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Some Remarks on the Effect of
Interphases on the Mechanical
Response and Stability
of Fiber-Reinforced Elastomers
In filled elastomers, the mechanical behavior of the material surrounding the fillers -termed
interphasial material-can be significantly different (softer or stiffer) from the bulk behavior
of the elastomeric matrix. In this paper, motivated by recent experiments, we study the
effect that such interphases can have on the mechanical response and stability of fiber-
reinforced elastomers at large deformations. We work out in particular analytical solutions
for the overall response and onset of microscopic and macroscopic instabilities in axially
stretched 2D fiber-reinforced nonlinear elastic solids. These solutions generalize the classi-
cal results of Rosen (1965, “Mechanics of Composite Strengthening,” Fiber Composite
Materials, American Society for Metals, Materials Park, OH, pp. 37–75), and Triantafyllidis
and Maker (1985, “On the Comparison between Microscopic and Macroscopic Instability
Mechanisms in a Class of Fiber-Reinforced Composites,” J. Appl. Mech., 52, pp. 794–800),
for materials without interphases. It is found that while the presence of interphases does
not significantly affect the overall axial response of fiber-reinforced materials, it can have a
drastic effect on their stability. [DOI: 10.1115/1.4006024]
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1 Introduction

It is by now well established that the portion of material sur-
rounding the fillers in filled elastomers—often referred to as
“bound rubber” or more generally as interphasial material—can
exhibit a mechanical behavior markedly different (softer or stiffer)
from that of the matrix in the bulk. In the case when the surfaces
of the fillers are suitably treated to form strong bonds with the ma-
trix, such interphases can be up to one order of magnitude stiffer
than the matrix material in the small-deformation regime (see,
e.g., Refs. [1,2] and references therein), and possibly even more at
large deformations [3]. On the other hand, for untreated surfaces
or surfaces that are treated unfavorably to form bonds with the
matrix, the interphases can be significantly softer [4].

The study of the chemistry, geometry, and physical properties
of interphases in filled elastomers has a long and motley history,
yet numerous practical and theoretical issues remain unresolved
[5–7]. From a mechanical point of view, significant effort has
been devoted to incorporate interphasial effects in constitutive
models, but almost exclusively within the limited context of
small-strain linear elasticity (see, e.g., Refs. [8,9]). In this paper,
we investigate the effects that interphases can have on the macro-
scopic response and stability of filled elastomer at large deforma-
tions. Motivated by recent experiments [4], and for the sake of
relative simplicity, attention is focused on axially stretched fiber-
reinforced elastomers consisting of a matrix phase reinforced by a
single family of aligned long fibers.

To treat the problem analytically, fiber-reinforced elastomers
are idealized here as 2D solids comprised of a periodic distribu-
tion of long aligned nonlinear elastic fibers that are bonded to a
nonlinear elastic matrix phase through interphases, as detailed in
Sec. 2. By means of homogenization and Floquet analyses of the
relevant equations of elastostatics, we then generate solutions for

the macroscopic response, in Sec. 3, and onset of instabilities, in
Secs. 4 and 5, for this class of reinforced materials directly in
terms of the size and behavior of the interphases. Representative
numerical results are presented and discussed in Sec. 6 followed
by some concluding remarks in Sec. 7.

2 Problem Formulation

Since 2D idealizations of fiber-reinforced materials, utilized by
Rosen [10] and later formalized by Triantafyllidis and Maker [11] in
their classical works, are known to lead to results that are qualita-
tively similar to their 3D counterparts [12,13]; here we consider a
2D periodic distribution of long aligned fibers that are bonded to a
matrix phase through interphases. Thus we focus on fiber-reinforced
elastomers made up of layers of three different materials (r¼ 1, 2,

3), with volume fractions c
rð Þ

0 ¼ L
rð Þ

0 =L0 in the undeformed stress-
free configuration X0, that are periodically intercalated in the
sequence shown in Fig. 1(a). Material r¼ 1 corresponds to the ma-
trix phase, whereas materials r¼ 2 and r¼ 3 correspond to the fibers
and interphases, respectively. The domains occupied by each indi-

vidual phase are denoted by X rð Þ
0 so that X0 ¼ X 1ð Þ

0 [ X 2ð Þ
0 [ X 3ð Þ

0 .
The initial fiber direction and repeat length are designated by the
unit vector N and scalar L0. In the sequel, the microscopic size L0 is
assumed to be much smaller than the macroscopic size of X0, so
that X0 can be regarded as a representative volume element.

Material points in the solid are identified by their initial position
vector X in X0. Upon deformation the position vector of a point in
the deformed configuration X is specified by x¼ v(X), where v is
a continuous and one-to-one mapping from X0 to X. The point-
wise deformation gradient tensor is denoted by F¼Gradv.

All three materials are assumed to be homogenous1 nonlinear
elastic characterized by strongly elliptic stored-energy functions

Manuscript received October 3, 2011; final manuscript received January 10,
2012; accepted manuscript posted February 13, 2012; published online April 4,
2012. Assoc. Editor: Huajian Gao.

1The development that follows can be easily generalized to interphases that are
not homogeneous, such as for instance graded interphases.
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W(r) of F. At each material point X in the undeformed configura-
tion, the first Piola-Kirchhoff stress S is thus related to the defor-
mation gradient F by

S ¼ @W

@F
X;Fð Þ; W X;Fð Þ ¼

X3

r¼1

h rð Þ
0 Xð ÞW rð Þ Fð Þ (1)

where the indicator function h rð Þ
0 is equal to 1 if the position vector

X is inside phase r and zero otherwise. More specifically, owing
to the assumed separation of length scales and the periodicity of
the microstructure

h rð Þ
0 X1;X2ð Þ ¼ h rð Þ

0 X1 þ q1L0;X2 þ r2ð Þ (2)

where q1 is an arbitrary integer, r2 is an arbitrary real number, and
the fiber direction N has been tacitly identified (without loss of gen-
erality) with the laboratory Cartesian basis vector e2 (see Fig. 1(a)).

The overall or macroscopic constitutive response for the above-
described reinforced solid is defined as the relation between the

volume averages of the first Piola-Kirchoff stress S _¼ X0j j�1Ð
X0

S Xð ÞdX and the deformation gradient F _¼ X0j j�1Ð
X0

F Xð ÞdX

over X0 under affine displacement boundary conditions [14,15].
The result reads formally as

S ¼ @W

@F
F
� �

; W F
� �
¼ min

F2K Fð Þ
1

X0j j

ð
X0

W X;Fð ÞdX (3)

where K denotes a suitably defined set of admissible deformations
[16,17]. W is the so-called effective stored-energy function and
represents physically the total elastic energy (per unit undeformed
volume) stored in the material. For small macroscopic deforma-
tions (near F ¼ I) the minimization in (3)2 is expected to yield a
well-posed linearly elastic problem with a unique solution. As F
deviates from I beyond the linearly elastic neighborhood into the
finite-deformation regime, the minimization in (3)2 may yield,
however, more than one equilibrium solution with different over-
all energies. Physically such a bifurcation signals the possible de-
velopment of an instability.

