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a b s t r a c t

We present a theory to reveal for the first time the distinct mechanisms by which a compressed rod con-
fined in a channel buckles in the presence of dry friction. Contrary to the case of a frictionless contact,
with friction the system can bear substantially enhanced compressive load without buckling after its
stiffness turns negative, and the onset of instability is strongly affected by the amount of perturbation
set by the environment. Our theory, confirmed by simulations, shows that friction enhances stability
by opening a wide stable zone in the perturbation space. Buckling is initiated when the applied compres-
sive force is such that the boundary of the stable zone touches a point set by the environment, at a much
higher critical load. Furthermore, our analysis shows that friction has a strong effect on the buckling
mode; an increase in friction is found to lead to higher buckling modes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Slender rods are ubiquitous in nature (Elbaum et al., 1996; Bran-
gwynne et al., 2006; Senan et al., 2008), devices (Gansel et al., 2009;
Wu et al., 2011; Su and Purohit, 2011) and engineering structures
(Paslay and Bogy, 1964; Timoshenko and Gere, 1961; Wicks et al.,
2008). At length scale separated by orders of magnitude, these one
dimensional structures are typically constrained and mechanically
supported: microtubules by the dense cellular matrix, plant roots
by the surrounding soil and oilfield tubulars by the borehole walls.
Despite the support, the rods can still buckle under large compres-
sive forces, leading to catastrophic structural failure.

The mechanical stability of constrained rods has been studied for
many years (Timoshenko and Gere, 1961; Lazopoulos, 1991; Domo-
kos et al., 1997; Wicks et al., 2008), but surprisingly their buckling
behavior is still often observed to deviate significantly from theories
(Suryanarayana and McCann, 1994, 1995). For example, in the
petroleum industry, horizontal wellbores are becoming more and
more common. The buckling load of pipes that are used to perform
operations in these horizontal wellbores is reported to be higher
than the theoretical frictionless prediction by 30% to 50% (Gao and
Miska, 2009, 2010; Mitchell, 2007). Moreover, noticeable hysteresis
induced by buckling has been reported and the load required during
unloading to unbuckle the rod has been found to be significantly
lower than the buckling force (Suryanarayana and McCann, 1994,

1995). Although it has been suspected that these experimental
observations are at least partly due to dry friction between the rod
and the confinement, it is surprising that so far a theory capable of
fully explaining them does not exist. Currently, it is not even clear
whether friction just merely changes the dynamics of the system,
or it completely alters the buckling mechanism.

To further illustrate the issue and to highlight the significant ef-
fect of friction, we start by presenting some dynamic simulation
results, while leaving the details of the numerical analysis to be de-
scribed later in Section 5. We simulate the compression-induced
buckling of an elastic rod confined in a cylindrical channel to ob-
tain the critical buckling load (see Fig. 1(A) and (B)). Both friction-
less and frictional contact between the rod and the channel are
considered, and the contributions of gravity, stretching, bending,
twisting, shear, inertia and confinement of the rod are all taken
into account. To trigger the instability, we introduce an imperfec-
tion in the form of an initial velocity perturbation. The perturba-
tion is sinusoidal along the rod, with magnitude v0, and it is
applied in the transverse direction only at time t ¼ 0 s. In
Fig. 1(D) we report the evolution of the reaction force in longitudi-
nal direction as a function of the applied displacement for both
frictionless and frictional cases under different initial velocity per-
turbation v0. The reaction force under which the linear force–
displacement relation breaks down is recorded as the critical buck-
ling force. To clearly highlight the difference between frictional and
frictionless situations, in Fig. 1(E) we report this critical force as a
function of the perturbation magnitude v0. Both Figs. 1(D) and (E)
unambiguously reveal that in the case of frictionless contact, the
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buckling load is independent of the magnitude of the initial pertur-
bations, in agreement with the well-known frictionless theory (Pa-
slay and Bogy, 1964). By contrast, for frictional contact the
instability is shown not only to be initiated at a load much higher
than that in the frictionless case, but also to depend on the magni-
tude of the perturbation v0. We are not aware of any existing the-
ory capable of explaining both the increase in buckling load and its
strong dependence on the initial perturbation caused by friction.
The main objective of this paper is therefore to develop a theory
to unravel the mechanism by which a confined rod buckles in
the presence of friction, with particular focus on the prediction of
the onset of frictional buckling. This theory will provide an impor-
tant tool both for researchers and industry, to fully understand the
role played by friction and to precisely predict failure of structures
in the presence of friction.

Most studies on buckling of confined rods ignore the effect of
friction (Chen et al., 1990; Cunha, 2004; Domokos et al., 1997;
van der Heijden et al., 2002), and are based on energy minimiza-
tion methods. Straightforward introduction of dry friction within
this framework leads to the paradoxical conclusion that buckling
of a perfectly straight rod is essentially impossible if friction exists
(Mitchell, 2007). In an attempt to overcome this issue, minimiza-
tion of a generalized potential with a dissipative term has been
proposed (Lazopoulos, 1991; Gao and Miska, 2009), but these stud-

ies fail in predicting the effect of imperfections on the buckling
load. In a broader context, earlier attempts to incorporate dry fric-
tion in the stability analysis of elastic bodies also exist. However,
these studies rely on a quasi-static assumption and interpret insta-
bility as existence of an equilibrium deformation path leading
away from the probed state (Mróz and Plaut, 1991; Martinis and
Raous, 2002; Nguyen, 2003, 2000). Therefore, they are unable to
explain the dependency of stability on the perturbation revealed
by the numerical simulations presented above.

