frequencies, x¼ 85 rad/s
(Fig. 4(a)) and x¼ 150 rad/s (Fig. 4(b)). Moreover, five different
values of dF/Fcr are considered, also highlighted with markers in
Fig. 3(b). Remarkably, we find an excellent agreement between
the predictions of our analysis and the results of the dynamic sim-
ulations. In fact, for all loading conditions that were predicted to
result in unstable configurations in Fig. 3(b), we find that the rod
buckles and takes a wavy configuration. Additionally, for the
loading conditions that were predicted to result in stable configu-
rations in Fig. 3(b), the rod is still straight at t¼ 1.5 s. We also
notice that as previously observed for the static case [19], typi-
cally one mode dominates at instability, resulting in a periodic
wavy pattern, even though random initial velocities are assigned
as imperfections.

4 Instability Analysis for the Friction Case

Following an approach similar to that used for the analysis of
the frictionless case, in this section we start by presenting the
equation governing the stability of a confined rod in the presence
of frictional contact (Sec. 4.1). We then integrate it numerically
(Sec. 4.2) and finally compare the results with those obtained per-
forming dynamic simulations (Sec. 4.3).

4.1 Governing Equation. In the presence of dry friction, the
governing equation is

qA
@2h
@t2
þEI

@4h
@s4
þ Faveþ dFsin xtð Þ½ �@

2h
@s2
þqAgh

R
�Ffric s; tð Þ

R
¼ 0

(7)

with

jFfricðs; tÞj � lhðs; tÞN (8)

where N is the normal contact force and lh(s, t) is the transverse
component of the friction coefficient l. Moreover, we note that
Eq. (8) can be simplified to

Ffric s; tð Þ ¼ �lh s; tð ÞNsign
@h
@t

� �
(9)

since the rod is always moving axially because of the applied
vibrations (except for a few instants when parts of the rod are at
rest).

Assuming small values for h, which is sufficient for our goal of
identifying the buckling onset, the contact force can be approxi-
mated as the gravity force

N ¼ qAg (10)

since the centripetal force can be neglected given that @h/@t is
small.

To investigate the stability of the system, we assume that at the
onset of instability only one mode (the mth mode) dominates [19],
so that

h � AmðtÞsinðxmsÞ (11)

and

sign
@h
@t

� �
� Bm tð Þsin xmsð Þ (12)

where the coefficient Bm(t) is obtained as

Bm tð Þ � 2

L

ðL

0

sign
@Am

@t
sin xmsð Þ

� �
sin xmsð Þds ¼ 4

p
sign

@Am

@t

� �
(13)

Substituting Eqs. (11), (12), and (13) into Eq. (7), the governing
equation for the dominant mth Fourier mode in the case of fric-
tional contact is obtained as

Fig. 4 Numerical top-view snapshots showing the configurations of the rod at t 5 1.5 s, as obtained from the dynamic simula-
tions for (a) x 5 85 rad/s and (b) x 5 150 rad/s. All simulated loading conditions are indicated by a marker in Fig. 3(b).
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@2Am

@s2
¼ bm þ am sin sð ÞAm � c sign

@Am

@s

� �
(14)

where am and bm are the same parameters defined in Eq. (4) and

c ¼ 4lhg

px2R
(15)

Note that lh in Eq. (15) is a function of both the arc length and
time (i.e., lh¼ lh(s, t)). In fact, while the friction coefficient l is a
constant, its transverse component lh depends on the ratio
between the axial and transverse velocity. Therefore, to solve
Eq. (14), the axial velocity also needs to be known. However,
since the stability of the rod is affected by the global conditions
experienced by the system, in our study we assume that lh is con-
stant and given by

lh ¼ l
�vhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�v2
a þ �v2

h

q (16)

where �va and �vh are the averaged axial and transverse velocity
components. In particular, since the averaged axial displacement
experienced by the rod over half a cycle is 2=L

Ð L=2

0
2dF=ðEAÞ 	 xdx ¼ LdF=ð2EAÞ, the averaged axial velocity is
given by

�va ¼
LdF

2EA
	 x
p

(17)

Moreover, since the instability is typically triggered during the
first few loading cycles, we use the initial assigned transverse
velocity � to estimate �vh as

�vh ¼ vhð0Þ ¼ xR� (18)

