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A physically-based computational model is developed to predict the damping behavior of oxide thermal
barrier coating systems. The constitutive damping model is derived from the theory of point defect relax-
ation in crystalline solids and implemented within a finite element framework. While oxide coatings have
been primarily employed as thermal barriers for gas turbine blades, there is a growing interest in devel-
oping multifunctional coatings combining thermal protection and damping capabilities. The direct fre-
quency response method, as well as the modal strain energy method, have been implemented to
evaluate the functional dependance of damping on temperature and frequency. Numerical results are val-
idated through the limited experimental data available in the literature, and new results are presented to
illustrate the effects of different topcoat oxides. The paper also illustrates how the developed methodol-
ogy enables the damping capacity under different vibrational modes to be predicted, and to estimate the
sensitivity of the design for varying geometrical parameters. Finally, the computational model is applied
to investigate the damping performance of an oxide-coated turbine blade.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Developing vibration damping methods is critical in many tech-
nologies and especially so for gas turbine engines since many of
their rotating components have to operate under a combination
of highly exacting temperature creep-fatigue conditions and with
high dimensional tolerances [1]. For instance, in the compressor
and hot sections of the turbine, the blades have to withstand both
high inertial stresses and repeated buffeting as they continuously
rotate past stationary blades being periodically shadowed.
Depending on the details of the design, these buffeting frequencies
are in the 10 kHz range. Currently, damping is introduced by using
mechanical dampers included under each blade, as well as through
damped supports [2]. Dangerous resonances are avoided by delib-
erately mistuning the resonant frequencies of individual blades on
a disk [3], and by controlling the spinning up of the turbine to
avoid resonances.

One of the advances made in gas turbine technologies, has been
the widespread use of thermal barrier coatings applied to the
surface of blades to provide thermal protection to the superalloy
components. These coatings have enabled the turbine operating
temperatures to be increased, facilitating improved energy
efficiency, while minimizing increased metal temperatures [4–7].
While their primary function is as a refractory, there is also interest
in developing coatings with dual functionality, combining thermal
protection and damping capabilities [8–11].

In evaluating a new damping material for use in an applica-
tion such as a coating, the design engineer is faced with a
number of challenges. One is to predict the behavior of a
material under a variety of conditions based only on a limited
amount of data. Another is to establish the behavior of a com-
plex shaped component, such as an airfoil blade, that consists of
an alloy and a coating whose properties are different at different
temperatures. As we will show in this contribution, a physically-
based computational model can be used to address these
questions.

The organization of this paper is as follows. First, we present
data on the damping behavior of materials used in current thermal
barrier coatings and superalloy as well as some other candidate
oxides. This data will be used as input for the damping computa-
tions. Then, we briefly describe the point defect rearrangement
mechanism which is used as a basis for the constitutive model of
damping. The model is then implemented in a finite element
analysis using both the direct frequency response method and
the modal strain energy method. The numerical results are
compared to the experimental data presented in Section 2, for
the purpose of validating them. Then, the damping of a simple
cantilever beam under different vibrational modes is calculated.
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Fig. 1. Comparison between the temperature dependent flexural damping of three
oxides in the kHz frequency range. The curves through the data represent the best
fit to the constitutive model described in Section 3.

Fig. 2. Flexural vibration damping as a function of temperature for a thermal
barrier coating system as well as data for the uncoated PWA-1484 superalloy.
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Finally, the computational method is used to investigate the damp-
ing capacity of a turbine blade shaped specimen.
2. Damping in thermal barrier coating systems

Thermal barrier coatings (TBCs), currently in use, typically con-
sist of 7 weight% yttria-stabilized zirconia (7YSZ) deposited on a
superalloy with a thin, intermediate alloy interlayer.1 Other oxide
compositions, including Gd2Zr2O7 and Zr3Y4O12, have also been
investigated as alternative TBCs [12]. The superalloys of interest
are primarily second-generation nickel-based alloys, such as the
commercial PWA 1484, CMSX-4 and N5 single crystal alloys [13].