Following the work of Triantafyllidis and collaborators (see,
e.g., Refs. [11,18,19]), it is useful to make the distinction between
“microscopic” instabilities, that is, instabilities with wavelengths
that are of the order of the size of the microstructure L0, and
“macroscopic” instabilities, that is, instabilities with much larger
wavelengths comparable to the size of X0. The computation of

microscopic instabilities is in general a difficult task, though, for
the class of 2D fiber-reinforced materials of interest in this work,
they can be computed elegantly by making use of Floquet theory
[11,19]. On the other hand, the computation of macroscopic insta-
bilities is a much simpler task, since it reduces to the detection
of loss of strong ellipticity of the effective stored-energy function
W [18].

The aim of this paper is to gain insight into the effect that inter-
phases can have, via their relative size c

3ð Þ
0 and constitutive behav-

ior W(3), on the macroscopic response and onset of instabilities in
fiber-reinforced elastomers, as characterized by Eq. (3). In the
sequel, for definiteness, we will focus on a specific choice of ener-
gies W(r) for the matrix, fibers, and interphases that are general
enough to contain all the essentials of the problem and that at the
same time lead to analytical solutions. The analysis of the macro-
scopic response is presented in the next section, while the compu-
tations of the microscopic and macroscopic instabilities are the
focus of Secs. 4 and 5.

3 Macroscopic Response of a Fiber-Reinforced

Neo-Hookean Material With Interphases

While the formulation presented in the previous section applies
to nonlinear elastic materials characterized by arbitrary stored-
energy functions W(r), in this section and subsequently, we con-
sider the matrix (r¼ 1) and the fibers (r¼ 2) to be incompressible
and isotropic nonlinear elastic solids characterized by Neo-
Hookean stored-energy functions of the form

W rð Þ Fð Þ ¼
l rð Þ

2
F � F� 2ð Þ if det F ¼ 1

þ1 otherwise:

8<
: (4)

On the other hand, the interphases are assumed to be characterized
by the compressible Neo-Hookean stored-energy function

W 3ð Þ Fð Þ ¼ l 3ð Þ

2
F � F� 2ð Þ þ h Jð Þ (5)

where the material parameters l(r)> 0 denote the shear moduli of
the three different constituents at zero strain and h is an arbitrary
convex2 function of J _¼ det F that satisfies the linearization

Fig. 1 (a) Schematic of two unit cells (or repeat lengths) of a fiber-reinforced elasto-
mer with interphases in the undeformed configuration X0. Materials r 5 1, 2, 3 charac-
terize the matrix, fibers, and interphases, respectively. The initial fiber direction and
repeat length are denoted by N and L0. (b) Unit cell in the deformed configuration X of
the axially stretched fiber-reinforced elastomer before the occurrence of an instability.

2Here, h is required to be convex in order to automatically ensure strong elliptic-
ity of W(3).
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conditions h(1)¼ 0 and h0 1ð Þ _¼ dh 1ð Þ=dJ ¼ �l 3ð Þ. A particular
example that will be utilized later in the results section is given by

h Jð Þ ¼ l 3ð Þ J In Jþ 2 1� Jð Þ½ �þ k
1

mþ 1
� J �Jmþmþ1ð Þ

m mþ 1ð Þ

� �
(6)

where k> 0 and m< 0 are material constants. Comments on the
constitutive choice Eq. (5) with Eq. (6) for the interphases are
deferred to Sec. 6.

3.1 Local Deformation and Stress Fields at Equilibrium.
Having specified the constitutive behaviors (Eqs. (4)–(5)) for the
matrix, fibers, and interphases, we next turn to computing
the point-wise deformation gradient field F(X) that minimizes the
functional (3)2, from which we will then be able to compute
the macroscopic constitutive relation between S and F. Similar
to the corresponding case in linear elasticity (see, e.g., Chap. 9 in
Ref. [20]), the equilibrium solution F(X) to the nonlinear problem
(3)2 can be shown to be uniform per phase up to the onset of a first
instability [21]. When specialized to the stored-energy functions
(Eqs. (4)–(5)), such a solution can in turn be computed in closed
form. The result reads as

F Xð Þ ¼

F
1ð Þ ¼ Fþ a� N? if X 2 X 1ð Þ

0

F
2ð Þ ¼ Fþ b� N? if X 2 X 2ð Þ

0

F
3ð Þ ¼ Fþ c� N? if X 2 X 3ð Þ

0

8>>>><
>>>>:

(7)

where the unit vector N? is defined via N? � N¼ 0,

a ¼ dFN? þ 1� 1þ dð ÞJ
FN � FN

J F
�T

N?

b ¼ � l 2ð Þ � 1þ dð Þl 1ð Þ

l 2ð Þ FN? þ l 2ð Þ � 1þ dð Þl 1ð ÞJ

l 2ð ÞFN � FN
J F
�T

N?

c ¼ � c
1ð Þ

0

c
3ð Þ

0

a� c
2ð Þ

0

c
3ð Þ

0

b (8)

with

d ¼
c

2ð Þ
0 l 2ð Þ � l 1ð Þ� �

l 3ð Þ þ c
3ð Þ

0 l 3ð Þ � l 1ð Þ� �
l 2ð Þ

c
1ð Þ

0 l 2ð Þl 3ð Þ þ c
2ð Þ

0 l 1ð Þl 3ð Þ þ c
3ð Þ

0 l 1ð Þl 2ð Þ
(9)

and J _¼ det F. Owing to the incompressibility of the matrix and
fibers, the macroscopic deformation gradient F in Eq. (7) must
satisfy the unilateral constraint

J
ð3Þ

_¼ det F
3ð Þ ¼ J � 1þ c

3ð Þ
0

c
3ð Þ

0

> 0 (10)

so that material impenetrability is not violated. It is also notewor-
thy that the field F(X) turns out to be independent of the function
h(J), which serves to characterize the compressibility of the inter-
phasial material, because of the incompressibility of the matrix
and fibers.

Up to the onset of a first instability, the resulting local stress
field S(X) at equilibrium is of course also uniform per phase and
can be simply written as

S Xð Þ ¼

S
1ð Þ ¼ l 1ð Þ Fþ a� N?

� �
� p 1ð Þ F

�T � J F
�T

N? � F
�1

a
� �

if X 2 X 1ð Þ
0

S
2ð Þ ¼ l 2ð Þ Fþ b� N?

