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Vibration Damping of Thermal
Barrier Coatings Containing
Ductile Metallic Layers
This paper explores the vibration damping properties of thermal barrier coatings (TBCs)
containing thin plastically deformable metallic layers embedded in an elastic ceramic
matrix. We develop an elastic–plastic dynamical model to study how work hardening,
yield strain, and elastic modulus of the metal affect the macroscopic damping behavior of
the coating. Finite element (FE) simulations validate the model and are used to estimate
the damping capacity under axial and flexural vibration conditions. The model also pro-
vides an explanation for the widely observed nonlinear variation of the loss factor with
strain in plasma-spayed TBCs. Furthermore, it facilitates the identification of multilayer
configurations that maximize energy dissipation. [DOI: 10.1115/1.4028031]
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1 Introduction

TBCs have been extensively applied to provide thermal protec-
tion to superalloy structures in gas turbine engines, enabling
higher turbine operating temperatures while preventing metal oxi-
dation and hot corrosion [1–3]. While low-thermal conductivity
oxides, such as yttria-stabilized zirconia (YSZ) and more recently
gadolinium zirconate, are commonly used as refractory TBC
materials, there is a growing interest in developing multifunc-
tional configurations combining thermal protection and damping
capabilities. Vibration damping is, in fact, critical for gas turbine
blades that have to withstand high inertial stresses and repeated
buffeting while operating at highly exacting temperatures and
creep–fatigue conditions [4].

Damping is usually provided by extrinsic damping elements,
but there is also interest in assessing and simulating the inherent
dissipation properties of common oxide coating materials [5–10].
While these studies have mostly focused on internal friction
damping and its functional dependence on the material micro-
structural features of bulk or as-deposited oxides, recently devel-
oped multilayer coatings comprising thin platinum (Pt) layers
embedded into a ceramic (YSZ) matrix [11] may offer new oppor-
tunities for improved damping. Such TBCs combine materials
with complementary thermomechanical properties to produce a
multilayer coating with superior performance. For instance, thin
Pt metal layers have the potential to reduce the radiative compo-
nent of heat transport through the coating [11], while slowing the
rate of oxide growth as well as potentially increasing the coating
life [12,13]. The elastic and elastic–plastic behavior of such coat-
ings under the effects of quasi-static loads has received some
attention [12,13], but dynamic models that capture the hysteretic
behavior of the system, and the associated energy dissipation
mechanisms, have not been developed, and require a completely
different analysis than those currently in use.

In this paper, we explore the vibration damping properties of
multilayer coatings in which plastic straining of ductile metal
layers dissipates energy through plasticity. We first develop a

simple damping model that correlates the damping capacity of a
coating with the elastic–plastic properties of the ductile metal
(Sec. 2). The model is also used to conduct parametric studies for
different coating configurations. Then, in Sec. 3, we compare the
results of the proposed model with FE simulations for both axial
and flexural vibrations. Section 4 illustrates how the damping
properties of a coating vary with temperature and shows how the
damping model adopted in this study can be extended to capture a
wider range of dissipation mechanisms commonly observed in
TBCs.

2 Analytical Damping Model

Here, we focus on an elastic substrate of thickness Hs coated
with a multilayer of thickness H comprising N metallic layers
with thickness tm embedded in an elastic matrix (see Fig. 1) and
investigate analytically the damping capacity of the system under
axial and flexural vibrations. The metal volume fraction
Um ¼ ðNtmÞ=H is used to define the volume of the metal relative
to the overall thickness of the coating, and we assume that all the
layers are uniformly spaced through the matrix as indicated in
Fig. 1.

For the sake of simplicity, we only consider the contribution of
the deformation in longitudinal direction, so that the elastic
response of the substrate and matrix is fully captured by their
Young’s moduli Es and Ee, respectively. Moreover, we assume
that the metallic layers are characterized by an elastic–plastic
response with linear kinematic hardening. This behavior is
described by the elastic modulus Em, the uniaxial yield stress rY,
and the tangent modulus ET ¼ cEm in which c 2 ½0; 1� is a nondi-
mensional hardening coefficient, defining the slope of the stress–
strain curve after yield (see Fig. 2(a)). A value of c¼ 0 indicates
an elastic–perfectly plastic behavior of the metallic layers, while
c! 1 is the limit for a purely elastic material. When the metallic
layers are strained beyond their yield point (i.e., e > rY=Em), part
of the elastic energy stored in the system ðU totÞ is dissipated by
plastic work ðDU totÞ in the metal. The macroscopic damping
capacity of the system is quantified by the equivalent loss factor
(Q�1) defined as [14]