The damping characteristics of all these materials have been
measured for flexural beam configurations by means of the fre-
quency response method [14,15]. Measurements are conducted
under small displacement conditions from room temperature up
to a maximum of about 1000 �C. The functional dependence of
damping on temperature for the three oxides mentioned above is
shown in Fig. 1. Although in all these materials damping is believed
to originate from similar defect mechanisms [15], their damping
peaks occur at significantly different, albeit moderate, tempera-
tures, between 200 �C and 500 �C.

A second experiment is performed to compare the loss factor of
a PWA 1484 superalloy beam with and without a 142 lm thick
7YSZ coating. Fig. 2 illustrates that the 7YSZ coating produces a
damping peak at a temperature of about 200 �C that is absent in
the bare superalloy. This observation is similar to the one obtained
from internal friction measurements of single crystal zirconia in
[16], and is consistent with the experimental results obtained for
dense 7YSZ in Fig. 1. Moreover, consistently with results presented
in [14], Fig. 2 shows a clearly defined damping peak at tempera-
tures above 900 �C that has been attributed to Ni and Al diffusional
hopping in the c0 phase [17].

While such observations can give some guidance as to other
possible compounds may also exhibit damping, they provide little
knowledge on how such property carries over to other vibration
modes, or what are the effects of different geometrical parameters
of TBC assemblies. To address these questions, this paper proposes
a physically-based computational tool which incorporates a consti-
tutive model of damping based on point defect rearrangement.
This mechanism is briefly described in the following section.
1 During use at high temperatures, a thin aluminum oxide layer (1–4 ln thick)
forms under the 7YSZ coating.
3. Constitutive damping behavior

Point defect rearrangement under stress is the dominant mech-
anism of damping in dense defective oxides such as 7YSZ [18–20].
In many of these oxides, such as ThO2 doped with CaO or ZrO2

doped with Y2O3, oxygen vacancies are created to charge
compensate for the aliovalent dopant or stabilizer ion. The defect
is typically a dipole consisting of an oxygen vacancy and the dop-
ant ion, and it acts as both an electrostatic and an elastic dipole
[21]. When the material is subject to an alternating stress at fre-
quency x, the individual point-defect dipoles can switch from
one crystallographic orientation to another producing an aniso-
tropic local distortion of the crystal lattice [22]. Mechanical damp-
ing resulting from this dipole switching mechanism was first
analyzed by Wachtman [23] and the interested reader is referred
to his and related analyses [22,24].

Briefly, the local distortion of a lattice containing point defects
is described by a second-rank tensor k characterizing the strain
of the crystal with a unit concentration (mole fraction) of dipolar
defects [22]. The dipole tensor can be expressed in terms of its
principal values ki (i = 1,2,3) and a number nt of independent ori-
entations that depend on the defect’s symmetry. The overall strain
field is therefore given by the sum of two contributions:

e ¼ eel þ ean ¼ eel þ
Xnt

p¼1

kpCp ð1Þ

where eel is the elastic strain without defects, and ean ¼
Pnt

p¼1kpCp is
an anelastic strain. In Eq. (1) kp denotes the dipole tensor for one of
the nt possible equivalent orientations of the defect, and Cp = Np/Nl
is the mole fraction of defects in orientation p, where Np and Nl
respectively denote the number of defects in orientation p, and
the number of molecules per unit volume. If nt > 1, defects charac-
terized by different k tensors interact differently with an applied
stress field r such that one is energetically favored over the others.
This leads to a splitting of free-energy levels in which the probabil-
ity of dipoles having different orientations is given by Boltzmann
statistics [22,25]. The equilibrium values of Cp for the concentra-
tions at any given stress and temperature (T) are therefore given by:

Cp ¼
C0v0

ntkBT
kp �

1
nt

X
q

kq

" #
r ð2Þ

where C0 is the total molar concentration of defects (constant), v0 is
the molecular volume, and kB is the Boltzmann constant. To simplify
the calculation here we consider only a homogeneous uniaxial state
of stress (r11), the corresponding strain component (e11), as well as
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k tensor components k11. For the sake of clarity the subscript 11 will
be omitted. Based on this assumption, the relaxation strength d⁄ can
be expressed as [26]:

d� ¼ ean

r
¼ C0v0

ntkBT

X
p

ðkpÞ2 �
1
nt

X
p

kp

 !2
2
4

3
5 ð3Þ

The kinetics of defect rearrangement to a lower energy configura-
tion is, in general, a time dependent process characterized by a
relaxation time s. The choice of using a single relaxation time is
based on the experimental observations [23,26] that damping in
simple oxides can occur by either cation interstitials (in rutile) or
oxygen vacancies (in thoria), and give rise to a single damping peak.
The presence of a relaxation time allows for the mechanical energy
dissipated per unit cycle DU to be expressed through the following
Debye function:

DU ¼ d�
xs

1þ ðxsÞ2
�r2 ð4Þ

in which �r is the average applied stress. The defect relaxation is as-
sumed to be a thermally activated process [23] described by the fol-
lowing Arrhenius equation:

s ¼ s0 exp
DE
kBT

� �
ð5Þ

where DE is the activation energy, and the pre-exponential factor s0

is a characteristic relaxation time related to the atomic jump rates
inherent to specific defect mechanisms.

Substituting Eq. (5) into Eq. (4) yields

DU ¼ d�sech ln xs0 þ
DE
kBT

� �
�r2 ð6Þ

which compared to the total vibrational energy U ¼ �r2=2Y allows
expressing the internal friction or damping, Q�1 as:

Q�1 ¼ DU
2pU

¼ YA
kBT

sech ln xs0 þ
DE
kBT

� �
ð7Þ

Here, Y denotes the Young’s modulus, and A is a material parameter
which is a function of the defects’ concentration and orientation. Eq.
(7) provides a direct constitutive relationship between macroscopic
damping characteristics and atomic level mechanism. In the present
work, this formulation is used to characterize the dissipation mech-
anism occurring in both the metallic superalloy and the oxide layers
characterizing typical TBC systems.

4. Finite element analysis

Here, the constitutive damping behavior presented in the previ-
ous section is implemented within a linear FE framework. For this
task, we adopt a phenomenological damping model based on the
correspondence principle of linear viscoelasticity [27,28] whereby
the inherent material dissipation is described in terms of a com-
plex Young’s modulus (Y⁄ = Y0 + iY00 where i ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary
unit) with the ratio of imaginary to real part being the material loss
factor Q�1 = Y00/Y0. The choice of adopting a phenomenological
model, compared, for example, to developing a statistical-mechan-
ics based material law, is motivated by the need to accurately
estimate the damping properties of complex systems with a mod-
est computational effort. This is particularly relevant for the preli-
minary design of turbine blades in which several simulations are
typically conducted to estimate the effects of a number of critical
design parameters [29]. This section briefly describes both the
direct frequency response method and the modal strain energy
method that have been implemented as part of a in-house devel-
oped finite element (FE) code to predict the damping behavior of
complex TBC systems based on experimentally-informed material
properties.

4.1. Direct frequency response method

The FE analysis of TBC systems with distributed dissipation
mechanisms can be conveniently conducted in the frequency
domain using the direct frequency response method [30]. If the
structure undergoes harmonic motion at frequency x, the general-
ized forces f 2 Rn�1 and displacements u 2 Cn�1 are related
through the dynamic stiffness matrix of the structure as