� �
� p 2ð Þ F

�T � J F
�T

N? � F
�1

b
� �

if X 2 X 2ð Þ
0

S
3ð Þ ¼ l 3ð Þ Fþ c� N?

� �
þ h0 J

3ð Þ
� �

J
3ð Þ

F
�T � J F

�T
N? � F

�1
c

� �
if X 2 X 3ð Þ

0

8>>>>>><
>>>>>>:

(11)

where the vectors a, b, c are given by the expressions in Eq. (8)
and

p 1ð Þ ¼ J

FN �FN
l 1ð Þ �l 3ð Þ þ l 1ð Þ þc

1ð Þ
0 þc

2ð Þ
0

c
3ð Þ

0

l 3ð Þ

 !
1�J

J

" #
�h0 J

3ð Þ
� �

p 2ð Þ ¼ J

FN �FN
l 2ð Þ �l 3ð Þ þ l 2ð Þ þc

1ð Þ
0 þc

2ð Þ
0

c
3ð Þ

0

l 3ð Þ

 !
1�J

J

" #
�h0 J

3ð Þ
� �

(12)

In contrast to the local deformation (7), note that the local
stress field (11) does depend on the compressibility function
h(J).

3.2 Macroscopic Response. In view of the explicit results
(7) and (11) for the local fields, it is now a simple matter to com-
pute the macroscopic constitutive response (3) for the above-
defined fiber-reinforced Neo-Hookean material with interphases.

After some algebraic manipulation, the effective stored-energy
function W in this case can be shown to take the closed form

W F
� �
¼
X3

r¼1

c
rð Þ

0 W rð Þ F
rð Þ

� �

¼ lV

2
F � F � 2
� �

� lV � lR

2
J

2
F
�T

N � F�T
N

þ
lV � lRJ

2 þ l 3ð Þ J � 1
� �

J
3ð Þ þ 1

� �
2FN � FN

þ c
3ð Þ

0 h J
3ð Þ

� �
(13)

where

lV ¼
X3

r¼1

c
rð Þ

0 l rð Þ; lR ¼
X3

r¼1

c
rð Þ

0

l rð Þ

 !�1

(14)

and it is recalled that J
ð3Þ

is given explicitly by Eq. (10). The mac-
roscopic stress-deformation relation is in turn given by
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S¼@W

@F
F
� �

¼
X3

r¼1

c
rð Þ

0 S
rð Þ
¼lVFþ lV�lRð ÞJ2

F
�T

N�F
�1

F
�T

N

�
lV�lRJ

2þl 3ð Þ J�1
� �

J
3ð Þ þ1

� �
FN �FN
� �2

FN�N

þ
l 3ð ÞJ

3ð Þ�lRJ
� �

J

FN �FN
� lV�lRð ÞJ2

F
�T

N �F�T
NþJh0 J

3ð Þ
� �2

4
3
5F
�T

(15)

A few remarks regarding the above formulae are in order. First we
note that the macroscopic constitutive response (15) is trans-
versely isotropic as expected, with the effective stored-energy
function (13) depending on the four transversely isotropic invari-

ants F � F, FN � FN; F
�T

N � F�T
N, and J. We note in particular

that the dependence on J, which measures the overall compressi-
bility of the fiber-reinforced solid, is highly non-trivial (and not
simply additive). The material constants l(1), l(2) and volume

fractions c
1ð Þ

0 , c
2ð Þ

0 of the matrix and fibers enter the macroscopic
relations (13) and (15) simply through the arithmetic lV and har-
monic lR averages (14). On the other hand, the material

parameter l(3), material function h(J), and volume fraction c
3ð Þ

0 of
the interphases enter Eqs. (13) and (15) in a more complex man-
ner. For the special case of aligned or axial loading, to be the
focus of our analysis subsequently, with

Fij ¼ diag �k1; �k2

� �
(16)

the effective stored-energy function (13) reduces (with a slight
abuse of notation) to

W �k1; �k2

� �
¼ lV

2
�k2

2 þ �k�2
2 � 2

� �

�
1� �k1

�k2

� �
�k1

�k2 � 1þ 2c
3ð Þ

0

� �
2c

3ð Þ
0

�k2
2

l 3ð Þ þ c
3ð Þ

0 h J
3ð Þ

� �
(17)

and the macroscopic stress (15) to Sij ¼ diag t1; t2ð Þ with

t1 ¼
@W

@ �k1

�k1; �k2

� �
¼

�k1
�k2 � 1þ c

3ð Þ
0

c
3ð Þ

0
�k2

l 3ð Þ þ �k2h0 J
3ð Þ

� �

t2 ¼
@W

@ �k2

�k1; �k2

� �
¼ lV

�k2 � �k�3
2

� �

þ
�k1

�k2 � 1þ c
3ð Þ

0 2� �k1
�k2

� �
c

3ð Þ
0

�k3
2

l 3ð Þ þ �k1h0 J
3ð Þ

� �
(18)

where J
3ð Þ ¼ �k1

�k2 � 1þ c
3ð Þ

0

� �
=c

3ð Þ
0 . Finally, it is important to re-

emphasize that the expressions (13) and (15) may cease to be
valid at macroscopic deformations F sufficiently far away from
the linearly elastic neighborhood (near F ¼ I) because of the

development of instabilities. The computation of the critical
deformations Fcr and associated critical stresses Scr at which these
instabilities first occur along aligned loadings of the form (16) is
the subject of the next two sections.

4 Onset of Microscopic Instabilities

Instabilities in solids are often investigated formulating the rele-
vant incremental boundary value problem in an updated Lagran-
gian formulation, where the reference configuration moves and is
identified with the current configuration (see, e.g., Chap. 6 in Ref.
[22]). Push-forward transformations allow the introduction of the
incremental updated stress quantity R(x), so that the incremental
equilibrium equation takes the form

divR ¼ 0 (19)

In the case of nonlinear elastic materials characterized by a
stored-energy function W(X, F), the underlying constitutive equa-
tion takes the linear form

R ¼ C grad u (20)

to first order in the incremental deformation field u xð Þ _¼ _xð Þ,
where the components of the updated modulus tensor are given by

Ciqkp ¼
1

J
FplFqj

@2W

@Fij@Fkl
X;Fð Þ (21)

If, in addition, the material is incompressible, u must satisfy the
constraint tr(grad u)¼ 0 and as a result relation (Eq. (20)) special-
izes to

R ¼ C grad uþ p grad uð ÞT � _p I (22)

where p and _p stand for the Lagrange multipliers associated with
the incompressibility constraint.