Q�1 � 1

2p
DU tot

U tot

(1)
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When the system is subjected to cyclic loading, the energy per
unit volume dissipated in one cycle by the metallic phase ðDUÞ
corresponds to the area enclosed by the hysteresis loop of the
ductile material (see Fig. 2(b)) which, for the plasticity model
considered here, is given by

DU ¼ 2rY2ep (2)

where ep denotes the plastic strain. Since

ep ¼ e� ee ¼ e� eYEm þ cEmðe� eYÞ
Em

(3)

eY ¼ rY=Em being the yield strain, Eq. (2) can be rewritten as

DU ¼ 4eYðe� eYÞð1� cÞEm (4)

The energy dissipated by the coating in one cycle ðDU totÞ is then
obtained by integrating Eq. (2) over the volume of the ductile
material

DU tot ¼
XN

i¼1

ðL

0

ðzi
t

zi
b

DUw dzdx (5)

in which L and w are the length and width of the N ductile layers,
and zi

b and zi
t are the bottom and top coordinates of the ith layer,

respectively (see Fig. 3(c)).

2.1 Dissipation Under Axial Vibrations. First, we consider
the case of axial vibrations induced by a longitudinal harmonic
force F ¼ F0 sinðxtÞ (see Fig. 3(a)) and resulting in a tip

displacement with amplitude u0. In this case, both the elastic sub-
strate and all the layers of the coating are subjected to a homoge-
neous state of longitudinal strain, which varies harmonically and
has amplitude e¼ u0/L. Therefore, Eq. (4) simplifies to

DU tot ¼ ðEAÞmLeY e� eYð Þð1� cÞ (6)

where ðEAÞm ¼ w
PN

i¼1 Ei zi
t � zi

b

� �
denotes the axial stiffness of

the metallic phase.
Furthermore, the strain energy stored in one cycle by the system

is approximated as [15]

U tot ¼
1

2

ðEAÞe þ ðEAÞm
L

u2
0 (7)

where (EA)e is the contributions from the elastic materials
(ceramic and superalloy) to the axial stiffness of the beam. Substi-
tuting Eqs. (6) and (7) into Eq. (1) gives

Q�1 ¼ 4

p
e� eYð ÞeY

e2

ð1� cÞ
1þ ðEAÞe=ðEAÞm

(8)

which can be rearranged as

Q�1 ¼ 4

p
l� 1ð Þ
l2

ð1� cÞ
1þ r2

(9)

by letting l ¼ e=eY and r2 ¼ ðEAÞe=ðEAÞm. Note that in the

absence of the substrate r2 simplifies to r2 ¼ Ecð1� UmÞ=EmUm.
Analysis of Eq. (9) reveals that the energy dissipation proper-

ties of the system under consideration are remarkably similar to
the one proposed for a bilinear hysteretic springs–mass oscillator
[15]. Therefore, the response of the system can be described by an

Fig. 2 Elastic–plastic constitutive law of the ductile metal (a) and schematic of the cyclic
behavior (b)

Fig. 3 Schematic of the beam undergoing axial (a) and flexural
deformations (b), and its cross section (c)

Fig. 1 Schematic of a coating comprising a planar stack of dis-
crete ductile metal layers embedded in a ceramic matrix on an
elastic substrate
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equivalent single-degree-of-freedom (SDOF) model as shown in
Fig. 4, consisting of an elastic–plastic spring (to account for the
metallic layers) connected in parallel to an elastic spring (to
account for the elastic matrix and substrate).

In Fig. 5, we report the evolution of Q�1 as a function of the de-
formation amplitude l ¼ e=eY for different values of the harden-
ing parameter (c). Only values of l greater than unity (i.e., l > 1)
are considered since no plasticity and hence no hysteresis takes
place below this limit. Both the analytical predictions provided by
Eq. (9) (continuous lines) and numerical results obtained by com-
puting the steady state response of the equivalent SDOF nonlinear
model (see Fig. 4) for forced harmonic motion (markers—see the
Appendix for details) are reported, showing excellent agreement.