4.2 Numerical Solution of the PDE. We start by solving
Eq. (14) numerically using the leapfrog integration scheme
described in Sec. 3.2. In all our calculations, we assume a nonzero
initial velocity (A0mð0Þ ¼ �) and a vanishing initial displacement
(Am(0)¼ 0), but we do not expect the results to be affected by this
particular choice of initial conditions [19]. Differently from the
frictionless case, Eq. (14) indicates that in the presence of friction
the stability of the mth mode is controlled not only by am and bm

but also by the friction parameter c and the magnitude of the ini-
tial velocity �. Therefore, in Fig. 5 we report four stability maps
obtained assuming a constant friction term c¼ 0.01 and varying �
from 0.005 to 0.5. Interestingly, we find that friction significantly
enhances the stability of the modes. In fact, for small values of the
initial perturbation �, the modes are typically stable even for
bm> 0. However, as the perturbation � is gradually increased the
stable domain progressively shrinks and for �> 0.05 it is almost the
same as that found in the frictionless case (Fig. 2). Similar trends
can be observed also when the perturbation � is kept constant and
the friction term c is varied. For small values of c, the behavior of
the system resembles that found in the frictionless case, while for
large values of c the stable domain is significantly enlarged. Note
that these observations are well aligned with the findings previously
reported for a constrained rod axially compressed [19].

Next, we explicitly determine the loading conditions that result
in an instability for a rod with the same properties as those pre-
sented in Sec. 3.2 when l¼ 0.1. The stability maps shown in
Figs. 6(a)–6(d) highlight again the fact that the magnitude of the
perturbation (here represented by the initial velocity) has a crucial
effect on the stability of the system. For vh(0)¼ 30 mm/s, most of
the considered loading conditions are stable, while for
vh(0)¼ 50 mm/s the stable domain contracts dramatically. More-
over, we note that the effect of the vibration force dF and the fre-
quency x on the stability of the system is similar to that
previously observed for the frictionless case. In fact, as for the

Fig. 5 Stability maps obtained by solving Eq. (14) numerically. The friction term c is kept con-
stant while the perturbation � is varied from 0.005 to 0.5.
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Fig. 6 (a)–(d) Numerically obtained stability maps for a Nitinol rod in the presence of frictional contact (l 5 0.1) when (a)
dF 5 0.5Fcr and vh(0) 5 30 mm/s, (b) dF 5 0.7Fcr and vh(0) 5 30 mm/s, (c) dF 5 0.5Fcr and vh(0) 5 50 mm/s, and (d) dF 5 0.7Fcr and
vh(0) 5 50 mm/s. All stable configurations are indicated by dots. (e) and (f) Evolution of the unstable modes as a function of Fave

for dF 5 0.7Fcr and vh(0) 5 50 mm/s. Results for both (e) x 5 85 rad/s and (f) x 5 150 rad/s are reported.
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frictionless case, an increase in dF is found to reduce the stable
domain, while x has a more complicated effect on the stability of
the system. It is interesting to observe that in the presence of fric-
tion the effect of larger values of x is more pronounced than in
the frictionless case, since Eq. (17) indicates that higher frequen-
cies result in larger axial velocities and, therefore, smaller trans-
verse friction components (Eq. (16)). Moreover, differently from
the case of frictionless contact (Fig. 3), when friction is present
we do not see alternation of stable and unstable configurations as
Fave is increased while keeping x constant.

As in the frictionless case, when the system is unstable, typi-
cally several modes, which are close to the critical mode predicted
in the static case, are unstable. To highlight this point in Figs. 6(e)
and 6(f), we report the unstable modes as a function of Fave for
x¼ 85 rad/s and x¼ 150 rad/s.

4.3 Dynamic Simulations. Next, we conduct dynamic simu-
lations using the method described in Sec. 3.3 and compare the
results to the numerical solution of the PDE. Additionally, friction
is implemented using Coulomb’s law with the static and dynamic
friction coefficients set to be the same (i.e., l¼ ls¼ ld).

In Fig. 7, we report simulation snapshots showing a top view of
the deformed rod at t¼ 4 s (note that in the case of frictional con-
tact, the simulations are run for a longer time to minimize the
effect of the relatively large applied initial imperfections). All
results are obtained for dF¼ 0.7Fcr and vh(0)¼ 50 mm/s. More-
over, two frequencies x¼ 85 rad/s (Fig. 7(a)) and x¼ 150 rad/s
(Fig. 7(b)) and three different values of Fave/Fcr (also highlighted
with markers in Fig. 6(d)) are considered.

