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Dimpled elastic sheets: a new class 
of non-porous negative Poisson’s 
ratio materials
Farhad Javid1, Evelyne Smith-Roberge1, Matthew C. Innes2, Ali Shanian2, James C. Weaver3 & 
Katia Bertoldi1,4

In this study, we report a novel periodic material with negative Poisson’s ratio (also called auxetic 
materials) fabricated by denting spherical dimples in an elastic flat sheet. While previously reported 
auxetic materials are either porous or comprise at least two phases, the material proposed here is non-
porous and made of a homogeneous elastic sheet. Importantly, the auxetic behavior is induced by a 
novel mechanism which exploits the out-of-plane deformation of the spherical dimples. Through a 
combination of experiments and numerical analyses, we demonstrate the robustness of the proposed 
concept, paving the way for developing a new class of auxetic materials that significantly expand their 
design space and possible applications.

The Poisson’s ratio, ν, defines the ratio between the lateral and axial strains in a material under uniaxial loading. 
Theoretically, in linear isotropic materials, the Poisson’s ratio can range between − 1 and 1/2. A material with ν =  1/2 
shears easily and resists volumetric deformations due to its vanishing shear (G =  0) and infinite bulk (K →  ∞) 
modulus. Conversely, a material with ν =  − 1 resists shear (G →  ∞), but easily undergoes volumetric deformations 
(K =  0). Outside this range, either the shear or bulk modulus of the material is negative, which is impossible due 
to thermodynamic stability1.

Although the traditional belief is that the Poisson’s ratio of elastic materials must be positive (so that they shrink/
expand laterally when stretched/compressed axially), since 1980s many 2D and 3D structures and materials with 
negative Poisson’s ratio have been reported2–6. Auxetic behavior was first realized in 2D re-entrant honeycomb 
structures that unfold and expand laterally when uniaxially stretched7,8. The same concept was later exploited by 
Lakes to design and fabricate the first 3D polymeric foam with isotropic auxetic behavior9. Subsequently, a number 
of geometries were proposed to achieve negative Poisson’s ratio through rotation of the stiffer components in the 
microstructure. These include chiral honeycombs10,11, networks of rigid rotating units12–15, and elastomeric porous 
structures in which instabilities are exploited to trigger the rotation of stiff domains16–18. Finally, negative Poisson’s 
ratio was realized in non-porous systems either by embedding an auxetic network within a compliant matrix19,20 
or by using angle-ply laminates21–26.

Till now, the majority of materials designed to have negative Poisson’s ratio are porous and this significantly 
limits the potential applications of auxetic materials. Although low porosity auxetic sheets comprising an array 
of elongated holes have been recently designed15, porosity is still crucial for inducing negative Poisson’s ratio in 
these systems and, hence, their auxetic response disappears if made non-porous. Auxetic composites can overcome 
this limitation due to their non-porous structure. However, since their response highly depends on the contrast 
between the material properties of their different phases, a limited set of engineering materials and manufacturing 
techniques can be used for their fabrication, making them unsuitable for many industrial applications. Here, we 
introduce a new class of auxetic materials that are non-porous and are easily fabricated out of any elastic sheet 
using conventional manufacturing techniques.

Dimpled Elastic Sheets
As shown in Fig. 1a, the building block of the proposed material consists of a square flat sheet with edge L and 
constant thickness t dented with a spherical dimple of height h. Each dimple is a sector of a thin spherical shell 
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Figure 1. Deformation mechanism of dimpled elastic sheets. (a) The building block of the proposed auxetic 
material comprises a flat sheet dented with a spherical dimple. (b) Numerical results showing the deformation 
under uniaxial tension of an elastic sheet with a square array of 20 ×  20 dimples dented on one side of the sheet 
(we assume ψ =  75%, h/r =  0.5 =   and t/r =  0.08). The analysis reveals that this structure bends out of plane and 
contracts laterally. (c) The out-of-plane bending of the structure can be prevented by denting the dimples on 
both side of the flat sheet to form a checkerboard pattern. Such structure expands when stretched and, thus, is 
characterized by negative Poisson’s ratio. Note that the results shown in (b,c) have been magnified 600 times to 
better visualize the deformations.
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which forms a circle of radius r when intersecting the flat sheet. The geometry of the dimpled elastic sheets is then 
characterized by three dimensionless parameters: the dimple aspect ratio, h/r, the normalized thickness, t/r, and 
the dimple density,
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To realize a 2D auxetic material, we arrange the dimples on a square lattice and investigate the response of the 
system both numerically and experimentally.