As expected, the results in Fig. 5 indicate that damping is
enhanced when the metallic layers behave as elastic–perfectly
plastic materials, with no strain hardening after yield (i.e., c! 0).
In fact, for a given applied strain, lower values of c increase the
area of the hysteresis loop, which in turn results in higher dissipa-
tion of mechanical energy by plastic work. Furthermore, Fig. 5
reveals that the coating loss factor does not monotonically
increase with l and that it is characterized by a maximum peak
occurring when e ¼ 2eY. The presence of a maximum damping
capacity in Fig. 5 may have important implications for the
dynamic design of multilayer coatings, since it defines an optimal
value of the applied deformation that maximizes Q�1.

2.2 Dissipation Under Flexural Vibrations. Under the
effect of two bending moments M applied at the two ends (see
Fig. 3(b)), the structure is subjected to a uniform strain distribu-
tion in the longitudinal direction [16]

e ¼ z

q
¼ h

z

L
(10)

where z represents the vertical distance of a point from the cent-
roid of the cross section (Fig. 3(c)), h is the cross-sectional rota-
tion, and q ¼ L=h is the radius of curvature of the neutral axis
(see Fig. 3(b)). Therefore, a point in a metallic layer located at a
distance z from the centroid yields when a critical value hY is
reached such that

hY ¼ eY

L

z
¼ rY

Em

L

z
(11)

Substituting Eqs. (10) and (11) into Eq. (4) and integrating over
the volume leads to

DU tot ¼
XNY

i¼1

4Em zi3
t � zi3

b

� � hY h� hYð Þ
L

ð1� cÞ

¼ 4ðEIÞm
hY h� hYð Þ

L
ð1� cÞ (12)

where

ðEIÞm ¼
1

3

XNY

i¼1

Em½ðzi
tÞ

3 � ðzi
bÞ

3� (13)

is the bending stiffness of the NY metal layers for which the strain
is larger than the metal yield strain. Equation (13) is clearly a non-
linear function of the applied deformation h which determines
how many layers (NY) undergo plastic deformations. Note that,
for the sake of simplicity, in Eq. (13), we use a discrete summa-
tion symbol even though in our calculations we consider also con-
tributions from layers that are only partially in the plastic range.
Interestingly, Eq. (13) can be approximated by extending the sum-
mation to all the (N) metal layers as

ð bEIÞm ¼
1

3

XN

i¼1

Em½ðzi
tÞ

3 � ðzi
bÞ

3� (14)

so that the dependance on the deformation h is eliminated by
assuming that all the metal layers yield simultaneously, while con-
tributing to dissipate energy according to their relative location on
the cross section.

The effective viscous damping of the system is obtained by
dividing Eq. (12) by the elastic energy stored by the beam ðU totÞ
in one cycle of steady state vibrations, namely,

U tot ¼
1

2

ðEIÞe þ ð bEIÞm
L

h2 (15)

where (EI)e is the bending stiffness of the elastic phase (ceramic
and superalloy). Substituting Eqs. (12) and (15) into Eq. (1) gives

Q�1 ¼ 4

p
h� hYð ÞhY

h2

ð1� cÞ
1þ ðEIÞe=ðEIÞm

(16)

which can be cast as in Eq. (9) by letting l ¼ h=hY and
r2 ¼ ðEIÞe=ðEIÞm. Equation (16) can be further simplified by
making use of the approximation introduced in Eq. (14), yielding

Q̂�1 ¼ 4

p
h� hYð ÞhY

h2

ð1� cÞ
1þ ðEIÞe=ð bEIÞm

(17)

Fig. 4 Schematic of the equivalent SDOF model of the system.
The substrate and ceramic elastic moduli, although different,
are combined into a single elastic stiffness term Ee, while Em is
the linear stiffness of the metal. Also, ET and rY denote the
hardening modulus and yield stress of the metal, respectively.

Fig. 5 Functional variation of the effective loss factor on the
deformation (l) for different values of the kinematic hardening
parameter c. Analytical solution (solid lines) and numerical
solution (� markers).
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In Fig. 6(d), we compare the predictions for energy dissipated
using the exact (Eq. (16)) and approximate (Eq. (17)) expressions
derived above for three configurations characterized by the cross
section shown in Figs. 6(a)–6(c). Each cross section comprises a
substrate of thickness Hs¼ 6 mm, coated on both sides by a multi-
layer of thickness H¼ 1 mm with N¼ 2, 3, and 4 metallic layers
of thickness tm¼ 0.1 mm. Furthermore, we assume the substrate
and elastic matrix to be characterized by Young’s moduli
Es¼ 120 GPa and Ee¼ 22 GPa, respectively, and the metallic
layers to be made of an elastic–perfectly plastic material (i.e.,
c¼ 0) with Em¼ 164.6 GPa and rY¼ 185 MPa [17].