The main contribution of this paper is not to provide a new mathe-
matical formulation, rather, it is to use well-known equations to illus-
trate a poorly understood physical phenomenon, revealing how a
frictionally confined rod buckles. In the absence of friction, the Kirch-
hoff analogy between the equilibrium of a uniform rod and the dynam-
ics of a spinning top is well known (Kirchhoff, 1859). In particular, for
the case of a frictionless rod confined in a channel the problem can be
mapped to that of a heavy bead sliding on a rotating circle. With fric-
tion, however, the mapping is not obvious because the system is non-
linear and decomposing a continuous system with infinite degrees of
freedom into a one-dimensional system is not straightforward. There-
fore, additional assumptions have to be made and need to be justified.
In this paper, we use detailed numerical simulations to determine such
assumptions and show that at the onset of buckling only one deforma-
tion mode dominates. Only using this assumption can the problem of
the frictional buckling of a rod be mapped to that of a sliding bead.
Although the mathematical structure presented in this paper is not
new (see the recent study of one-dimensional heavy bead (Burov,
2010) for example), and some features of the solution have been dis-
cussed (see Biemond et al., 2012 and the references therein), here we
take a step forward and systematically study the behavior of the solu-
tions, revealing for the first time how a frictionally confined rod buck-
les. In particular, an important feature not known before is the
existence of a stable zone in the phase diagram that shrinks in response
to an increase in compressive force. This finding helps in explaining
why frictional buckling is not only initiated at a higher force but also
strongly affected by perturbations. Our analysis reveals a frictional
buckling mechanism that is distinct from the frictionless one and this
has not been studied before. Furthermore, the investigation of buckling
in a continuous system such as a rod requires understanding the inter-
action and evolution of different modes to determine the dominant
one. Our study carefully addresses this important point, which is be-
yond the discussion in Burov (2010) and cannot be understood with
a bead system.

In this paper, we present a theory that accounts for the non-equi-
librium dynamics of the system and show that dry friction com-
pletely changes the mechanism by which a confined rod loses
stability. The theory reveals that friction opens up a force-tunable
stable zone not seen in the frictionless situation, and illustrates that
instability of a frictional system will not be initiated when the sys-
tem stiffness turns negative, rather, it will appear much later and
is strongly affected by the perturbations. Furthermore, our analysis
also shows that friction has a strong effect on the buckling mode; an
increase in friction leads to a higher buckling mode. The theory sug-
gests that stability of a frictional system depends on how perturba-
tions are dissipated dynamically instead of quasi-statically, which
cannot be revealed using an energy minimization method.

2. Dynamic equation of a confined rod

Let x–y–z defines a global coordinate system as shown in Fig. 1,
with gravity acting in the z direction. We consider a horizontal
cylindrical channel of radius R,1 aligned along the x direction. An

A B

D
E

C

Fig. 1. (A) Undeformed and (B) deformed configurations of an elastic rod (length
L ¼ 3 m, diameter d ¼ 1:5 mm, Young’s modulus E ¼ 77 GPa) compressed in a
R ¼ 5:125 mm horizontal cylindrical channel. The undeformed straight rod lies at
the bottom of the channel because of gravity. To trigger instability in the dynamic
simulations, an imperfection in the form of an initial velocity perturbation is
applied in the transverse direction along the rod arc length s at time t ¼ 0 s:
v ¼ v0 sinðx0sÞ. Here x0 ¼ 6p=L is set according to the frictionless buckling mode
(Paslay and Bogy, 1964; Wicks et al., 2008). (C): Cross-section view of the horizontal
channel. The configuration of the deformed rod is characterized by the deflection
angle h, which is a function of both the arc length s and the time t. (D) Under a
displacement control, the rod is compressed and the reaction force is recorded in
the simulations. This figure shows the force–displacement relation for four different
cases: (red open squares) frictionless contact with v0 ¼ 5 mm/s; (red close squares)
frictionless contact with v0 ¼ 30 mm/s; (blue open triangles) frictional contact with
v0 ¼ 5 mm/s; (blue close triangles) frictional contact with v0 ¼ 30 mm/s. The force
peak at which the linear force–displacement relation breaks down is recorded as
the critical buckling force. (E) Numerically predicted critical buckling force as a
function of the initial velocity perturbation amplitude v0. Both frictionless (squares)
and frictional (triangles) situations (friction coefficients l ¼ 0; 0:3) are shown
(dashed lines are linear fits). Simulation details are provided in the Section 5. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

1 To be exact and to account for the thickness of the rod, R here is the clearance, or
Rchannel � Rrod.
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elastic rod of length L is confined in the channel, initially laying
straight on the channel bottom due to gravity (Fig. 1(A)), so that
the position of its center line is identified by:

~r0 ¼ ½s; 0; �R�; ð1Þ

with s denoting its arc length. With one end fixed, the other end of
the rod is subjected to an axial compressive force F (Fig. 1(B)). We
assume that the rod remains in contact with the channel and takes
a deformed configuration:

~r ¼ ½x; R sin h; �R cos h�; ð2Þ

where x ¼ xðs; tÞ is the deformed axial coordinate and h ¼ hðs; tÞ is
the deflection angle with respect to the z direction (Fig. 1(C)). They
are both functions of the arc length s and time t.