In order to apply the above formalism to the problem of interest
here, we begin by recognizing from the periodicity of the micro-
structure that it suffices to consider Eq. (19) on just one unit cell
of the material, and not on the entire domain X, together with
some additional boundary conditions provided by Floquet theory.
Given that our primary focus is on aligned macroscopic loadings
(16), we consider the unit cell depicted in Fig. 1(b). Note that,
because of the updated Lagrangian formulation, the unit cell is in
the deformed configuration X and hence the lengths of the axially
stretched layers are given by

L 1ð Þ ¼ F
1ð Þ

11 L
1ð Þ

0 ¼ k
�1

2 L
1ð Þ

0

L 2ð Þ ¼ F
2ð Þ

11 L
2ð Þ

0 ¼ k
�1

2 L
2ð Þ

0

L 3ð Þ ¼ F
3ð Þ

11 L
3ð Þ

0 ¼
k1k2 � 1þ c

3ð Þ
0

k2c
3ð Þ

0

L
3ð Þ

0

(23)

as dictated by the underlying local deformation gradient (7).
Because the underlying microstructure is piecewise homogeneous,
note further that continuity of the incremental deformation u and
traction Rn? requires that

u x1 þ L 1ð Þ; x2

� �� 	� 	
¼ 0; R x1 þ L 1ð Þ; x2

� �� 	� 	
n? ¼ 0;

u x1 þ L 1ð Þ þ L 3ð Þ=2; x2

� �� 	� 	
¼ 0; R x1 þ L 1ð Þ þ L 3ð Þ=2; x2

� �� 	� 	
n? ¼ 0;

u x1 þ Lð1Þ þ Lð3Þ=2þ Lð2Þ; x2

� �� 	� 	
¼ 0; Rðx1 þ Lð1Þ þ Lð3Þ=2þ Lð2Þ; x2

� 	� 	
n? ¼ 0;

u x1 þ L; x2ð Þ½ �½ � ¼ 0 R x1 þ L; x2ð Þ½ �½ �n? ¼ 0

(24)
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where n? ¼ N? (since under loadings (16) the fibers do not
rotate) and the notation [[ f ]] has been introduced to denote the dif-
ference in the values of any field quantity f when evaluated on
both sides of an interface.

Matrix and fibers. Having identified the unit cell on which to
carry out the incremental analysis, our next step is to seek solu-
tions to Eq. (19) of the form

u rð Þ x1; x2ð Þ ¼ v rð Þ x1ð Þ exp ik2x2½ �;
_p rð Þ x1; x2ð Þ ¼ q rð Þ x1ð Þ exp ik2x2½ �; k2 2 0;þ1ð Þ

(25)

for the incompressible matrix material r¼ 1 and fibers r¼ 2. The
incompressibility constraint requires that

ik2v
rð Þ

2 þ v rð Þ
1

� �0
¼ 0 (26)

where the dependency of v on x1 has been omitted for notational

simplicity and �ð Þ0 _¼ d �ð Þ=dx1. Substituting the expressions (25)
and (26) into the incremental equilibrium Eq. (19), and making

use of the notation CðrÞiqkp ¼ 1

detF
rð ÞF

rð Þ
pl F

r
qj@

2W rð Þ F
rð Þ

� �
=@Fij@Fkl,

leads to the following system of linear ordinary differential
equations:

ðq rð ÞÞ0 þ k2
2C

rð Þ
1212v

rð Þ
1 þ ik2 C rð Þ

1111 � C
rð Þ

1122 � C
rð Þ

1221

� �
ðv rð Þ

2 Þ
0 ¼ 0

C rð Þ
2121ðv

rð Þ
2 Þ
00 þ k2

2 C
rð Þ

1122 þ C
rð Þ

1221 � C
rð Þ

2222

� �
v rð Þ

2 � ik2q rð Þ ¼ 0

(27)

for the unknowns v rð Þ
1 , v rð Þ

2 , and q(r) in each phase r¼ 1, 2. By
defining the 4� 4 matrix V

(r) with nonzero entries

V
rð Þ

12 ¼�ik2; V23¼1; V32¼�k2
2

C rð Þ
1122þC

rð Þ
1221�C

rð Þ
2222

C rð Þ
2121

;

V
rð Þ

34 ¼ ik2

1

C rð Þ
2121

; V
rð Þ

41 ¼�k2
2C

rð Þ
1212; V

rð Þ
43 ¼�ik2 C rð Þ

1111�C
rð Þ

1122�C
rð Þ

1221

� �

(28)

the solution to Eq. (27) can be compactly written as

y rð Þ x1ð Þ ¼W rð Þ exp Z rð Þx2

h i
a rð Þ (29)

where y rð Þ ¼ v rð Þ
1 v rð Þ

2 v rð Þ
2

� �0
q rð Þ

h iT

. Here, Z(r) and W(r) are 4� 4

matrices defined as Z rð Þ ¼ diag z
rð Þ

1 ; z
rð Þ

2 ; z
rð Þ

3 ; z
rð Þ

4

� �
and

W rð Þ ¼ w
rð Þ

1




w rð Þ
2




w rð Þ
3




w rð Þ
4

h i
with z

rð Þ
I and w

rð Þ
I I ¼ 1; 2; 3; 4ð Þ

denoting the eigenvalues and corresponding eigenvectors of the
matrix V

(r), while a
(r) is a vector of unknown constants.

Interphases. In turn, for the compressible interphases (r¼ 3),
we seek solutions of the form

u 3ð Þ x1; x2ð Þ ¼ v 3ð Þ x1ð Þ exp ik2x2½ � (30)

Upon substitution of the expression (30) in Eq. (19), the following
system of ordinary differential equations is generated

C 3ð Þ
1111 v 3ð Þ

1

� �00
� k2

2C
3ð Þ

1212v
3ð Þ

1 þ ik2 C 3ð Þ
1122 þ C

3ð Þ
1221

� �
v 3ð Þ

2

� �0
¼ 0

C 3ð Þ
2121 v 3ð Þ

2

� �00
� k2

2C
3ð Þ

2222v
3ð Þ

2 þ ik2 C 3ð Þ
1122 þ C

3ð Þ
1221

� �
v 3ð Þ

1

� �0
¼ 0

(31)

for v 3ð Þ
1 and v 3ð Þ

2 . Similar to the previous case, by introducing the
4� 4 matrix V(3) with nonzero entries