We study the behavior of the dimpled structures numerically using the commercial finite element (FE) package 
ABAQUS/Standard (Simulia, Providence, RI) and investigate the response of the system under uniaxial tension 
(see Numerical techniques in the Methods section for details of the FE analysis). We first focus on an elastic sheet 
with all dimples dented on one side (see Fig. 1b-right). In particular, we choose h/r =  0.5 and ψ =  75% and consider 
a finite-size domain comprising a square array of 20 ×  20 dimples. For such structure, we find that the applied 
uniaxial stretch causes out-of-plane bending (see side views in Fig. 1b). Moreover, the contour map for the hori-
zontal component of the displacement (ux), shown in Fig. 1b-left, indicates that the system contracts laterally, 
resulting in a positive value of the in-plane macroscopic Poisson’s ratio (i.e. ν> 0). However, it is important to note 
that the out-of-plane bending of the structure can be suppressed by balancing the system in z direction. This is 
achieved by denting the dimples on both sides of the flat sheet to form a checkerboard pattern (see Fig. 1c-right). 
Remarkably, in such balanced structure, all dimples flatten toward the structure mid-plane under an applied 
uniaxial tension, resulting in lateral expansion of the system (see Fig. 1c-left) and, therefore, an auxetic response 
(i.e. ν< 0). Finally, we note that, although the results reported in Fig. 1 are for a sheet comprising a square array 
of 20 ×  20 dimples, the response of the system is not affected by the finite size of the structure (see Supplementary 
Information for details).

Results
Numerical models. Having demonstrated that an elastic sheet with spherical dimples dented on both sides 
can exhibit auxetic behavior, we now numerically investigate the effect on the macroscopic Poisson’s ratio of such 
structure, ν, of the dimple aspect ratio, h/r, the dimple density, ψ, the thickness of the elastic sheet, t/r, and the 
Poisson’s ratio of the bulk material, ν. To ensure the results are not affected by the boundary effects, we focus on 
an infinite periodic system and study the response of a 2 ×  2 unit cell (see inset in Fig. 2a) with periodic boundary 
conditions27,28. We stretch the unit cell uniaxially by applying a homogenized strain in vertical direction, εyy, and 
measure the transverse strain in horizontal direction, εxx. The Poisson’s ratio of the dimpled sheet is then calculated 
as ν ε ε= − /xx yy. In Fig. 2a, we report the evolution of ν as a function of h/r for different values of ψ (45–75%), 
while t/r and ν are kept constant. First, the results indicate that, as h/r increases, ν initially drops, reaches a mini-
mum value and then increases. Moreover, we find that the macroscopic Poisson’s ratio monotonically decreases 
as the dimple density increases and eventually becomes negative. Interestingly, for t/r =  0.08 and ν =  0.35, all 
structures with ψ ≥  55% exhibit auxetic behavior for a range of dimple aspect ratios, demonstrating that by con-
trolling ψ and h/r dimpled structures with ν< 0 can be designed. Furthermore, we find that the response of the 
system is moderately affected by t and ν. In fact, the data reported in Fig. 2b,c show that the auxetic response of 
the dimpled sheet can be enhanced by decreasing the structure thickness and the Poisson’s ratio of the bulk material. 
Finally, we should note that, although the results reported in Fig. 2 are for uniaxial tension, we expect the Poisson’s 
ratio of the structure to remain identical under compressive loading, since we are exploiting a linear elastic effect.