Unlike previous studies that assume quasi-staticity, we will
investigate the dynamics of the rod. Therefore we start by building
the Lagrangian of the system L, which consists of the kinetic, bend-
ing, gravity and compressive force potentials. To the quadratic or-
der in h; L can be written as

L ¼ 1
2

R2 q
@h
@t

� �2

� EI
@2h
@s2

 !2

� qgh2

R
þ F

@h
@s

� �2
2
4

3
5; ð3Þ

with q being the mass density of the rod (per unit length), EI being
the bending rigidity and g being the gravity constant. The corre-
sponding Euler–Lagrange equation (without friction) for our system
is obtained by minimizing L:

q
@2h

@t2 þ EI
@4h
@s4 þ F

@2h
@s2 þ

qgh
R
¼ 0: ð4Þ

Eq. (4) governs the dynamics of a frictionless rod confined in a cylin-
drical channel in the h direction (i.e. direction that is normal to both
the radial and axial directions of the channel). It can also be ob-
tained by analyzing force balance of an infinitesimal segment of
the confined rod in the h direction. A similar equation has been used
to study the dynamic buckling and fragmentation of slender rods in
the absence of friction (Gladden et al., 2005). However, since the
goal of this work is to unravel the effect of friction on the buckling
of a confined rod, we proceed by adding a nonlinear dry friction
term to Eq. (4), which, as will be described soon, completely
changes the mechanism by which a rod loses stability. In the pres-
ence of dry friction, the dynamic equation governing the response of
the system becomes:

q
@2h

@t2 þ EI
@4h
@s4 þ F

@2h
@s2 þ

qgh
R
þ Ffrictionðt; sÞ

R
¼ 0; ð5Þ

where �F frictionðt; sÞ ¼ �signð _hÞ lN denotes the sliding dry friction
force (per unit length), with l being the friction coefficient and N
being the normal contact force between the rod and the horizontal
channel. Note that Eq. (5) is valid only for (1) small h, which is suf-
ficient for our goal of identifying the buckling onset, and (2) sliding
friction where the magnitude of frictional force is exactly lN. We
will point out the cases of sticking where jFfrictionj 6 jlNj along our
further analysis below. Furthermore, it is important to point out
that several assumptions have been made in the derivation of Eq.
(5). More specifically, we assumed that up to the onset of buckling
(i) the normal contact force between the rod and the channel
N ¼ qgA is constant along the rod; (ii) the effect of twisting and
shear of the rod is negligible; (iii) the axial compressive force in
the rod is constant along the rod; (iv) the critical buckling mode
is such that the rod remains in contact with the channel (as opposed
to buckling vertically in the z direction against gravity, which would
be energetically unfavorable). Moreover, later in this Section we
will also assume that (v) at the onset of instability only one buckling
mode dominates. The advantage of making all these assumptions is

that they lead to a simple analysis where the effect of friction on the
buckling mechanism can be analytically investigated and clearly re-
vealed. Furthermore, the validity of all these assumptions will be
confirmed later in Section 5 by numerical simulations, where all
these effects that are ignored by the theory will be taken into
account.

The frictional term in Eq. (5) makes the equation nonlinear and
difficult to analyze. To better investigate it, we first decompose h
and signð _hÞ into Fourier series:

hðt; sÞ ¼
X

AnðtÞ sinðxnsÞ;

signð _hÞ ¼
X

BnðtÞ sinðxnsÞ; with xn ¼
np
L
; ð6Þ

where, due to the nonlinearity of the sign function, Bn in general de-
pends on _A1; _A2; . . . ; _An; . . .:

Bn ¼
2
L

Z L

0
sign

X
k

_Ak sin xksð Þ
" #

sin xnsð Þds: ð7Þ

Substituting the two Fourier series into Eq. (5), we obtain the gov-
erning equations for the Fourier modes:

€An þ
x2

n

q
EIx2

n þ
qg

Rx2
n
� F

� �
An þ

lNBn

qR
¼ 0; n ¼ 1;2; . . . ;þ1:

ð8Þ

Eq. (8) is highly coupled because Bn depends on all Ak. However, as it
has been mentioned above, when buckling occurs, only one defor-
mation mode, let’s say mode m, is expected to dominate, so that
hðt; sÞ ¼ AmðtÞ sinðxmsÞ (no summation). Under this assumption,
the Fourier coefficient Bm can be simplified as

Bm ’
2
L

Z L

0
sign _Am sin xmsð Þ

h i
sin xmsð Þds

¼ 2
L

Z L

0
sign _Am

� �
sin xmsð Þj jds ¼ 4

p
sign _Am

� �
; ð9Þ

which reveals that Bm only depends on Am. By substituting Eq. (9)
into Eq. (8), we obtain the decoupled equation governing the evolu-
tion of the dominant buckling mode AmðtÞ:

€Am þ
x2

m

q
EIx2

m þ
qg

Rx2
m
� F

� �
Am þ sign _Am

� �
f ¼ 0; ð10Þ

with f ¼ 4lN=ðpqRÞ. Therefore, to determine the onset of buckling,
we look for conditions under which a single unstable mode with un-
bounded amplitude AmðtÞ exists that satisfies Eq. (10). Note that the
coefficient in front of Am in the second term of Eq. (10):

km ¼
x2

m

q
EIx2

m þ
qg

Rx2
m
� F

� �
ð11Þ

is the square of the characteristic time frequency of the problem. In
the absence of friction, km ¼ 0 corresponds to the onset of instability
for the system. In fact, when f ¼ 0 (no friction) and km ¼ 0, if the lin-
earized system described by Eq. (10) is perturbed, there is no restor-
ing force acting on it that brings it back to the equilibrium position.
Therefore, periodic oscillation solutions whose magnitude is
bounded by initial imperfection/perturbation cease to exist. How-
ever, we will see soon that these conclusions are not true anymore
in the presence of dry friction (f > 0). It is worth pointing out that
Eq. (10) is identical to the dynamic equation for a frictional mass-
spring system with an effective spring stiffness given by km in Eq.
(11). Note that an increase in the compressive force F can turn the
stiffness of the system km to negative. Finally, we note that our anal-
ysis so far assumes sliding friction. A stick state occurs when _h ¼ 0
(stationary) and €h ¼ 0 (frictional force exactly balances other forces
so there is no acceleration). Using Eq. (5), the latter condition re-
duces to:
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EI
@4h
@s4 þ F