Remarkably, the results presented in Fig. 6(d) indicate that the
exact (Eq. (16)) and approximate (Eq. (17)) expressions lead to
very similar results, with some discrepancies observed for values
of l close to unity. In this range, in fact, the exact model (Eq.
(16)) accounts for the fact that not all the layers undergo plastic
deformations at the same time, thus predicting a slightly smaller
dissipation than the approximate model. When all the metal layers
operate in the plastic regime (i.e., for slightly higher values of
l� 1.5), the two models are exactly equivalent. From this, it is
possible to conclude that the equivalent SDOF model shown in
Fig. 4 can also be adopted to represent the dissipation of a multi-
layer undergoing flexural motion. This is achieved by properly
replacing the stiffness of the two springs with the bending stiff-
nesses of the elastic and ductile materials.

Next, we exploit the approximate model to investigate the
effects of parameters that may be of interest for the design of mul-
tifunctional coatings. In particular, we focus on a coating with
thickness H¼ 200 lm, two equally spaced ductile layers (see
Fig. 7—right inset), whose relative metal volume fraction ðUmÞ is
parametrically varied, and investigate the combinations of metal
volume fraction ðUmÞ and substrate thickness (Hs) that maximize
energy dissipation. Figure 7 shows how the maximum damping
capacity of the considered configuration (i.e., maxl Q�1ðlÞ—

subsequently this will also be referred to as the damping peak)
changes as a function of Um.

While results shown in Fig. 7 confirm that increasing the vol-
ume of plastically deformable material will result in higher values
of energy loss, it remains unclear whether it is more effective to
incorporate multiple thin ductile layers or to increase the thickness
of each layer while limiting their number. This question is
addressed in Fig. 8 where results for different volume fractions
obtained by increasing either the number of layers or the thickness
of a single layer (see Fig. 8—right inset) are compared. Interest-
ingly, this study reveals that despite some minor differences at
low values of the Hs/H ratio, damping is not particularly sensitive
on the arrangement of the metal layers used to achieve a particular
value of Um. The axial strain achieved in the ductile layers due to
bending is, in fact, dictated by their offset from the sectional cent-
roid of the beam which is mostly affected by the substrate thick-
ness rather than the spacing between the individual layers. This
result therefore suggests that either the number of layers or their
individual thickness can be chosen to maximize other properties
such as delamination resistance or thermal protection.

3 Comparison With FE Results

3.1 Overview of the Model. FE simulations are conducted
with the commercial code ABAQUS/Standard to validate the analyti-
cal predictions presented above. In particular, we focus on the
configuration shown in Fig. 9, consisting of a superalloy substrate
(PWA-1484) coated by a 7% YSZ (7YSZ) oxide with embedded
Pt layers. The beam features length L¼ 100 mm, topcoat thickness
H¼ 200 lm of which the relative metal volume fraction is para-
metrically varied. The effect of the substrate thickness (Hs) is also
investigated as an independent parameter. To avoid any coupling
between axial and bending deformations, the substrate is coated
on both sides. The system is discretized using quadrilateral plane-
stress elements (CPS4 elements in ABAQUS) and the accuracy of
the mesh has been ascertained through a refinement study. As
shown in Fig. 9, the system is not constrained and is loaded by a
set of self-equilibrating forces applied at the two ends. Specifi-
cally, axial motion is achieved by applying a concentrated nodal
force at the centroid of the cross section, while pure bending is
obtained by means of two equal nodal forces (with opposite direc-
tions) applied at the top and bottom of the left and right cross sec-
tions (Fig. 9(b)). The loads are varied harmonically in time, and
the response is computed up to steady state using the implicit time
marching scheme implemented into ABAQUS/Standard. The energy
dissipated per cycle at steady state is estimated from the computed
results as described in the Appendix.

A summary of the elastic material properties considered in this
study is presented in Table 1. These values are used throughout
the rest of this work unless otherwise specified. Note, the elastic
modulus and density values listed correspond to those of YSZ
coating rather than fully dense zirconia which has a significantly
higher elastic modulus. Furthermore, Pt is modeled as an elastic–
plastic material with linear kinematic hardening, a yield stress
rY¼ 185.0 MPa [17], and its hardening modulus is expressed in
terms of the linear elastic modulus through a hardening parameter
c 2 ½0; 1�.