Experiments. We proceed to verify the numerical predictions experimentally. Two specimens are fabricated 
using a 3D printer (Connex 500 available from Objet, Ltd.) from VeroClear material (product number: RGD840) 
with Young’s modulus E =  1.5 GPa and Poisson’s ratio ν =  0.35 (see Supporting Information for the mechanical 
properties of VeroClear material). Each specimen comprises an array of 9 ×  9 dimples (with L =  12.5 mm). In 
particular, we focus on two structures characterized by (a) h/r =  0.5 and (b) h/r =  1.0 (highlighted by circular 
markers in Fig. 2a), while we keep ψ =  75% and t/r =  0.08 fixed. The specimens are tested under uniaxial tension 
in an Instron testing machine and the displacement fields are visualized using a digital image correlation (DIC) 
technique29,30. In Fig. 3, we report the experimental contour maps for the horizontal (ux) and vertical (uy) compo-
nents of the displacement fields obtained for a grip displacement of ugrip =  1.0 mm (Fig. 3a - resulting in a longi-
tudinal strain of ε = .0 009yy  in the central part of the sample) and 1.625 mm (Fig. 3b - resulting in a longitudinal 
strain of ε = .0 013yy  in the central part of the sample). To minimize the boundary effects, we focus on the central 
unit cell (highlighted with white dashed lines in Fig. 3a,b at left) and compare the results with the numerical pre-
dictions for the corresponding infinite periodic structure, showing a very good agreement. Importantly, the con-
tour maps for ux show that both structures expand laterally when uniaxially stretched, confirming their auxetic 
behavior.

Next, we use the experimentally measured displacement fields, shown in Fig. 3, to quantify the macroscopic 
Poisson’s ratio of the dimpled sheets. We first calculate the average displacement components along each of the four 
boundaries of the central unit cell, 〈 ux〉 R, 〈 ux〉 L, 〈 uy〉 T, and 〈 uy〉 B (R, L, T, and B denoting the right, left, top, and 
bottom edges of the unit cell, respectively), from which the average strain values for the unit cell are obtained as
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Finally, the macroscopic Poisson’s ratio is calculated as
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For the two specimens characterized by h/r =  0.5 (Fig. 3a) and h/r =  1.0 (Fig. 3b), we find that ν = − .0 252 and 
− 0.126, respectively, in excellent agreement with the FE predictions for the corresponding infinite periodic struc-
tures (ν = − .0 262 and − 0.128). Note that we also simulate the response of finite-size structures (see 
Supplementary Information for details) and find that the results are very close to those obtained for the infinite 
domains, indicating that the effect of the boundaries is not pronounced.

Discussion
In the previous section, we focused on dimples arranged to form a square array and showed that having a balanced 
number of them dented on both sides of a flat sheet is a crucial condition to achieve auxetic behavior. However, it 
is important to realize that both the direction of the applied load, θ, and the arrangement of the dimples affect the 
macroscopic Poisson’s ratio of the sheets. Focusing on the effect of the loading direction, in Fig. 4a we report the 
evolution of ν as a function of θ for a structure with dimples arranged to form a checkerboard pattern (blue line). 
These numerical results indicate that the dimpled sheet is characterized by ν< 0 only when loaded approximately 

Figure 2. Effect of h/r, ψ, t and ν on the macroscopic Poisson’s ratio of the dimpled elastic sheet, ν. 
Evolution of ν as a function of h/r is shown in (a) for four different values of ψ (assuming t/r =  0.08 and 
ν =  0.35), in (b) for four different values of t/r (assuming ψ =  75% and ν =  0.35), and in (c) for four different 
values of ν (assuming ψ =  75% and t/r =  0.08).
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in horizontal (i.e. θ ~ 0°) and vertical (i.e. θ ~ 90°) directions. Large positive values of  ν are instead found for θ =  45°. 
In Fig. 4a, we also report results for a structure in which the dimples are still dented on both sides of the flat sheet, 
but to form a stripe pattern (red line). Although this system is also characterized by an equal number of dimples 
dented on each side of the sheet, no auxetic behavior is observed, demonstrating the important role played by the 
arrangement of the dimples. To further confirm this point, we investigate the response of a flat sheet with a trian-
gular array of dimples dented on both sides (inset in Fig. 4b - note that this is the only triangular arrangement 
characterized by an equal number of dimples dented on both sides of the sheet.). As shown in Fig. 4b, the balanced 
triangular array of dimples is characterized by auxetic behavior for specific loading directions. In particular, for 