Since our analysis indicates that in the case of frictional con-
tact, the stability of the rod is highly affected by the perturbation
set by the environment, we consider four different sets of initial
conditions:


 Case A: We impose the same initial conditions as those con-
sidered in our analysis and assign to each node an initial
transverse velocity

vh x; 0ð Þ ¼ vh 0ð Þsin mcr

x

L

� �
(19)

where x denotes the initial position of the node along the rod and
mcr is one of the unstable modes predicted by the numerical

solutions of the PDE (see Figs. 6(e) and 6(f)). In particular, we
choose mcr¼ 6 for x¼ 85 rad/s and mcr¼ 8 for x¼ 150 rad/s.

 Case B: To test whether the assumption of a single mode

dominating at the onset of instability is valid, we consider
the perturbation to be the superposition of several modes and
assign to each node an initial transverse velocity

vh x;0ð Þ ¼ vh 0ð Þ sin 4
x

L

� �
þ sin 6

x

L

� �
þ sin 8

x

L

� �
þ sin 10

x

L

� �� �
(20)


 Case C: To further study the role played by the interactions
between different modes, we assign to each node an initial
transverse velocity

vh x; 0ð Þ ¼ vh 0ð Þsin m
x

L

� �
þ vrandom

h

X15

k ¼ 1

k 6¼ m

sin k
x

L

� �
(21)

where vrandom
h 2 ½�vhð0Þ; vhð0Þ� is a random number. Note that we

use m¼ 6 and 10 for x¼ 85 rad/s and m¼ 8 and 10 for
x¼ 150 rad/s.

 Case D: Since in reality the perturbation experienced by the

rod is random, we assign to each node an initial transverse
velocity

vhðx; 0Þ ¼ vrandom
h (22)

As predicted by our analysis, the results reported in Fig. 7 indicate
that, when the compressive force Fave is small (Fave¼ 0.118Fcr), the
rod is stable for both x¼ 85 rad/s and x¼ 150 rad/s. We also see
that in this case, the type of perturbation set by the environment does
not affect the response of the system, since the rod is found to be sta-
ble for all considered sets of initial conditions.

When the applied compressive force is increased to
Fave¼ 0.424Fcr, our analysis predicts a stable configuration for
x¼ 85 rad/s and an unstable one for x¼ 150 rad/s. Although all
simulations predict a stable configuration for x¼ 85 rad/s, we
find that for x¼ 150 rad/s the instability of the rod is not captured
if the initial velocity distribution is assigned as in case C with
m¼ 10 and as in case D. This is because the magnitude of the

Fig. 7 Numerical top-view snapshots showing the configurations of the rod at t 5 4 s, as obtained from the dynamic simula-
tions for (a) x 5 85 rad/s and (b) x 5 150 rad/s. All simulated loading conditions are indicated by a marker in Fig. 6(d).
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unstable mode (m¼ 8) contained into these perturbations is lower
than vh(0)¼ 50 mm/s and therefore not large enough to trigger the
instability. On the other hand, for cases A, B, and C with m¼ 8,
the simulations predict the rod to be unstable and we find that
mode 8 is always the one growing, indicating that the effect of
mode interaction is not significant and that typically one mode
grows and dominates if instability occurs.

For Fave¼ 0.825Fcr, the analysis predicts unstable configura-
tions for both x¼ 85 rad/s and x¼ 150 rad/s. In this case, we find
that all dynamic simulations except those performed using purely
random initial velocity distributions (case D) result in unstable
configurations. For x¼ 85 rad/s, the rod always buckles into
mode 6, although its shape is slightly affected by the initial condi-
tions. Interestingly, for x¼ 150 rad/s mode 8 is found to grow for
cases A and B, while mode 9 dominates for case C (with both
m¼ 8 and m¼ 10). This indicates that when multiple modes are
unstable (in this case, modes 8 and 9 are both unstable), the inter-
action between them may play a role and affect the final configu-
ration of the rod.

Finally, it is important to point out that we monitor the torsional
and shear energy in all our simulations and observe that their con-
tribution is negligible compared to that of the bending and stretch-
ing energies (it is typically less than 2% of the total energy even
for very large post-buckling deformations). This observation thus
confirms the validity of our analysis, where the contribution from
shear and torsion has been neglected.

5 Conclusion

We have used a combination of analysis and dynamic simula-
tions to study the stability of a confined rod under axial vibrations.
Interestingly, we have found that the vibrations significantly affect
the response of the system. In fact, both the critical modes and
forces are different from those found in the static case and depend
on both the frequency and magnitude of the vibrational force.
Moreover, for the case of frictional contact, also the magnitude of
the perturbation set by the environment affects the onset of the
instability. While larger values of friction coefficients enhance the
stability of the system, by increasing the amount of perturbation
the onset of instability is triggered earlier.