3.2 Axial Vibrations. We first investigate the case in which
the beam is loaded by an axial force located at the centroid of the
tip cross section. For the sake of clarity, here, we focus on a con-
figuration with a single metal layer, but similar results have been
obtained for configurations involving multiple layers. For a direct
comparison with the damping predicted by the analytical model
presented above, simulations are conducted by assuming that the
mass of the model is concentrated at the tip central node (where
the force is applied). Damping is then calculated by integrating
the transient response up to steady state when the external force

Fig. 6 Schematic of three cross sections (labeled A, B, and C,
respectively) used to estimate the damping of the system in
bending ((a)–(c)). Comparison between the loss factor of the
three sections computed with the exact and approximate damp-
ing models (d).
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varies harmonically at the axial resonance frequency of the
system.

Results of this analysis are presented in Fig. 10 which also
includes the damping predicted by the FE model assuming uni-
form density distribution. Specifically, Fig. 10 shows that the
damping predicted by the analytical model (i.e., Eq. (8)) for vari-
ous combinations of the system’s parameters is in excellent agree-
ment with the one predicted by the FE model with concentrated

Fig. 7 Variation of the maximum damping capacity of a coating comprising two
ductile layers as a function of the substrate thickness (Hs) and metal volume fraction
ðUmÞ

Fig. 8 Variation of the damping peak for different values of the substrate thickness
(Hs). This study compares results for different volume fractions obtained by increas-
ing either the number of layers from one to four as shown on the side (dashed lines)
or the thickness of a single layer (solid lines).

Fig. 9 FE discretization of an elastic superalloy coated on both sides by a 7YSZ ceramic con-
taining a ductile metal layer (a) and detail of the applied axial and bending loads (b)

Table 1 Material properties used in the FE model

Density (kg/m3) Elastic modulus (GPa) Poisson’s ratio

7YSZ 4930 22.0 0.35
Platinum 21,450 164.6 0.39
PWA-1484 8700 120.0 0.35
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mass. It is however interesting to note that, for a prescribed level
of axial strain, the total damping capacity calculated by the FE
model with uniform mass distribution is significantly higher than
the one calculated by Eq. (8). The distributed inertia forces, in
fact, give rise to higher and nonuniform axial stresses that remark-
ably enhance energy dissipation. For example, Fig. 10 reveals
that, contrary to the analytical model, nonzero damping is present
even when the system is strained at or below its macroscopic yield
limit (l< 1).

This behavior is further illustrated by comparing contours of
the axial stress field in the beam (S11) obtained at the peak of
steady state vibrations. For instance, results shown in Fig. 11
show that when the beam has concentrated mass (Fig. 11(a)), the
ceramic and metal phases feature uniform, albeit distinct, values
of axial stress as predicted by the spring–mass model introduced
in Sec. 2. However, when the actual mass distribution of the two
materials is considered (Fig. 11(b)), the distributed inertia forces
at resonance generate non uniform axial stresses which strain the

ductile layer beyond its yield limit even when the overall strain is
below the l¼ 1 limit.

The FE model considered in this section is also exploited to
investigate the effect of the substrate on energy dissipation. A
concise, yet meaningful, understanding of the behavior of the sys-
tem is obtained by computing the variation of the damping peak
as a function of the relative substrate thickness (Hs=H). Analyses
are conducted for a reference configuration with metal volume
fraction Um ¼ 10%, an elastic–perfectly plastic hardening law
(c¼ 0), and uniformly distributed density of the three materials.
Analysis of Eq. (8) suggests that the damping capacity of the sys-
tem rapidly decays when Hs 6¼ 0 (r2 being at the denominator of
Eq. (8)) and that it tends to zero at the limit when Hs !1. This
trend is clearly shown by both analytical and numerical results in
Fig. 12 where the loss factor has been normalized to its initial
value ðQ�1ðHs ¼ 0ÞÞ to compensate for the discrepancy induced
by the distributed mass effect.

3.3 Flexural Vibrations. The aerodynamic loads acting on
turbine blades mostly excite their bending modes of deformation.
It is therefore important to predict the amount of damping that is
provided by the present configuration during flexural vibrations.
The energy loss predicted by Eq. (16) is validated by means of FE
simulations using the FE model previously adopted for axial
vibrations. The beam is excited by a concentrated moment applied
at the two ends of the beam as shown in Fig. 9(b). A first compara-
tive study is conducted by considering a 7YSZ coating comprising
two Pt–rhodium layers equally distributed through the cross sec-
tion with a volume fraction Um ¼ 10%. Guided by our previous
results on axial vibrations, we investigate both the case in which
the structure features homogeneous (uniform) density distribution
and the one in which the mass is concentrated at the beam tip.