@2h
@s2 þ

qgh
R

�����
����� ¼ Ffriction

R

����
���� 6 lN

R
: ð12Þ

In the Fourier space, these conditions for sticking are:

_Am ¼ 0; Amj j 6
f

km
: ð13Þ

3. Instability analysis

To identify the onset of instability, we now look for the condi-
tions under which an unbounded solution AmðtÞ exists for Eq.
(10). In particular, sketching its solution trajectories on the phase
plane _Am � Am is a straightforward way to reveal instability. To
fully unravel the effect of friction on the buckling of a constrained
rod, six different conditions need to be discussed. Below we will
first briefly discuss the three trivial frictionless cases (f ¼ 0), and
then investigate the other three with friction (f > 0).

3.1. Frictionless contact

� Case A: f ¼ 0; km > 0. In this case the solution to Eq. (10) is sim-
ply given by

AmðtÞ ¼ C1 sin
ffiffiffiffiffiffi
km

p
t

� �
þ C2 cos

ffiffiffiffiffiffi
km

p
t

� �
; ð14Þ

where C1 and C2 are two constants determined by the initial
conditions. Therefore, if perturbed, the system will oscillate peri-
odically with bound amplitude. Its trajectories on the plane
_Am � Am are plotted in Fig. 2(A). In this case, we have only one
stationary point ½0;0� on the phase plane, around which all tra-
jectories circle. No unbound solution exists. Hence, as expected,
the system is stable.
� Case B: f ¼ 0; km ¼ 0. In this case the solution to Eq. (10)

becomes

AmðtÞ ¼ C1t þ C2 ð15Þ

and the trajectories are shown in Fig. 2(B). They all diverge and
therefore the system is unstable to any perturbation away from
the equilibrium ½0;0�. Hence, km ¼ 0 is an instability criterion,
which, by using Eq. (11), leads to the critical force for mode m:

F0
m;cr ¼ EIx2

m þ
qg

Rx2
m
: ð16Þ

Here the superscript 0 stands for frictionless situation (i.e. l ¼ 0
and f ¼ 0). Since the buckling force for the system is the
minimum force to trigger an unstable mode, in the frictionless
situation we have:

F0
cr ¼min

m
F0

m;cr ¼ 2

ffiffiffiffiffiffiffiffiffiffi
qgEI

R

r
; ð17Þ

with a mode minimizer:

x0 ¼ qg
EIR

� �1=4
: ð18Þ

Eqs. (17) and (18) are well known results and have previously
been derived using the energy minimization method (Paslay
and Bogy, 1964; Wicks et al., 2008). The dynamic approach we
use here, however, can be extended to the frictional situations
and will reveal a frictional buckling mechanism that the energy
minimization methods are not able to show.
� Case C: f ¼ 0; km < 0. For this last frictionless case, the solution

to Eq. (10) is given by

AmðtÞ ¼ C1 cosh
ffiffiffiffiffiffiffiffiffiffi
�km

p
t

� �
þ C2 sinh

ffiffiffiffiffiffiffiffiffiffi
�km

p
t

� �
; ð19Þ

whose trajectories are shown in Fig. 2(C). Here, the stationary
point ½0;0� is a saddle and the system remains unstable.

All these observations fully agree with our knowledge of a friction-
less system: buckling is initiated by any perturbation as the system
stiffness km turns negative. However, in the case of frictional con-
tact (i.e. f > 0) these observations are no longer true.

3.2. Frictional contact

� Case D: f > 0; km > 0. In this frictional case, the solution to Eq.
(10) is given by:

AmðtÞ þ sign _Am

� � f
km
¼ C1 sin

ffiffiffiffiffiffi
km

p
t

� �
þ C2 cos

ffiffiffiffiffiffi
km

p
t

� �
;

ð20Þ

whose trajectories are plotted in Fig. 2(D). A comparison with
the frictionless case shown in Fig. 2(A) reveals that the station-
ary point ½0;0� is now split and extended into a stationary line
(thick line in Fig. 2(D)) defined by

Am 2 �
f

km
;

f
km

� 	
; _Am ¼ 0: ð21Þ

Every point on this stationary line corresponds to a ‘‘stick state’’
in which the external forces are not strong enough to move the
rod against friction (i.e. jkmAmj < f , see Eq. (13) for sticking con-
ditions). All trajectories on the phase plane are eventually dissi-
pated onto this stationary line and the system is stable.
� Case E: f > 0; km ¼ 0. In this case the solution to Eq. (10) is

given by

AmðtÞ ¼ �
1
2

sign _Am

� �
ft2 þ C1t þ C2; ð22Þ

A D

B E

C F

Fig. 2. Trajectories of the solutions of the dynamical system (Eq. (10)) on the phase
plane _Am � Am for frictionless (A–C) and frictional (D–F) contacts. Trajectories that
grow without bound correspond to an unstable situation. The green shadowed
areas correspond to zones where the system is stable. For a frictionless system,
stability only depends on the sign of the system stiffness km . For a frictional system,
however, the system can be stable even when km < 0 because friction opens a stable
zone. In this case, stability depends strongly on perturbations.
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whose trajectories are shown on Fig. 2(E). From Eq. (21), we can easily
see that as km !þ0, the stationary line extends to Am !�1, onto
which all trajectories are eventually dissipated. Therefore, in contrast
with the frictionless situation, at km ¼ 0 no solution diverges
(Fig. 2(E)). Hence, for a frictional system, loss of stiffness positivity
does not lead to instability. This clearly demonstrates that the use
of the frictionless theory in the buckling analysis will always
underestimate the critical force.
� Case F: f > 0; km < 0. This is a non-trivial case and represents

the key result of this paper. When f > 0 and km < 0, the analytic
solution to Eq. (10) is given by