V
3ð Þ

13 ¼ V
3ð Þ

24 ¼ 1; V
3ð Þ

31 ¼ k2
2

C 3ð Þ
1212

C 3ð Þ
1111

; V
3ð Þ

34 ¼ �ik2

C 3ð Þ
1122 þ C

3ð Þ
1221

C 3ð Þ
1111

V
3ð Þ

42 ¼ k2
2

C 3ð Þ
2222

C 3ð Þ
2121

; V
3ð Þ

43 ¼ �ik2

C 3ð Þ
1122 þ C

3ð Þ
1221

C 3ð Þ
2121

(32)

the solution to Eq. (31) can be expediently written as

y 3ð Þ x1ð Þ ¼
W 3ð Þ exp Z 3ð Þx2

� 	
a 3ð Þ if x1 2 L 1ð Þ;L 1ð Þ þL 3ð Þ=2

� 	
W 3ð Þ exp Z 3ð Þx2

� 	
b 3ð Þ if x1 2 L 1ð Þ þL 2ð Þ þL 3ð Þ=2;L

� 	
(

(33)

where now y 3ð Þ¼ v 3ð Þ
1 v 3ð Þ

2 v 3ð Þ
1

� �0
v 3ð Þ

2

� �0h iT

. In this last expression,

Z 3ð Þ¼diag z
3ð Þ

1 ;z
3ð Þ

2 ;z
3ð Þ

3 ;z
3ð Þ

4

� �
and W 3ð Þ¼ w

3ð Þ
1




w 3ð Þ
2




w 3ð Þ
3




w 3ð Þ
4

h i
,

where z
3ð Þ

I and w
3ð Þ

I I¼1;2;3;4ð Þ denote the eigenvalues and corre-
sponding eigenvectors of the matrix V

(3), and a
(3) and b

(3) are vec-
tors of unknown constants.

4.1 Floquet Analysis. In view of the periodicity of the
microstructure, the solution along the x1 direction must satisfy the
Floquet relation (see, e.g., Chapter 15.7 in Ref. [23])

y 1ð Þ x1 þ Lð Þ ¼ y 1ð Þ x1ð Þ exp ik1L½ � (34)

where the real number k1 2 0; 2p=L½ Þ is the so-called Floquet
parameter of the solution. After substituting the expressions (25)
and (30) with (29) and (33) in the interface conditions (Eq. (24))
and then making use of the Floquet relation (Eq. (34)), it is not
difficult to deduce that a nontrivial solution u(x)= 0 to the incre-
mental problem (19) exists when

det K k1; k2; k2

� �
� exp ik1L½ �I

� 	
¼ 0 (35)

for some k2 2 0;þ1ð Þ and k1 2 0; 2p=L½ Þ, where I denotes the
4� 4 identity matrix and K is given by

K ¼ G 1ð Þ
� ��1

G 3ð Þ exp Z 3ð Þ L 3ð Þ

2

� �
G 3ð Þ
� ��1

G 2ð Þ exp Z 2ð ÞL 2ð Þ
h i

� G 2ð Þ
� ��1

G 3ð Þ exp Z 3ð Þ L 3ð Þ

2

� �
G 3ð Þ
� ��1

G 1ð Þ exp Z 1ð ÞL 1ð Þ
h i

(36)

with G(r)¼Q(r)W(r), Q(r) (r¼ 1, 2) and Q(3) being 4� 4 matrices
with the following nonzero entries

Q
rð Þ

11 ¼ Q
rð Þ

22 ¼ �Q
rð Þ

34 ¼ 1; Q
rð Þ

32 ¼ ik2 C rð Þ
1122 � C

rð Þ
1111 � p rð Þ

� �
;

Q
rð Þ

41 ¼ ik2 C rð Þ
1221 þ p rð Þ

� �
; Q

rð Þ
43 ¼ C

rð Þ
2121 (37)

and

Q
3ð Þ

11 ¼ Q
3ð Þ

22 ¼ 1; Q
3ð Þ

32 ¼ ik2C rð Þ
1122; Q

3ð Þ
33 ¼ C

3ð Þ
1111;

Q
3ð Þ

41 ¼ ik2C 3ð Þ
1221; Q

3ð Þ
44 ¼ C

3ð Þ
2121

(38)

Thus, according to Eq. (35), along an arbitrary diagonal loading
path (16) with origin F ¼ I, an instability will first occur in the
fiber-reinforced material at the point at which K ¼ exp ik1L½ �
becomes an eigenvalue of the matrix K. More explicitly,
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exploiting the facts that exp ik1L½ �k k ¼ 1 and det K¼ 1 (sinceP4
I¼1 z

rð Þ
I ¼ 0 for r¼ 1, 2, 3 in this case), an instability will first

occur at the point at which any of the four conditions:

A k1;k2;k2

� �
_¼ I1

4
þa I1; I2ð Þ

4
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
1�2I2�4þ I1a I1; I2ð Þ

p
2
ffiffiffi
2
p

�����
������1¼ 0

(39)

with a I1; I2ð Þ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
1 � 4I2 þ 8

p
, I1 ¼ trK, and I2¼ [(trK)2

� trK2]=2, is satisfied for some positive value of k2. In addition to
the dependency on the size and constitutive behavior of the matrix
and fibers, the above derivation explicitly reveals that the onset of
instabilities depends as well on the size and constitutive behavior

of the interphases, via the matrices exp Z 3ð Þ L 3ð Þ

2

h i
and G(3) in Eq.

(36). To better reveal this dependency, sample numerical results
for the critical deformations and critical stresses at which instabil-
ities occur, as dictated by the condition (39), will be presented in
Sec. 6 and compared with corresponding results for materials
without interphases. Before proceeding with these results, it is
expedient to discuss in some detail the long wavelength limit k2

! 0 in Eq. (39).

5 Onset of Macroscopic Instabilities

Long-wavelength or macroscopic instabilities are known to be of
particular prominence in fiber-reinforced elastomers [11,12,24] and
can be detected by taking the limit k2! 0 directly in the condition
(39) and solving the resulting asymptotic problem [11]. Alterna-
tively—as proved by Geymonat et al. [18] in the context of a
much more general class of periodic composites—macroscopic

instabilities can also be detected from the loss of strong ellipticity
of the overall response of the material. Specifically, for the fiber-
reinforced materials under study in this work, macroscopic instabil-
ities may develop whenever the condition

min
mk k¼1

B F; m
� �

> 0 (40)

with

B F; m
� �

_¼ det Li1k1

m1

m2


 �2

þ Li1k2 þ Li2k1

� �m1

m2

þ Li2k2

" #
and

L ¼ @2W

@F@F
F
� �

(41)

is first violated along any arbitrary loading path with starting point
F ¼ I.