Results of this analysis are shown in Fig. 13 in which the damp-
ing capacity of the system is evaluated for different values of the
displacement parameter (l) and hardening modulus (c). The
damping predicted by the model (Eq. (16)) is in excellent agree-
ment with the FE results with lumped mass, while only minor dis-
crepancies are observed when considering the actual density
distribution. Also, contrary to the case of axial vibrations, the
effect of the distributed inertia forces does not seem to play an im-
portant role. This conclusion is further corroborated by results
illustrated in Fig. 14 showing a virtually identical distribution of
the axial stress (S11) in the FE model with and without distributed
mass.

Furthermore, Fig. 13 shows that the coating damping capacity
is characterized by a distinct peak at l¼ 2 before decreasing
again, as well as the expected dependency on the hardening modu-
lus (c). Interestingly, Fig. 13 also indicates that when the system
is loaded in bending, its damping capacity is less than that
observed for the case of axial vibrations (see Fig. 10). This behav-
ior is attributed to the linear variation of the axial strain through
the cross section which leads to smaller volume under plastic
strain as opposed to the uniform strain distribution that character-
izes the longitudinal motion of the beam.

The effect of an elastic substrate, typically made of a nickel-
based superalloy, such as PWA-1484, on the damping capacity is

Fig. 10 Comparison between analytical and FE predictions of
the energy dissipation in the coating for different values of the
hardening parameter c ðUm 5 10%Þ (a) and metal volume frac-
tion Umðc 5 0:0Þ (b)

Fig. 11 Steady state axial stress distribution (S11) in the beam without distributed mass (a)
and with distributed mass (b)
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also investigated by parametrically varying the substrate thickness
(Hs). Both analytical and numerical results are obtained for a
model configuration featuring metal volume fraction Um ¼ 10%,
and an elastic–perfectly plastic constitutive law for the metal (i.e.,
c¼ 0). Results of this study are presented in Fig. 15 which again
shows excellent agreement between the analytical and FE solu-
tions. Interestingly, results show a peculiar trend characterized by
an initial increase of damping for small values of the Hs=H ratio

followed by a monotonic decrease. This trend, which is also
shown in Fig. 8, is the result of two competing effects associated
with the substrate thickness. First, increasing the distance between
the ductile layers and the centroid results in both higher strains
and damping. Second, it also increases the elastic stain energy
stored per cycle. Because of this, the percent decrease in energy
loss (see Eq. (1)) is not as pronounced as in the case of axial
vibrations.

4 Discussion

4.1 Variation of Damping With Temperature. As many
materials’ properties, such as yield stress and modulus, vary with
temperature, it is critical to gain insights into the combination of
these parameters that maximize energy dissipation at intermediate
as well as high temperatures. Interestingly, the functional depend-
ance of damping on temperature (T) can be straightforwardly
investigated using the current model by incorporating the temper-
ature variation of the metal elastic modulus (Em) and yield stress
(rY) into Eq. (16) or Eq. (8).

Unfortunately, little is known about the high temperature prop-
erties for Pt—or indeed many other candidate metals, but some
data on a Pt-10% rhodium (Pt-10%Rh) alloy are available from
experiments conducted over a limited temperature range [17,18].
For this work, the data have been extrapolated to other tempera-
tures using a low-order polynomial function, as shown in Fig. 16.

As an illustration of the effect of temperature, the variation of a
coating damping capacity with temperature is computed for axial
deformations using Eq. (8) for a coating comprising a ceramic ma-
trix (Ec¼ 22.0 GPa) and a Pt-10%Rh alloy layer with Um ¼ 10%
and c¼ 10%. For a given value of applied strain (e), the loss
factor (Q�1) is evaluated by neglecting, for simplicity, the de-
pendence of Ec on temperature, while accounting for the tempera-
ture variation of the metal modulus Em¼Em(T) and yield stress
rY¼ rY(T) taken from Fig. 16. Figure 17 shows that the resulting
variation of Q�1 with temperature has different trends depending
on the specific strain imposed. For example, at small values of e,
damping is observed only above a temperature at which the yield
stress diminishes to allow for plastic deformations to take place in
the system. At higher strains, the loss factor features a distinct
peak at temperatures corresponding to values of the metal yield
stress that maximize Eq. (8) (i.e., for which l � 2). The depend-
ence of such peak temperature on the materials comprising the
coating is shown in Fig. 18. This is most simply investigated by
scaling the metal modulus by a constant aE while keeping the
yield stress constant, or, alternatively, by scaling the yield stress
by a factor ar. Interestingly, the results show that metals with
lower elastic moduli are characterized by higher peak tempera-
tures (see Fig. 18(a)) as well as lower damping. A smaller modu-
lus, in fact, leads to lower stresses in the metal layer so that a