AmðtÞ þ sign _Am

� � f
km
¼ C1 cosh

ffiffiffiffiffiffiffiffiffiffi
�km

p
t

� �
þ C2 sinh

ffiffiffiffiffiffiffiffiffiffi
�km

p
t

� �
;

ð23Þ

with trajectories reported in Fig. 2(F). Remarkably, for this case a
stable zone of finite size is created by dry friction, as shown by
the colored green region in Fig. 2(F). Within this zone all trajec-
tories are eventually dissipated onto the stationary line, while
outside the zone all trajectories diverge. Therefore, a frictional
system with km < 0 can be stable or unstable, depending on
the magnitude of the perturbation ðAm; _AmÞ. Further inspection
of Eq. (23) reveals that the stable zone is bounded by two hyper-
bolas and their linear asymptotes on the phase plane, all of
which depend on the system stiffness km as

Am þ
f

km

� �2

�
_A2

m

jkmj
¼ const; _Am ¼ �

ffiffiffiffiffiffiffiffiffi
jkmj

q
Am þ

f
km

� �
;

ðboundaries for _Am > 0Þ;

Am �
f

km

� �2

�
_A2

m

jkmj
¼ const; _Am ¼ �

ffiffiffiffiffiffiffiffiffi
jkmj

q
Am �

f
km

� �
:

ðboundaries for _Am < 0Þ: ð24Þ

Since km depends linearly on F (see Eq. (11)), Eq. (24) demon-
strates that the boundaries, and therefore the size of the stable
zone can be tuned by the external force F. When km ¼ 0 the sta-
ble zone covers the entire phase plane (Fig. 2(E)), whereas an in-
crease in the compressive force will lead to a shrinkage of the
stable zone towards ½0;0� (i.e. the stable zone reduces its size).
Physically, this suggests that the tolerance of the rod to pertur-
bations decreases as the applied compressive force increases.
Moreover, since perturbation in reality is set by the environment
and represented by a point (may not be stationary) on the phase
plane, buckling of a frictional system is initiated when the ap-
plied compressive force is such that the boundary of the shrink-
ing stable zone touches this point. We would like to remark that,
to the best of our knowledge, this mechanism (distinct from the
frictionless one) by which a frictionally confined rod loses stabil-
ity has never been reported before.

The discussion above clearly highlights the fact that in the pres-
ence of friction, km ¼ 0 will not lead to instability (case E), and that
when km < 0, the system can be either stable or unstable (case F).
Hence, the zero stiffness criterion typically used to investigate the
onset of frictionless instability is no longer suitable in the case of fric-
tional contact. Contrary to the case of a frictionless contact, with fric-
tion the system can bear substantially enhanced compressive load
without buckling after its stiffness turns negative, and the onset of
instability is strongly affected by the amount of perturbation set
by the environment.

It is worth pointing out here that the stable zone that opens for
km < 0 and f > 0 can only be revealed when the non-equilibrium
dynamic trajectories of a system are considered in the theory. In
fact, the resultant force and inertia are not zero along most trajec-
tories discussed above. This is the reason a minimum energy anal-

ysis, which always yields zero resultant force, is not capable of
revealing the buckling mechanism in the presence of friction. Also,
the quasi-static assumption commonly made in previous studies
(Gao and Miska, 2009; Mróz and Plaut, 1991; Martinis and Raous,
2002; Nguyen, 2003, 2000) is not valid for the non-equilibrium tra-
jectories shown on the phase plane. Furthermore, since friction
splits a single stationary point into a line, there always exists a
force-equilibrium path leading away from the trivial equilibrium
½0;0� (straight configuration). Claiming this as instability is incor-
rect, especially for the case with f > 0 and km > 0.

4. Special case: a rod laying on a flat plane

Before we discuss the results of dynamic simulations, we note
that the analysis presented above can also be applied to the study
of buckling of a compressed rod laying on a frictional two-dimen-
sional plane, which is relevant to several applications including
buckling of railroad tracks and of pipes on the sea floor (Miles
and Calladine, 1999). In fact, this corresponds to the case of a rod
confined in a channel of infinite radius (i.e., R!1). For this special
case, it is better to use the lateral deflection y instead of the deflec-
tion angle h in the analysis. Since y ¼ Rh, we can multiply Eq. (5)
with R and obtain the dynamic equation for y as

q
@2y
@t2 þ EI

@4y
@s4 þ F

@2y
@s2 þ

qgy
R
þ Ffrictionðt; sÞ ¼ 0: ð25Þ

As R! þ1, the gravity term vanishes and the equation becomes

q
@2y
@t2 þ EI

@4y
@s4 þ F

@2y
@s2 þ F frictionðt; sÞ ¼ 0: ð26Þ

The evolution equation for the unbound mode amplitude is ob-
tained by performing Fourier transform on the above equation,
yielding

€Am þ
x2

m

q
EIx2

m � F

 �

Am þ sign _Am

� �
f ¼ 0: ð27Þ

This equation has exactly the same mathematical structure as Eq.
(10), and in this case

km ¼
x2

m

q
EIx2

m � F

 �

: ð28Þ

Therefore, everything about the stability of the system discussed
above still holds. Setting km ¼ 0 and minimizing with respect to
xm, we obtain the well-known frictionless Euler buckling load
F0

cr ¼ EIp2=L2 with the corresponding buckling mode x0 ¼ p=L. For
a frictional contact, however, the onset of instability will be con-
trolled by the perturbation as in the non-planar case in Section 3.