K1 þ iK2ðx; TÞ �x2M
� �

u ¼ f ð8Þ

where M 2 Rn�n and K1 2 Rn�n are the global mass and stiffness
matrices assembled using standard FE procedures [31], n denotes
the global number of degrees of freedom. In the present notation,
lower case bold letters denote vectors, while upper case bold letters
are used for matrices. In Eq. (8) K2ðx; TÞ 2 Rn�n is a hysteretic
damping matrix which depends on the material loss factor (Q�1 in
Eq. (7)) evaluated at frequency x and temperature T. The hysteretic
damping matrix of a system comprised of M different materials,
each characterized by a loss factor Q�1

j ðj ¼ 1;2; . . . ;MÞ, is given by

K2ðx; TÞ ¼
XM

j¼1

Q�1
j ðx; TÞK

ðjÞ
1 ð9Þ

in which

KðjÞ1 ¼
XNðjÞe

e¼1

Ke
1 ð10Þ

is the portion of the global stiffness matrix assembled considering
only the elemental contributions (Ke

1) of the NðjÞe finite elements
associated with the jth material property (see [31] for details).

The frequency response of the system is computed by solving Eq.
(8) for the unknown nodal displacements u(x,T) within a frequency
range of interest typically dictated by the spectral content of the
externally applied loads. The vibration attenuation properties of
the entire structure are then estimated in terms of a mechanical loss
factor, or inverse quality (or gain) factor Q�1

TBC defined as:

Q�1
TBC ¼

Df
fr

ð11Þ

where Df is the half power bandwidth (�3 dB) of the response at a
resonance frequency fr [32].

The major drawback of this approach is related to the need for
assembling and factorizing a complex system of equations at each
frequency step within the range of interest. For practical design
purposes, the computational cost of direct frequency analyses
may not be cost-effective especially when conducting several para-
metric analysis or optimization procedures.

4.2. Modal strain energy method

In order to reduce the computational costs associated with the
direct frequency analysis, this research considers an alternative
approach known as the modal strain energy method [30]. This ap-
proach avoids the direct solution of Eq. (8) by assuming that the
damping coefficient of a structural mode is proportional to the loss
factor of each material multiplied by the corresponding modal
strain energy ratio (SER) [30]. If the structure is comprised of M dif-
ferent materials, the SER in the jth material layer is defined as

SERj ¼ U j=UTOT ðj ¼ 1;2; . . . ;MÞ ð12Þ

where U j is the fraction of strain energy stored in the jth material,
and



Table 1
Anelastic relaxation parameters of the considered materials.

DE (eV) s0 (s) A (–)

7YSZ 0.96 9.14 � 10�14 6.51 � 10�14

Gd2Zr2O7 0.85 1.23 � 10�14 4.51 � 10�14

Y4Zr3O12 1.01 8.21 � 10�15 6.00 � 10�14

PWA-1484 2.26 9.99 � 10�14 1.09 � 10�14
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UTOT ¼
XM

j¼1

U j ð13Þ

is the total strain energy associated with an undamped vibrational
mode of the system. Note that the rth undamped modal shape /r is
obtained as the solution of the following real eigenvalue problem

K1 �x2
r M

� �
/r ¼ 0 ð14Þ

from which the components of the strain energy in Eq. (12) are gi-
ven by

Ur
TOT ¼

1
2

/T
r K1/r and Ur

j ¼
1
2

/T
r KðjÞ1 /r ð15Þ

where KðjÞ1 is defined in Eq. (10). Finally, the material loss factor
associated with the rth mode of the structure is obtained as

1=Qð Þr ¼
XM

j¼1

Ur
j

Ur
TOT
� Q�1

j ¼
XM

j¼1

SERj � Q�1
j ð16Þ

This method is known to provide accurate predictions only for
small values of damping, i.e. when (1/Q)r� 1.5 [30]. Since for typ-
ical TBCs values of Q�1 range between 10�3 and 10�2 the modal
strain energy method can be sufficiently accurate to give useful,
though not necessarily exact, damping predictions.