Figure 3. Contour maps for the horizontal (ux) and vertical (uy) components of the displacement fields. 
Experimental (left) and numerical (right) results are quantitatively compared for two structures characterized 
by (a) ψ =  75%, h/r =  0.5 and (b) ψ =  75%, h/r =  1.0. Snapshots of the deformed samples are shown on the left, 
with the central unit cell highlighted by white dashed lines.
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the considered structure characterized by ψ =  86%, h/r =  0.5 and t/r =  0.08, ν is negative for 174° <  θ <  36° and 
84° <  θ <  126° and reaches a minimum (ν = − .0 272) for θ ~ 15° and 105°.

Finally, it is important to note that ν is also affected by the magnitude of the applied deformation. To highlight 
this point, we numerically evaluate the evolution of the macroscopic Poisson’s ratio, ν, under large deformations 
(we consider values of εyy up to 0.1 and conduct a non-linear FE analysis) for an infinite dimpled sheet characterized 
by ψ =  75%, h/r =  0.5, and t/r =  0.08. As shown in Fig. 5a, by increasing the applied strain the macroscopic Poisson’s 
ratio of the structure monotonically increases (i.e. the auxetic behavior weakens). This is because as εyy increases, 
the dimples gradually flatten (see contour maps for uz in Fig. 5c) and their ability to push the flat sheet in the lateral 
directions diminishes (see contour maps for ux in Fig. 5b).

In this study, we demonstrated a fundamentally new approach to generate non-porous periodic materials with 
negative Poisson’s ratio by denting a homogeneous and uniform elastic sheet with an array of dimples. Through 
a combination of numerical analysis and experiments, we showed that the Poisson’s ratio of the system can be 
easily tuned and altered by controlling the arrangement of the dimples. In particular, we found that having an 
arrangement with a balanced number of dimples dented on the two sides of the flat sheet is crucial to generate 
auxetic behavior. Importantly, the system we explored can be easily fabricated and has a robust behavior, pointing 
to a novel and practical method for producing non-porous negative Poisson’s ratio materials.

Methods
Numerical techniques. The numerical analysis are performed using the commercial FE package ABAQUS/
Standard (Simulia, Providence, RI). The response of both finite-size and unit cell dimpled sheets are investigated 
under uniaxial tension throughout this work. All models are generated by quadratic tetrahedral elements (ABAQUS 
element type C3D10M). We should note that we also built FE shell models, but we found that the stress distribu-
tion around the dimple edges is not accurate, unless a very refined mesh is used which significantly increases the 
computational time. In all simulations, we model the response of the bulk material as linear elastic with Young’s 
modulus E =  1.5 GPa and Poisson’s ratio ν =  0.35. Moreover, since we focus on the linear response of the structure, 
we do not account for non-linearities in the simulations.

Finite-size models (see Fig. 1b,c) are initially studied to verify the auxetic behavior in dimpled structures, while 
the unit cells models (see Figs 2 and 3) are used to ensure the qualitative results are not affected by the boundary 
effects. In finite-size structures, the uniaxial loading in vertical direction is applied by fixing all nodes on their top 
and bottom surfaces in x and z directions and uniformly displacing them in y direction while in unit cell models, 
the loading is applied as a homogenized strain in vertical direction, εyy. To this end, periodic boundary conditions 
are applied on all lateral edges of an infinite periodic structure of a 2 ×  2 unit cell27,28.