For aligned loadings of the form (Eq. (16)), it is possible to
rewrite the condition in Eq. (40) as a set of three simple and explicit
conditions exclusively in terms of the moduli Lijkl [25]. They read
as:

ið Þ L1111L2121 > 0

iið Þ L2222L1212 > 0

iiið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1111L2121L2222L1212

q
þ 1

2

h
L1111L2222 þ L1212L2121

�
�
L1122 þ L1221

�2
i
> 0 (42)

Here, according to (41)2 with (13) and (16),

L1111 ¼
l 3ð Þ þ k

2

2h00 J
ð3Þ

� �
c

3ð Þ
0

L1122 ¼
1� c

3ð Þ
0

� �
l 3ð Þ þ c

3ð Þ
0 k

2

2h0 J
3ð Þ

� �
þ k

2

1k
4

2h00 J
3ð Þ

� �
c

3ð Þ
0 k

2

2

L2222 ¼
3� 6c

3ð Þ
0 þ 2 c

3ð Þ
0 � 1

� �
k1k2

� �
l 3ð Þ þ c

3ð Þ
0 lV 3þ k

4

2

� �
þ k

2

1k
4

2h00 J
3ð Þ

� �
c

3ð Þ
0 k

4

2

L1212 ¼
ð1� k1k2Þðk1k2 þ 2c

ð3Þ
0 � 1Þlð3Þ þ c

ð3Þ
0 lRk

2

1k
2

2 þ c
ð3Þ
0 lVðk

4

2 � 1Þ
c
ð3Þ
0 k

4

2

L1221 ¼
c

3ð Þ
0 lRk1k2 � k1k2 � 1þ c

3ð Þ
0

� �
l 3ð Þ

c
3ð Þ

0 k
2

2

� h0 J
3ð Þ

� �
L2121 ¼ lR

(43)

where it is recalled that J
3ð Þ ¼ �k1

�k2 � 1þ c
3ð Þ

0

� �
=c

3ð Þ
0 . Exploring

the parameter space for a variety of convex functions h(J) indi-
cates that it is condition (ii) — via L1212 ¼ 0 - the condition that
almost invariably first ceases to hold true. That is, starting at
�k1 ¼ �k2 ¼ 1 and marching along loading paths of the form (16),
macroscopic instabilities can first develop at stretches �k1 and �k2

that satisfy the algebraic condition

C �k1; �k2

� �
_¼ �k2 � 1� �k2

1
�k2

2

lR

lV

�

þ
�k1

�k2 � 1
� �

�k1
�k2 þ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 lV

3
5

1=4

¼ 0 (44)

If the material parameters l(r) and volume fractions c
rð Þ

0 are such
that there is no pair of positive real numbers �k1; �k2

� �
that satisfies

condition (44), macroscopic instabilities do not occur. In the
event that macroscopic instabilities do occur, the set of (real
and positive) points satisfying condition (44) defines a curve
C �k1; �k2

� �
in the �k1; �k2

� �
-deformation space. Henceforth, we refer

to such a curve as onset-of-macroscopic-instability curve. The
corresponding critical nominal stresses, t1 and t2, at which macro-
scopic instabilities occur are given by

t1 ¼
@W

@ �k1

�k�1;
�k�2

� �
¼

�k�1
�k�2 � 1þ c

3ð Þ
0

c
3ð Þ

0
�k�2

l 3ð Þ þ �k�2h0
�k�1

�k�2 � 1þ c
3ð Þ

0

c
3ð Þ

0

 !

t2 ¼
@W

@ �k2

�k�1;
�k�2

� �
¼ lV

�k�2 � �k��3
2

� �
þ

�k�1
�k�2 � 1þ c

3ð Þ
0 2� �k�1

�k�2
� �

c
3ð Þ

0
�k�32

l 3ð Þ

þ �k�1h0
�k�1

�k�2 � 1þ c
3ð Þ

0

c
3ð Þ

0

 !
(45)
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where, for clarity of notation, �k�1 and �k�2 have been introduced to
denote the critical stretches that satisfy condition (44). The set of
points generated by evaluating expressions (45) at all pairs of critical
stretches �k�1;

�k�2
� �

constitutes an onset-of-macroscopic-instability

curve S t1; t2ð Þ in t1; t2ð Þ-stress space. Unlike in �k1; �k2

� �
-deforma-

tion space, it is not possible in general to write an explicit formula
for S t1; t2ð Þ, but a partial inversion of Eq. (45) leads to the semi-
explicit expression

S t1; t2ð Þ ¼ �k�1
�k�2 1� �k�21

�k�22

lR

lV

þ
�k�1

�k�2 � 1
� �

�k�1
�k�2 þ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 lV

2
4

3
5
�1=2

t1 � t2

� �k�21
�k�22 lR 1� �k�21

�k�22

lR

lV

þ
�k�1

�k�2 � 1
� �

�k�1
�k�2 þ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 lV

2
4

3
5
�3=4

¼ 0 (46)

which proves helpful for evaluating some limiting cases of practi-
cal interest discussed below.

A quick glance at Eqs. (44) and (46) suffices to recognize that
the onset of macroscopic instabilities depends on the size—via
c

3ð Þ
0 , and constitutive behavior, via l(3) and h(J), of the inter-

phases. Such a dependency will be examined with the help of
sample numerical results in the next section and compared with
corresponding results for materials without interphases. In this
connection, it is fitting to remark that the onset-of-macroscopic-
instability curves for materials without interphases can be readily
computed from Eqs. (44) and (46) by appropriately taking the
limit of vanishingly small volume fraction of interphases c

3ð Þ
0 ! 0

and enforcing the macroscopic incompressibility constraint
�k1

�k2 ¼ 1 (resulting from the local incompressibility of the matrix
and fibers). The results read as follows

C0 �k1 ¼ �k�1
2 ; �k2

� �
¼ P0 �k2

� �
¼ �k2 � 1� �l0R

�l0V


 �1=4

¼ 0 (47)

and

S0 t1; t2ð Þ ¼ 1� l
0
R

l
0
V


 ��1=2

t1 � t2 � l
0

R 1� l
0
R

l
0
V


 ��3=4

¼ 0 (48)

In these last expressions,

l
0

V ¼ 1� c
2ð Þ

0

� �
l 1ð Þ þ c

2ð Þ
0 l 2ð Þ and l

0

R ¼
1� c

2ð Þ
0

l 1ð Þ þ
c

2ð Þ
0

l 2ð Þ

 !�1

(49)

and it is pointed out that the instability curve in deformation space
(47) is comprised of just one point because of the incompressibil-
ity constraint �k1

�k2 ¼ 1.