5. Dynamic simulations

We next perform numerical analysis to compare with our the-
ory. Following the approach that has been previously successfully
applied to study the transient dynamics of drillstrings (Pabon
et al., 2009, 2011), the rod is discretized and modeled as a chain
of cylindrical rigid body segments held together through sets of ax-
ial, shear, torsion and bending springs. The spring constants are
computed based on the material properties and the geometry of
the segments (i.e., cross-sections and lengths) using standard Tim-
oshenko beam theory (Timoshenko and Gere, 1961). Therefore, the
axial and torsional stiffness between two adjacent segments (i and
iþ 1) are given by2

2 Note that the expressions for the bending and shear stiffness are more elaborate
and not included here. We refer the readers to Timoshenko and Gere (1961) and
Pabon et al. (2009) for more details.
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Ki
axial ¼

li

2EiAi
þ liþ1

2Eiþ1Aiþ1

 !�1

; Ki
torsion ¼

li

2GiJi
þ liþ1

2Giþ1Jiþ1

 !�1

;

ð29Þ

where li
; Ei; Ai

; Gi, and Ji are the segment length, Young’s modulus,
cross section area, shear modulus and second moment of area of the
segment i respectively. At any moment in time, the spring forces
and moments are computed based on the spring constants and
the displacements and rotations along the rod. The channel is mod-
eled as a viscoelastic frictional contact using a modified Hertzian
contact formulation that takes into account the compliance due to
the hollow geometry of the rod cross-section (Budyans and Young,
2001; Pabon et al., 2009). Dry friction is implemented using Cou-
lomb’s law, which distinguishes between static and dynamic fric-
tion characterized by coefficients ls and ld respectively. Finally, a
Newton–Raphson iteration scheme is used to integrate the equa-
tions of motion and update the rod configurations with computa-
tion time step dt ¼ 1:6� 10�6 s.

In our simulations a rod of length L ¼ 3 m is considered,
which is discretized and modeled as a chain of N ¼ 500 cylindrical
segments. The rod has diameter d ¼ 1:5 mm, Young’s modulus
E ¼ 77 GPa and it is confined in a R ¼ 5:125 mm channel. For this
system the frictionless theory predicts a critical load
F0

cr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qgEI=R

p
¼ 1:3 N with buckling wavenumber x0 ¼ 6p=L

(Wicks et al., 2008).
As it has been discussed in the Introduction and shown in Fig. 1,

we first simulate the compression of a confined elastic rod by fix-
ing one end of the rod and compressing the other end with a con-
stant velocity 1 mm/s. A series of simulations with frictionless and
frictional contact, and with initial velocity perturbation of different
magnitude v0 are performed. Force versus displacement curves are
collected (Fig. 1(D)), and the force under which the linear force–
displacement relation breaks down is recorded as the buckling
force. As predicted by the theory, in the case of frictional contact
the confined rod buckles at a much higher force compared to the
frictionless situations, and the buckling force depends strongly
on the initial perturbation (Fig. 1(E)). However, a quantitative com-
parison between this set of results and the theory is not possible,
since the magnitude of both the perturbation and the applied force
F (and therefore also the size of the stable zone) change as a func-
tion of time. In fact, during these simulations the compressive force
increases as one keeps compressing the rod under displacement
control. Moreover, the initial velocity perturbation decays in the
presence of friction and no further perturbation is applied to the
system at t > 0 s.

To overcome the issue described above and quantitatively com-
pare theory and numerical results, we perform another set of sim-
ulations where the rod is pre-compressed by a constant force F
while keeping its ends fixed, so that the size of the stable zone does
not change during the analysis. We denote the pre-compressive
force as F ¼ F0

cr þ DF with F0
cr being the critical frictionless buckling

force (Eq. (17)). Furthermore, a small initial transverse velocity
perturbation v ¼ v0 sinðx0sÞ is applied at t ¼ 0 s over the entire
rod and the stability of the rod is tested for different combinations
of DF and v0. The simulations run for 2 s and buckling, if it occurs,
typically happens on a time scale of �10 ms. The results are shown
in Fig. 3 where circular red markers correspond to stable straight
configurations and black cross markers correspond to the buckled
ones. In agreement with our expectations, when the contact is fric-
tionless, the rod is stable for DF < 0, but buckles for DF > 0 regard-
less of the initial perturbation v0 (Fig. 3(A)). By contrast, when
friction is included by setting l ¼ ls ¼ ld ¼ 0:3, stability is found
to depend on v0, just as our theory predicts (Fig. 3(B)). In fact,
the rod is still stable under compressive force as high as 50 times
the frictionless critical load, provided the perturbation is small.

This confirms that in the presence of friction, loss of stiffness pos-
itivity (i.e. DF P 0) does not lead to instability. Moreover, the
numerical results are also found to be in quantitative agreement
with the analytical predictions. Since Eq. (24) reveals that the sta-

ble zone in Fig. 2(F) intersects the _Am axis at�f=
ffiffiffiffiffiffiffiffiffi
jkmj

p
� DF�0:5, one

expects that the boundary between straight and buckled configu-
rations in Fig. 3(B) follows a power law of �0:5. Fitting to the sim-
ulation results yields v0 � DF�0:77, roughly in agreement with the
theory.