Figure 4. Effect of loading direction, θ, and dimples arrangement on ν. (a) Evolution of ν as a function of θ 
for an elastic sheet with a square array of dimples dented to form a checkerboard (blues line) and a stripe (red 
line) pattern. For this set of simulations, we assume ψ =  75%, h/r =  0.5, t/r =  0.08 and ν =  0.35. (b) Evolution of 
ν as a function of θ for an elastic sheet with a triangular array of dimples dented on both sides. Here, we assume 
ψ =  86%, h/r =  0.5, t/r =  0.08 and ν =  0.35.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:18373 | DOI: 10.1038/srep18373

Experiments. Picture of our experimental setup is shown in Fig. 6. An Instron uniaxial testing machine with 
a 50 kN load cell is used for applying uniaxial tension to the samples. The samples are connected to the machine 
using two custom-made adapters. To improve the samples alignment, pinned grips are used for connection. A 
uniaxial vertical displacement (uy) is applied to the upper grip of the Instron machine, while the lower grip is 
fixed. To quantify ν, the in-plane deformation of the samples is monitored by taking images at different levels of 
applied displacement using a high-resolution digital camera (Nikon D90 camera with a 50 mm f/2.8 lens). The 
images are then analyzed to quantify the in-plane deformation of the specimens using a digital image correlation 
(DIC) package29,30. To increase the images contrast, the samples are first coated in black and then speckled with a 
white spray paint (Krylon Products Group, Cleavland, OH) prior to the test. The speckle pattern generates a den-
sity of approximately 2–9 pixels per speckle which, given our experimental setup, leads to a displacement accu-
racy of 800 nm31.

Figure 5. Effect of large applied deformations on the macroscopic Poisson’s ratio of the dimpled elastic sheet. 
(a) Numerical results showing the evolution of ν as a function of  εyy. (b,c) Contour maps for (b) the in-plane 
lateral (ux) and (c) the out-of-plane (uz) components of the displacement fields at different levels of strain, εyy.

Figure 6. Experimental setup: the camera, the sample, and its connection to the Instron machine are 
identified on the figure. 
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A total displacement of 2 mm is applied to each sample at the low rate of 0.25 mm/min to ensure quasi-static 
conditions (note that the contour maps shown in Fig. 3a,b are obtained for an applied grip displacement of 
ugrip =  1.0 and 1.625 mm, respectively). The sample, the adapters to connect the samples to the grips, the grips, 
and the camera are all identified on Fig. 6. Two large stand lamps are also used to better light the samples during 
the tests, which are not shown in Fig. 6.
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Additional Experimental Results

Mechanical properties of VeroClear material. All samples tested for this study are fabricated

out of VeroClear material using a 3D printer (Connex 500 available from Objet, Ltd.). Since the

glass transition temperature of VeroClear is TGT = 52 − 54◦C, the material is in the glassy phase

when tested at room temperature. This is confirmed by a uniaxial tensile test conducted on a

flat (non-dimpled) dog-bone shape sample with a testing section of height × width × thickness =

87.5×50×0.5 mm. During the test a maximum tensile displacement of ugrip = 1.53 mm (resulting

1



in a nominal strain of εnominal = ugrip/height = 0.017) is applied to the sample using an Instron

uniaxial testing machine and the displacement field is visualized using a digital image correlation

(DIC) technique (see the Methods section of the main text for details).

In Figs. S1a and b we report the experimental contour maps for the horizontal (ux) and

vertical (uy) components of the displacement fields, which are used to estimate the Poisson’s ratio

of the bulk material, ν. In particular, to minimize the boundary effects, we focus on a square

region in the center of the sample (highlighted with black dashed lines in Fig. S1a and b) and

use the the average displacement components along each of its four boundaries to calculate ν (see

Experiments in the Results section of the main text for more details). Using this procedure we

estimate the Poisson’s ratio of VeroClear material to be ν = 0.33 − 0.38 (we choose ν = 0.35 for

our FE simulations).

Also, in Fig. S1c we show the nominal stress (i.e. the applied load divided by the cross-

sectional area at the testing section) versus the nominal strain (i.e. the grip displacement divided

by the initial height of the testing section) curve obtained during the uniaxial tensile test. The

data clearly show that the material is characterized by a linear behavior at room temperature. By

comparing the experimental data to that of finite-size FE simulations we estimate the Young’s

modulus of the material to be E = 1.5 GPa.

Displacement maps. While in the main text we only show the contour maps for the central unit

cell (see Fig. 3) and compare the results with the numerical predictions for the corresponding

infinite periodic structures, in Figs. S2 and S3 (a-d) we include the contour data generated for

2



Figure S1: Mechanical behavior of VeroClear material: (a-b) Contour maps for the horizontal (ux) and

vertical (uy) components of the displacement fields. (c) Comparison of the experimental and numerical

stress-strain curves. The data confirm that VeroClear can be modeled as a linear elastic material in the range

of small deformations.