5.1 The Case of Uniaxial Compression in the Direction of
the Fibers ðt1 ¼ 0 and k2 £ 1Þ. For comparison with experi-
ments and with the classical results of Rosen [10] and Triantafylli-
dis and Maker [11] further below, we now spell out the
specialization of conditions (44) and (46) to the case of uniaxial
compression in the direction of the fibers, corresponding to t1 ¼ 0
and �k2 � 1. Under this type of loading condition, it is not difficult
to show from (44)–(46) that the critical values �kcr

2 and tcr
2 of the

stretch �k2 and stress t2 at which a macroscopic instability can first
develop are given, respectively, by

�kcr
2 ¼ 1� z2 �lR

�lV

þ
z� 1ð Þ zþ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 �lV

2
4

3
5

1=4

(50)

and

tcr
2 ¼ �z2lR 1� z2 lR

lV

þ
z� 1ð Þ zþ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 lV

2
4

3
5
�3=4

(51)

where z is the real root to the nonlinear algebraic equation

z� 1þ c
3ð Þ

0

c
3ð Þ

0

l 3ð Þ þ 1� z2 lR

lV

þ
z� 1ð Þ zþ 2c

3ð Þ
0 � 1

� �
l 3ð Þ

c
3ð Þ

0 lV

2
4

3
5

1=2

� h0
z� 1þ c

3ð Þ
0

c
3ð Þ

0

 !
¼ 0 (52)

closest to 1.
The critical expressions (50) and (51) apply to general hetero-

geneity contrast l(2)=l(1) between the matrix and the fibers. In
practice, however, actual fibers in reinforced elastomers are usu-
ally several orders of magnitude stiffer than the matrix phase. It is
hence convenient to record the further simplification of the above
result in the limit as D _¼ 1=l 2ð Þ ! 0, when the fibers are taken to
be rigid. In this limit, the solution to Eq. (52) admits the asymp-
totic explicit form

z ¼ 1� c
3ð Þ

0 l 1ð Þl 3ð Þ

2c
2ð Þ

0 c
3ð Þ

0 l 1ð Þ � l 3ð Þð Þ þ 1� c
2ð Þ

0

� �
l 3ð Þ

� �
l 3ð Þ þ h00 1ð Þð Þ

l 3ð Þ

� Dþ O D2
� �

(53)

so that, to first order (O(D0)), the critical stretch (50) and stress
Eq. (51) reduce to

�kcr
2 ¼ 1 and tcr

c ¼ �
l 1ð Þl 3ð Þ

c
3ð Þ

0 l 1ð Þ � l 3ð Þð Þ þ 1� c
2ð Þ

0

� �
l 3ð Þ

(54)

irrespectively of the choice of the compressibility function h(J)
for the interphases.

5.1.1 Comparison with the Classical Results of Rosen (1965)
and Triantafyllidis and Maker (1985). In one of the very first
works making use of 2D idealizations of fiber-reinforced materi-
als, Rosen [10] considered a material system made up of alternat-
ing layers of two different linear elastic isotropic solids that is
subjected to uniaxial compressive load along the layers. By means
of an energy method, he solved the problem approximately and

concluded that the critical stretch �kRos
2 and associated critical
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stress tRos
2 at which macroscopic instabilities develop are given (in

the present notation) by

�kRos
2 ¼ 1� l 1ð Þ

3 1� c
2ð Þ

0

� �
c

2ð Þ
0 l 2ð Þ

and tRos
2 ¼ � l 1ð Þ

1� c
2ð Þ

0

(55)

Later, Triantafyllidis and Maker [11] re-examined the same 2D
idealization within the more general framework of finite elasticity.
Specifically, these authors considered alternating layers of two
different incompressible Neo-Hookean materials, also under uni-
axial compression along the layers. By making use of Floquet

theory, they showed that the critical stretch �kTM
2 and associated

critical stress tTM
2 at which macroscopic instabilities can first de-

velop in this case are given (in the present notation) exactly by

�kTM
2 ¼ 1� l

0
R

l
0
V


 �1=4

and tTM
2 ¼ �l

0

R 1� l
0
R

l
0
V


 ��3=4

(56)

where it is recalled that l
0
V and l

0
R are given by expressions (49).

While the approximate Rosen expressions (55) differ in general
from the exact results (56), both of these criteria agree identically
in the physically relevant limit of rigid fibers, as D = 1=l(2) ! 0,
when they reduce to

�kRos
2 ¼ �kTM

2 ¼ 1 and tRos
2 ¼ tTM

2 ¼ � l 1ð Þ

1� c
2ð Þ

0

(57)

to first order (O(D0)).
When compared with the classical results (55) and (56), it

should be apparent from expressions (50) and (51) that the pres-
ence of interphases in fiber-reinforced materials can have a drastic
effect on the values of the critical loads at which macroscopic

instabilities develop, even for very small volume fraction c
3ð Þ

0 of
interphases. This is more explicitly revealed by the case of rigid
fibers, when is easily deduced from relations (54) and (57) that for
materials with interphases that are softer than the matrix—in the
sense that l(3)<l(1) and irrespectively of the compressibility
function h(J)—the onset of macroscopic instabilities can occur at
much smaller compressive stresses than for the corresponding
materials without interphases. The opposite is true for the case
when the interphases are stiffer than the matrix (i.e., l(3)>l(1)).

Further comments on this key result are provided in the next
section.

6 Sample Results and Discussion

In this section, the above-derived results for the axial macro-
scopic response and onset of instabilities in fiber-reinforced mate-
rials, as characterized by relations (18), (39), and (44)–(46), are
examined for various values of the underlying geometric and
material parameters of the matrix, fibers, and interphases.
Prompted by recent experiments3, all the results that follow corre-
spond to l(1)¼ 1, l(2)¼ 100, and interphases that are softer than
the matrix phase so that l(3)< l(1). For the function h(J) describ-
ing the compressibility of the interphases, we make use of
expression (6) with k¼ 1 and m¼�2. This choice corresponds to
interphases that are extremely soft under volume increasing defor-
mations, but stiff under volume decreasing ones, similar to the
behavior of gaseous substances.

6.1 Macroscopic Response. Figure 2 shows results for the
macroscopic response of fiber-reinforced materials with

c
2ð Þ

0 ¼ 30% volume fraction of fibers subjected to uniaxial tension,
Fig. 2(a), and uniaxial compression, Fig. 2(b), in the fiber direc-
tion (i.e., t1 ¼ 0). The results are presented in terms of the nomi-

nal stress t2 as a function of the applied axial stretch �k2 for values
of interphase shear modulus l(3)¼ 0.1 and initial volume fractions

c
3ð Þ

0 ¼ 0:01; 0:05; 0:1. The response of the corresponding fiber-

reinforced material without interphases c
3ð Þ

0 ¼ 0
� �

has also been

included in the figure (dashed line) for comparison purposes. Note
that the plots have been either stopped at the first occurrence of an
instability, denoted with the symbol “	” in the figure, or at some

sufficiently large value of the stretch �k2 if no instability occurs.
A self-evident observation from Fig. 2 is that the presence of

interphases does not affect the macroscopic (tensile or compres-
sive) uniaxial-stress response of fiber-reinforced materials, as all
results agree with that of the material without interphases;
although not shown here, varying the values of the interphase
shear modulus l(3) has been checked not to affect the results

Fig. 2 Macroscopic response of fiber-reinforced materials with interphases under
uniaxial stress in the fiber direction: t1 ¼ 0. The results correspond to c

2ð Þ
0 ¼ 30% vol-

ume fraction of fibers, interphase shear modulus l(3) 5 0.1, various volume fractions of
interphases c

3ð Þ
0 , and are shown in terms of the nominal stress t2 as a function of the

applied axial stretch �k2. Part (a) displays the results for tension �k2 
 1, and part (b) for
compression �k2 £ 1.