We next fix the initial velocity perturbation and investigate the
buckling force as a function of the friction coefficient l ¼ ls ¼ ld.
We first perform two sets of simulations in which the initial veloc-
ity perturbation is set to be v ¼ v0 sinðx0sÞ, with v0 ¼ 15 mm/s
and v0 ¼ 7:5 mm/s respectively. This velocity perturbation is again
applied only at t ¼ 0 s in the lateral direction. The buckling force as
a function of l is plotted in Fig. 4(A). In particular, we plot the dif-
ference between the frictional and frictionless buckling force dF
(i.e. dF ¼ Fcr � F0

cr), so that when l ¼ 0; dF ¼ 0. As expected, higher
friction yields higher buckling force for a fixed perturbation magni-
tude, and decreasing the perturbation magnitude results in a high-
er buckling force for all l. Moreover, our theory predicts dF � l2

while simulations give a power law of 1.65 and 1.64 for
v0 ¼ 15 mm/s and v0 ¼ 7:5 mm/s, respectively.

In the above two sets of simulations, the initial velocity pertur-
bation is set as sinusoidal with the same wavenumber as the fric-
tionless buckling mode (x ¼ x0 ¼ 6p=L). However, in reality the
perturbation experienced by the system is random. To investigate

A

B

Fig. 3. Stability of a confined rod under different pre-compressive force F ¼ F0
cr þ DF

and velocity perturbation v0. Circular red markers correspond to stable straight
rods and black cross markers correspond to the buckled ones. Rods with (A)
frictionless and (B) frictional (l ¼ 0:3) contacts with the channel are considered.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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this important case we use the same simulation setup as described
above, except that now at t ¼ 0 s we assign a random velocity
v0 2 ½�15;15�mm/s on each node along the rod in the lateral
direction. In Fig. 4(B) we use square markers to report the buckling
force in the form dF ¼ Fcr � F0

cr as a function of the friction coeffi-
cient l. For comparison, in the same plot we use circular markers
to show the results for the case of a sinusoidal perturbation with
the same magnitude, v0 ¼ 15 mm/s. The two cases show similar
buckling force when the friction coefficient is small. However, for
l > 0:5 the system with random perturbation shows significantly
lower critical force, leading to a reduced power law dF � l0:95. A
similar trend is also found in simulations with random position
perturbations (see Fig. 4(C)).3 For this case, we find dF � l0:81, while
our theory predicts a power law of 1.0.

We then ask why random perturbation yields lower buckling
force for large l. We start by noting that when deriving the
power law from our theory we assume that the rod will buckle
into the same mode m for all values of l. However, Fourier trans-
forms of the simulation rod coordinates indicate that for the case
of random perturbations the triggered buckling mode is not the
same for all l. This can be clearly seen in Fig. 5(A) where we re-
port the evolution of the buckling mode m as a function of the
friction coefficient l. Interestingly, the buckling mode m is found
to monotonically increase with l, ranging from 6 to 32 for the
case of random velocity perturbation and from 6 to 21 for the
case of random position perturbation. Moreover, it is important
to note that the Fourier transforms of the rod coordinates reveal
that in all the considered configurations a single modes domi-
nates, confirming the validity of the assumption (v) made in the
derivation of the theory.

To understand the observed increase in mode number as
a function of friction, we inspect the size of the stability
zones for different modes. This is determined by the x- and
y-intercepts of the zone: Am;cr ¼ �f=jkmj and _Am;cr ¼ �f=

ffiffiffiffiffiffiffiffiffi
jkmj

p
(see Fig. 2(E), black and red circular markers). In fact, these
two quantities not only determine the stable zone size, but also
are the critical initial velocity and position perturbations a
system can tolerate without buckling. In particular, _Am;cr and
Am;cr are given by

_Am;cr ¼
fffiffiffiffiffiffiffiffiffi
jkmj

p ¼ f
ffiffiffiffiqp

xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F � F0

m;cr

q ; Am;cr ¼
f
jkmj
¼ fq

x2
mðF � F0

m;crÞ
;

ð30Þ

with

F0
m;cr ¼ EIx2

m þ
qg

Rx2
m
; and f ¼ 4lN

pqR
: ð31Þ

Here F0
m;cr denotes the force required to trigger mode m when there

is no friction. In Fig. 5(B) we plot _Am;cr (representing the y-intercept
of the stability zone for mode m) as a function of the compressive
force F, with different colors representing different wavenumber
xm. As expected, _Am;cr decreases as the applied compressive force
increases. More importantly, we find that the higher the wavenum-
ber xm, the faster _Acr;m decreases, and so the faster the stable zone
shrinks. This suggests that, in the case of a random velocity pertur-
bation where all modes may be excited, a mode with wavenumber
higher than the frictionless one can be triggered if its stability zones
is the first to touch the point representing the system perturbation.
We expect this more likely to occur at large l, where instability is
triggered at a high compressive force. This observation is clearly
confirmed by the numerical data (see Fig. 5(A)), which shows that
the buckling mode m monotonically increases as a function of l. Fi-
nally, we note that modes with wavenumber smaller than x0 will
never be triggered, since not only F0

cr;m > F0
cr , but also their associate

stable zones shrink at slower rates (Fig. 5(B)). Similar argument can
be applied for the case of random position perturbation by investi-
gating the evolution of Acr;m ¼ f=jkmj as a function of applied com-
pressive force for different modes. We note that in reality the rod
will experience both position and velocity random perturbations.
However, also in this case we expect both the critical force and crit-
ical mode to increase with l.