Fig. 13 Variation of the effective loss factor on the bending
displacement parameter l, for different values of the hardening
parameter c (coating only)

Fig. 12 Variation of the relative damping peak ðQ�1=Q�1

ðHs 5 0ÞÞ as a function of the substrate thickness (Hs)
ðUm 5 10%Þ

Fig. 14 Comparison of the steady state axial stress distribution (S11) in the beam with mass
concentrated at the tip (a) and with distributed mass (b)
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correspondingly smaller yield stress, i.e., higher temperature, is
needed for the metal to reach its yield stress and deform plasti-
cally. Also, Fig. 18(b) indicates that the metal yield stress signifi-
cantly affects the damping peak temperature without appreciably
changing the maximum damping capacity of the system.

To guide the selection of coating materials, a concise yet mean-
ingful measure of a coating damping performance is needed. We
propose a damping efficiency (gT)

gTðeÞ ¼
1

T2 � T1

ðT2

T1

Q�1ðe;TÞ
Q�1

peakðeÞ
dT (18)

defined as the ratio between the average damping observed over a
temperature range [T1, T2] of interest and the corresponding

damping peak Q�1
peak ¼ maxT2½T1T2 � Q

�1ðTÞ. Here, the damping

efficiency of the YSZ–Pt coating described above is computed
over an arbitrary temperature range, in this case, between
T1¼ 0(C) and T2¼ 1500(C) for different strains. As shown in Fig.
19, this parameter identifies a combination of elastic and plastic
properties that maximizes the (average) damping capacity of a
coating given an expected deformation level.

4.2 Extension to Other Dissipation Mechanisms. A charac-
teristic feature of the predicted energy dissipation is the nonlinear
variation of the loss factor with strain, peaking at a strain corre-
sponding to l¼ 2 before decreasing at larger strains. Strikingly,
this same damping behavior has been reported for plasma-sprayed
coatings and attributed to friction due to relative movement of the
faces of microcracks within plasma-spayed coatings or possible
sliding of the columnar microstructure commonly obtained with

vapor deposition techniques [7–9,19,20]. This suggests that the
present model, although introduced to describe the effects of
metal plasticity on damping, can also describe a broader class of
dissipative phenomena observed in coatings. For instance, the
elastic–plastic behavior of the materials used in our model (see
Fig. 4) can be replaced by constitutive laws describing the nonlin-
ear energy loss induced by frictional motion between microstruc-
tural features.

As a quantitative example, we consider the empirical friction
model originally proposed by Dahl [21], which is widely adopted
because of its simplicity and its ability to capture a broad variety
of hysteretic friction phenomena. According to this model, the
friction force (FH) is a hysteretic function (without memory) of
the displacement (x) which can be expressed as

Fig. 15 Variation of the relative damping peak ðQ�1=Q�1

ðHs 5 0ÞÞ as a function of the substrate thickness (Hs)
ðUm 5 10%Þ

Fig. 16 Variation of the elastic modulus and yield stress of a
Pt-10%Rh alloy with temperature

Fig. 17 Variation the coating damping capacity with tempera-
ture for different values of the applied axial strain (i.e., Eq. (8))

Fig. 18 Influence of the metal modulus (a) and yield stress (b)
of a coating with 10% metal on the variation of damping with
temperature for a given deformation (e 5 0.11%)
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dFHðxÞ
dx

¼ k 1� FH

Fc

signð _xÞ
����

����asign 1� FH

Fc

signð _xÞ
� �

(19)

where k is the slope of the force–deflection curve at FH¼ 0, Fc is
the friction force at “yield” or the kinetic friction force, and a
defines the slope. At the steady state limit (i.e., when FH¼Fc),
dFH/dx goes to zero, and Dahl’s model coincides with the Cou-
lomb model.