3In a recent set of experiments [4], blocks of a transparent elastomer reinforced
by cylindrical nitinol rods were axially compressed up to the point at which buckling
of the rods was observed. The surfaces of the rods were not treated before fabrication
of the composites resulting in fairly weak bonding between the elastomer and the
rods.
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either. On the other hand, the presence of interphases does signifi-
cantly alter the stability of these material systems under uniaxial
compression; no instabilities occur under uniaxial tension. More
specifically, the larger the size of the interphases - as measured by

their volume fraction c
3ð Þ

0 here—the less stable the materials
become in the sense that instabilities occur at lower values of
compressive stresses. Exactly as in the material without inter-
phases, the instabilities in all the materials with interphases

c
3ð Þ

0 ¼ 0:01; 0:05; 0:1
� �

in Fig. 2(b) are of long wavelength.

To further probe the axial macroscopic response of fiber-
reinforced materials with interphases, Fig. 3 displays results for
uniaxial tensile stretch with �k1 ¼ 1 and �k2 
 1. Plots are shown
for t1 and t2 as functions of �k2 for the same cases considered in
Fig. 2, with the exception that the response of the (incompressi-
ble) material without interphases cannot be shown because the
imposed loading is not isochoric. Much like for the preceding
case of uniaxial stress loading, the stress t2 here is seen to be fairly
insensitive to the presence of interphases. The stress in the trans-
verse direction t1, however, exhibits a stronger dependence on the
volume fraction of interphases but this dependency is in actuality
negligible when compared to the one-order-of-magnitude larger
axial stress t2.

In short, the above sample results illustrate that interphases
have little influence on the axial macroscopic response of fiber-
reinforced materials. This is consistent with the fact that axial
loading activates fiber-dominated modes of deformation, and thus
the macroscopic response is mostly governed by the behavior of
the stiffer fibers. By contrast, the above sample results also indi-
cate that interphases can have a strong effect on the development
of instabilities. This, in turn, is consistent with the fact that insta-
bilities are controlled by the activation of matrix-dominated (or
soft) modes of deformation, and hence the presence of soft inter-
phases can have a significant impact on their occurrence. This re-
markable effect of interphases on instabilities is examined more
thoroughly in the next subsection.

6.2 Onset of Instabilities. Figure 4 shows results for the criti-

cal stretches �kcr
2 and stresses tcr

2 at which instabilities develop for the
case of uniaxial compressive loading in the fiber direction t1 ¼ 0ð Þ.
The main observation from this figure is that fiber-reinforced mate-

rials with thicker (i.e., larger c
3ð Þ

0 ) and softer (i.e., smaller l(3)) inter-
phases are increasingly less stable. In particular, when compared
with the material without interphases (dashed line), the critical

compressive stretches �kcr
2 and stresses tcr

2 in materials with inter-
phases can be remarkably lower, even for very small volume frac-

tion of interphases in the order of c
3ð Þ

0 ¼ 1% or smaller. Another
important observation is that all instabilities in Fig. 4 are of long
wavelength, except for sufficiently large interphase shear moduli

l(3) and sufficiently small volume fractions of fibers c
2ð Þ

0 , greater

than l(3)¼ 0.01 and less than c
2ð Þ

0 ¼ 8% for the cases considered

here, when they are of short wavelength. The trend in c
2ð Þ

0 is similar
to that exhibited by instabilities in fiber-reinforced materials without
interphases [11]. For clarity, dotted lines are utilized in the plots to
indicate that the instabilities are of short wavelength; in contrast to
the solid lines utilized to denote long wavelength instabilities.

Onset-of-instability curves for general axial loading are presented
in Fig. 5. Figure 5(a) shows the curves in �k1; �k2

� �
-deformation

space, while Fig. 5(b) illustrates them in t1; t2ð Þ-stress space. The
results correspond to materials with c

2ð Þ
0 ¼ 30% volume fraction of

fibers, c
3ð Þ

0 ¼ 2% of interphases, and interphase shear moduli
l(3)¼ 0.01, 0.05, and 0.1. For any loading path of choice in both
spaces, the first instability that occurs is of long wavelength, as
characterized by Eqs. (44) and (46). In deformation space, materials
with softer interphases are consistently less stable for small and
moderate values of the transverse stretch �k1. This trend is reversed
at sufficiently large stretches �k1 > 1, when instabilities are seen to
develop not only for compressive but also for tensile axial stretches
�k2. In stress space, on the other hand, softer interphases consistently
lead to less stable behavior.

7 Final Comments

The results worked out in this paper indicate that while inter-
phases have a marginal effect on the axial macroscopic response
of fiber-reinforced elastomers, they can drastically affect their sta-
bility. In particular, for the case of materials with interphases that
are softer than the matrix, the critical loads at which instabilities
develop were found to be significantly lower than in the corre-
sponding materials without interphases, even for very small vol-
ume fraction of interphases. At a fundamental level, this behavior
can be understood from the fact that instabilities are controlled by
the activation of matrix-dominated (or soft) modes of deforma-
tion, and hence the presence of soft interphases can have a signifi-
cant impact on their occurrence.

From a practical point of view, the results also highlight that,—
in addition to some knowledge of the presence of geometrical and
material imperfections [26,27], some knowledge of the size and

Fig. 3 Macroscopic response of fiber-reinforced materials with interphases under

uniaxial tensile stretch: �k1 ¼ 1 and �k2 
 1. The results correspond to c
2ð Þ

0 ¼ 30% vol-
ume fraction of fibers, interphase shear modulus l(3) 5 0.1, and various volume frac-

tions of interphases c
3ð Þ

0 . Part (a) shows results for the nominal stress t2 versus �k2,

whereas part (b) shows t1 versus �k2.
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mechanical behavior of the underlying interphases is absolutely
necessary in order to be able to accurately predict the compressive
failure of fiber-reinforced elastomers.

Finally we remark that it would be interesting to extend the
present analysis to non-symmetric loading conditions, where
interphases are expected to influence not only the stability but
also the macroscopic response, and different geometries of fillers

such as for instance spherical particles where interphasial effects
have been reported to play a major role [1–3].
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