3



the entire samples. In particular, in Fig. S2 we focus on sample (a) characterized by ψ = 75%

and h/r = 0.5 at an applied vertical displacement of ugrip = 1 mm (resulting in a nominal strain

εnominal = 0.007), while in Fig. S3 we report results for sample (b) characterized by ψ = 75%

and h/r = 1.0 at an applied vertical displacement of ugrip = 1.62 mm (resulting in a nominal

strain εnominal = 0.012). Also, the numerical and experimental stress-strain curves are compared in

Figs. S2e and S3e for (a) and (b) structures, respectively. The almost linear stress-stain behavior

observed here confirms that no instabilities occur during the tensile tests.

4



Figure S2: (a-b) Contour maps for the (a) horizontal (ux) and (b) vertical (uy) components of the displace-

ment field for the sample characterized by ψ = 75% and h/r = 0.5. Experimental (left) and numerical

(right) results are quantitatively compared. (c-d) Zoom-in views of the contour maps for the central unit

cells. (e) Experimental and numerical results showing the nominal stress versus the nominal strain up to a

tensile strain of 0.01.

5



Figure S3: (a-b) Contour maps for the (a) horizontal (ux) and (b) vertical (uy) components of the displace-

ment field for the sample characterized by ψ = 75% and h/r = 1.0. Experimental (left) and numerical

(right) results are quantitatively compared. (c-d) Zoom-in views of the contour maps for the central unit

cells. (e) Experimental and numerical results showing the nominal stress versus the nominal strain up to a

tensile strain of 0.01.
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Additional Numerical Results

Size effects. In Fig. 1 of the main text we report numerical results for a dimpled elastic sheet

comprising a square array of 20×20 dimples with h/r = 0.5 and ψ = 75%. We show that, if all

dimples dented on one side, the applied uniaxial stretch causes out-of-plane bending and results

in a positive value of the macroscopic Poisson’s ratio (see Fig. 1b). Differently, if the dimples are

dented on both sides of the flat sheet to form a checkerboard pattern (see Fig. 1c), all dimples flatten

toward the structure mid-plane under an applied uniaxial tension, resulting in a lateral expansion

of the system and, therefore, an auxetic response.

While the results reported in the text are for an array of 20×20 dimples, in Fig. S4 we show

numerical results for dimpled sheets comprising arrays of 10×10 (Figs. S4a and b) and 30×30

(Figs. S4c and d) dimples. These structures behave identically to that of the sheet with an array of

20×20 dimples presented in the main text, indicating that their response is not affected by the size

of the system.

Furthermore, we investigate the role played by boundary effects on the macroscopic Pois-

son’s ratio, ν̄, when the size of the dimple array in a dog-bone shape sample is decreased. In

particular, we use FE simulations to model the response of a sheet characterized by ψ = 75%,

h/r = 0.5, and t/r = 0.08 and comprising an array of N × N dimples (with N = 9, 7, 5, 3).

From each simulation, we calculate ν using the same procedure introduced to postprocess the ex-

perimental results (see Experiments in the Results section 2 of the main text for more details).

The results reported in Fig. S5 indicate that by decreasing the size of the array the negative Pois-

7



Figure S4: Numerical results showing the deformation under uniaxial tension of elastic sheets with square

arrays of (a and b) 10×10 dimples and (c and d) 30×30 dimples. In a and c, all dimples are dented on one

side while, in b and d, they are dented on both sides to form a checkerboard pattern.
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Figure S5: Numerical results showing the Poisson’s ratio, ν, of elastic sheets with square arrays of N ×N

dimples (N = 9, 7, 5, 3). The dimpled sheet is characterized by ψ = 75%, h/r = 0.5, and t/r = 0.08.

son’s ratio of the structure becomes more pronounced. This is because the effect of the free lateral

boundaries, at which dimples can freely expand, progressively increases.
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