Equation (19) can be used to replace the bilinear elastic–plastic
behavior adopted in the equivalent SDOF model shown in Fig. 4,
and the loss factor can be estimated from the computed steady
state response as was carried out to estimate Q�1 in Sec. 2. Results
of this analysis are presented in Fig. 20 which shows how the vari-
ation of damping (Q�1) with strain remarkably resembles the
trend previously observed for the bilinear hysteretic system. It is
also important to notice that the frictional damping, shown in
Fig. 20, is observed from the onset of motion (i.e., when l 6¼ 0)
and not only after a yield value as in the ductile layers cases previ-
ously considered.

4.3 Damping Magnitude. In the foregoing calculations, the
magnitude of the damping loss, Q�1, has been of the order of
10–100 times 10�3, comparable to measurements reported of the
damping of zirconia coated superalloy beams up to about 1000 �C
[6]. However, this is a coincidence, since the damping mecha-
nisms are quite different. The magnitude of the damping calcu-
lated in this work is set by the ratio of the elastic modulus of the
zirconia to that of the metal, the term r2 in Eq. (9). Because of the
columnar and porous microstructures of the zirconia coatings used
for thermal protection, the zirconia elastic modulus is much lower
than that of fully dense zirconia (approximately 20 GPa versus

240 GPa). Consequently, the calculated damping loss is higher
than would be achieved if the coating was a fully dense zirconia.
In addition, while the model explicitly considers multilayer
metal–ceramic coatings, existing commercial zirconia coatings
also contain a thin metal bond-coat between the zirconia layer and
the superalloy underneath. Hitherto, the effect of this metal
layer, typically NiAl or a NiAlCrY alloy, on damping has been
neglected. Unfortunately, the composition of the bond-coat alloy
changes by interdiffusion and so the yield stresses are not unique.
However, with appropriate data, the model presented in this work
could be extended to specifically include contribution from plastic
deformation in the bond-coat.

5 Conclusions

An elastic–plastic dynamical model is introduced to assess the
potential of metal–ceramic layered TBCs to provide vibration
damping as well as thermal protection. The model takes into
account the effect of yield strain, elastic moduli, and work harden-
ing of the metal on the macroscopic damping behavior and allows
for damping to be predicted for a variety of axial and flexural
vibration conditions. Comparison with FE results shows that the
model provides accurate results that can be exploited for paramet-
ric design and optimization studies.

Finally, we observe that, although introduced to describe the
effects of metal plasticity on damping, the present approach can
be generalized to include a widely used generic friction law that
captures the nonlinear energy loss with flexural strain consistently
observed in plasma-sprayed coating systems.
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Appendix

Governing Equations of the Equivalent SDOF System

The dynamic equilibrium equation of the equivalent SDOF
model shown in Fig. 4 are given by

M€eðtÞ þ rðtÞ ¼ f ðtÞ (A1)

where e(t) denotes the time dependent displacement of the mass
induced by the externally applied force f(t). Also, in Eq. (A1), r(t)
is a nonlinear restoring force given by the sum of the contributions
of the elastic (re), and ductile (rm) springs as

Fig. 19 Influence of the metal modulus (a) and yield stress (b) on the variation of damping ef-
ficiency gT (see Eq. (18)) with strain

Fig. 20 Variation of the loss factor associated with the Dahl
frictional law computed for different values of the parameter a
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rðtÞ ¼ reðtÞ þ rmðtÞ (A2)

The reaction in the elastic component is described by the familiar
linear material behavior reðtÞ ¼ EeeðtÞ, while the stress in the
ductile multilayers is given by

rmðtÞ ¼
EmeðtÞ if e < eY

EmeeðtÞ þ EtepðtÞ if e > eY

�
(A3)

where ee, and ep, respectively, denote the elastic and plastic com-
ponent of the displacement field such that, beyond the yield point
(eY) e ¼ ee þ ep (see Fig. 2).

The damping capacity of the model (Q�1) can therefore be com-
puted form the direct numerical solution of Eq. (A1) for forced har-
monic motion. Specifically, a fourth-order Runge–Kutta method is
used to compute the steady state response eðtÞ ¼ X sinðXtþ /Þ
under the effect of a harmonic load f ðtÞ ¼ F sinðXtÞ exciting the
system at its resonance frequency. From the computed steady state
response, shown for clarity in Fig. 21, the elastic and dissipated
energies per cycle are computed as

U tot ¼
1

2
ðEm þ EeÞX2 and DU tot ¼

ðt0þ2p=X

t0

f ðtÞ _eðtÞdt (A4)

from which the loss factor of the system is estimated as in Eq. (1).
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