Finally, we used numerical simulations to confirm the validity
of all the assumptions we made in the theory (see Section 2). (i)
In all our simulations the normal contact force is found to be uni-
form along the rod before buckling occurs. This is true because up
to the onset of buckling the rod is straight and lies on the bottom of
the channel. In the post-buckling regime the normal contact force
is found to be, as expected, a complicated function of the rod posi-
tion. Since our theory is developed to identify the onset of frictional
buckling but not to understand the post-buckling behavior, the
constant normal force assumption is reasonable and sufficient.
(ii) We monitor the torsional and shear energy in all our simula-
tions and observe that their contribution is negligible compare to
that of the bending and stretching energies. As an example, in
Fig. 6(A) we report the evolution over time of the torsional, Etor ,
and shear, Eshear , energies for a simulation where l ¼ 0:3;
DF ¼ 5 N and v0 ¼ 35 mm/s (sinusoidal perturbation with wave-
number x0). The results clearly show that the torsional and shear
energies of the rod during the simulation are indeed very small
compared to total energy. (iii) In the simulations we find that the
maximum variation of the axial compressive force along the rod
is less than 7% of the frictionless buckling force F0

cr . This confirms

A B C

Fig. 4. Buckling force as a function of the friction coefficient l. (A) Simulations with an initial sinusoidal velocity perturbation of the form v ¼ v0 sinð6ps=LÞ. Red and blue
markers are for v0 ¼ 7:5 and 15 mm/s respectively. Mode 6 is the frictionless buckling mode. (B) Simulations with a random initial velocity perturbation v 2 ½�15;15�mm/s
(solid blue squares). For comparison, we re-plot the results for the case of a sinusoidal perturbation of the same magnitude here (open blue circles). (C) Simulations with a
random position perturbation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 To apply random position perturbations, small random forces in the lateral
direction of the rod are first applied on all nodes for 1 ms to obtain random position
perturbation. The configurations are then taken as rod initial configurations to
perform buckling tests with zero initial velocity.
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that the assumption of a constant axial compressive force is valid.
(iv) Buckling in the vertical direction (against gravity) is not seen in
any of our simulations. This is expected, since the gravitational po-
tential is linear in deformation while all other elastic energies are
of second order. (v) Finally, to confirm that at the onset of buckling
only one unstable mode dominates, we perform Fourier transform
on the coordinates of the rod obtained numerically at different
time steps and determine which mode (s) dominate at any time.
In all the simulations we find that a single mode dominates. Typi-
cal results, for a case with a sinusoidal velocity perturbation with
wavenumber x ¼ x0 ¼ 6p=L and another case with a random po-
sition perturbation, are shown in Fig. 6(B) and (C), respectively. We
note that for the sinusoidal perturbation, mode m ¼ 6 is the single
dominant mode at the onset of buckling, while for the random per-
turbation, a single, but higher mode m ¼ 21 dominates. Hence, the
simulations validate all the simplifications introduced in the
theory.

6. Conclusions and discussion

In conclusion, our theory, confirmed by simulations, shows that
dry friction changes the mechanism by which a confined rod buck-
les by opening a force-tunable stability zone in the perturbation
space. With dry friction, the rod can tolerate substantial perturba-
tion without buckling even after the system stiffness turns nega-
tive. Furthermore, friction strongly affects the buckling mode.

Modes higher than the frictionless buckling mode are triggered
at high friction coefficients, while modes lower than the friction-
less one can never be triggered. The physics behind this unusual
instability mechanism is that dry friction is a strong dissipation
mechanism. Its magnitude is a constant while other restoring
forces are linear to either position or velocity. Therefore, in the
neighborhood of the straight configuration, dissipation is a domi-
nant effect. It is straightforward to show that if friction is of viscous
type, being linear to the velocity, no stable zone will open up.
Mathematically, the opening of a stable zone in the perturbation
space is due to breaking of linearity by friction. For a linear system,
it is well-known that no trajectory can be stable if one solution
diverges on the phase plane (Jordan and Smith, 1999). However,
friction introduces nonlinearity and splits a single stationary
point into a line, leading to the co-existence of both stable and
unstable trajectories on a phase plane. Future works will focus
on characterizing the perturbation set by the environment and also
extending the theory to understand the instability of other
mechanical structures such as thin films and membranes in the
presence of friction.
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A B

Fig. 5. (A) Buckling mode as a function of friction coefficient l for simulations with an initial random velocity perturbation (blue) and a random position perturbation (red).
(B) Critical initial velocity perturbation _Am;cr for different wavenumber xm ¼ mp=L as a function of the compressive force F. Green dashed, magenta dashed, blue solid, red
solid and black solid curves for modes m ¼ 2; 4; 6; 8; 10 respectively. In particular, mode 6 is the frictionless buckling mode so it appears first as the compressive force
increases. But it is the higher number modes that decrease faster. Therefore, at high compressive force, higher number modes have smaller buckling forces given the same
velocity perturbation. For this reason, a frictional system does not necessarily buckle into the frictionless mode. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

A B C

Fig. 6. (A) Etor=Etot (red squares) and Eshear=Etot (blue triangles) as a function of time for a simulation where l ¼ 0:3; DF ¼ 5 N and v0 ¼ 35 mm/s (sinusoidal velocity
perturbation with x0 ¼ 6p=L). The data show that rod twisting and shear indeed can be ignored in the modeling, since their contribution to the total energy of the system is
negligible. (B) Fourier transform power of the rod configurations for the same simulation. Blue triangles correspond to a configuration before buckling at t ¼ 13 ms. Black
squares and red circles correspond to configurations after buckling at t ¼ 37 and 45 ms, respectively. (C) Fourier transform power of the rod configurations for a simulation
with random initial position perturbation (l ¼ 0:9). The symbols have the same meanings as in Figure B. A single, but higher number mode m ¼ 21 is triggered in this case.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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