Importantly, our analysis indicates that axial vibrations may not
always help in delaying buckling and lockup in the oil field. While
it has been previously shown that axial vibrations can reduce the
effective friction coefficient between the tubing and the wellbore
[24], our study shows for certain vibration conditions, the tubing
buckles for very low values of compressive axial load. Therefore,
it is worthwhile to study further the effect of the vibration parame-
ters when the injection process is considered.

Finally, we note that the goal of our analysis is to capture the
onset of the first bifurcation, so that simplified governing equa-
tions under the assumption of small deformations can be used.
Different rod models that fully account for its large deformation,
such as the Cosserat beam model [41] and the Kirchhoff rod
model [42], should be used to capture secondary bifurcations
(e.g., helical lock-up) encountered along the loading path
[11,13,16,17].

Appendix: The Approximate Analytical Solution for

Mathieu’s Equation, Eq. (3)

In this appendix, we compare the numerical solution of Mathieu’s
equation presented in Sec. 3.2 (Fig. 2) with its analytical solution.

A well-known and accurate method to determine the boundaries
between the stable and unstable regions is based on the Hill’s
determinants [43–46]. This approach is based on the fact that,
according to the Floquet theory [34,35], the bounded solution
along the boundaries has a period of 2p or 4p and thus can gener-
ally be expressed as a Fourier series [47]

Am sð Þ ¼ a0 þ
Xþ1
k¼1

ak cos
ks
2

� �
þ bk sin

ks
2

� �� �
(A1)

where ak and bk are the Fourier coefficients. Introducing Eq. (A1)
into Eq. (3) and employing the principle of harmonic balance,
four sets of algebraic equations are obtained

1

4

1þ 4bm 2am 0 2am 0 0 	 	 	
0 �2am 9þ 4bm 0 0 2am 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

2
64

3
75x ¼ 0

1

4

2am 1þ 4bm 0 �2am 0 0 	 	 	
2am 0 0 9þ 4bm �2am 0 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

2
64

3
75x ¼ 0

1

2

2bm 0 am 0 0 0 	 	 	
0 2þ 2bm 0 0 �am 0 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

2
64

3
75y ¼ 0

1

2

2am 0 2þ 2bm �am 0 0 	 	 	
0 am 0 0 8þ 2bm �am 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

2
64

3
75y ¼ 0

(A2)

Fig. 8 Stability maps obtained by solving Eq. (3) analytically and numerically. The shaded
areas indicate the stable domains as predicted by the analytical solution obtained using (a)
the method of Hill’s determinants and (b) the simplified method in which the sinusoidal func-
tions are approximated as square waves, while the markers indicate the stable configurations
as determined by solving numerically the PDE.
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with

x ¼ ða1; b1; a3; b3;…ÞT and y ¼ ða0; a2; b2; a4; b4;…ÞT (A3)

The Fourier coefficients ak and bk can then be solved by setting to
zero the determinants of the four matrices in Eq. (A2), known as
the Hill’s infinite determinants. To limit the computational cost, in
our calculations we consider the first 40 terms in the Fourier series
(A1) (yielding to 40� 40 and 41� 41 matrices). In Fig. 8(a), we
report the stability map for the mth mode obtained by solving
Eq. (3) analytically using the method of Hill’s determinants
(shaded area) and numerically (markers) and find an excellent
agreement.

We also note that simplified approaches resulting in explicit
expressions for the boundaries of the stable zones can be used to
solve the Mathieu equation. In particular, by exploiting Floquet
theory and approximating the sinusoidal functions with square
waves [36], the domain within which the mth mode is stable can
be quantified as [36]

2 cos pqmð Þcosh ppmð Þ þ
pm

qm
� qm

pm

� �
sin pqmð Þsinh ppmð Þ

�����
����� < 2

(A4)

where qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am � bm

p
and pm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ bm

p
. Note that Eq. (A4)

is valid only for am> bm. In fact, for am< bm the mth mode is
always unstable.

In Fig. 8(b), we report the stability map obtained using this sim-
plified approach (shaded area) and our numerical results
(markers). The agreement between the two solutions is still rea-
sonably good, with differences that can be attributed to the
approximation we introduce in the derivation of the solution.
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