5. Application to a coated beam system

5.1. Geometry and material properties

As an illustration, the numerical procedures presented in Sec-
tion 4 are applied to predict the damping properties of a two-layer
cantilever beam. The configuration, schematically shown in Fig. 3,
corresponds to the one used in [14] to experimentally investigate
the damping properties of a 7YSZ coated superalloy, and therefore
allows to validate the FE predictions. The beam is L = 16.9 mm long,
and is characterized by a rectangular cross section (W = 5.03 mm
wide) comprised of a 0.38 mm thick PWA layer, and a 0.142 mm
thick topcoat. In order to predict the effects of different topcoat
materials on the damping properties of the TBC, analyses are con-
ducted using the three oxides previously investigated (i.e. 7YSZ,
Gd2Zr2O7, and Y4Zr3O12). The beam is rigidly clamped at its left
end (cantilever) and is subjected to a concentrated point load
F(x) at the tip (Fig. 3). The geometry is discretized with a mesh
comprising of 1920 linear (8-node) hexahedral elements, whose
accuracy has been ascertained through a refinement study.

The activation energy (DE), relaxation time s0, and relaxation
strength (A) of the considered materials are summarized in Table 1.
The constitutive damping parameters of the oxides are determined
by fitting the experimental data presented in Fig. 1 through
the functional dependance on frequency and temperature given
by Eq. (7). The curves through the data in Fig. 1 represent the best
fit to the adopted functional model. In order to extract the material
Fig. 3. Schematic of the two-material cantilever beam used in experiments.
parameters for the PWA superalloy, the experimental data
presented in [14] have been used. Additional data used in this work
but not shown include the Young’s modulus as a function
of temperature for the superalloy and the 7YSZ coating
[14,15]. The density of the PWA is assumed constant and
equal to qPWA ¼ 8700 kg=m3, while an average density of
qTOP ¼ 4930 kg=m3 is used for the oxide topcoats.

5.2. Numerical results

The vibration damping of the system is evaluated using both the
modal strain energy method, and the direct frequency response
method with frequency response functions evaluated in terms of
the applied load F(x) and the tip displacement utip (see Fig. 3).

5.2.1. 7YSZ coated beam
First the 7YSZ topcoat is considered and the computed results

are compared with the experimental data provided in [14]. In order
to investigate the functional dependance of damping on tempera-
ture, frequency response functions are computed for increasing
temperatures from 0 to 900 �C (see Fig. 4). Interestingly, Fig. 4 illus-
trates how the FE model simultaneously captures the shift of the
resonance peak induced by the Young’s modulus reduction at high-
er temperatures, and the functional dependence of attenuation on
temperature proper of the thermally activated relaxation mecha-
nism considered herein.

The first four eigen modes of the beam, presented in Fig. 5, are
also evaluated to estimate the modal damping using the strain
energy method.

The evolution of the loss factor versus temperature is shown
in Fig. 6 where numerical predictions are obtained both with the
direct frequency response method, and the modal strain energy
method. Remarkably, the results capture the damping peak tem-
perature of about 200 �C induced by the 7YSZ phase, and are
consistent with the general trend exhibited by the experimental
data (available up to 900 �C). Some discrepancies in the amount
of damping predicted by the FE model are observed especially at
Fig. 4. Variation of the TBC’s frequency response as a function of temperature. The
shift of the resonance peak is induced by the reduction of the Young’s modulus with
increasing temperatures.



Fig. 5. First four normal modes of the undamped beam (T = 0 �C).

Fig. 6. Comparison between the numerical and experimental loss factor variations
of the 7YSZ coated PWA superalloy beam.

Fig. 7. Comparison between the loss factor variations of three TBCs featuring the
same PWA-1484 superalloy and different topcoat oxides.

Fig. 8. Mechanical damping associated with different vibrational modes for the
7YSZ coated beam shown in Fig. 3.
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intermediate temperatures. This can be attributed to a tempera-
ture dependent background [33] generally not captured by the
adopted model. Also consider that the contribution of the bond
coat to the overall material loss of the TBC system has not been
included due to insufficient experimental data available to cali-
brate the corresponding damping model. Fig. 6 also shows the
excellent agreement between results computed with the direct
frequency method and the strain energy approach. While the
maximum discrepancy between the two sets of data is below
0.5% the modal strain energy method is found about 5 times fas-
ter than the direct frequency approach. For this reason the latter
will be adopted in the following section to conduct sensitivity
analyses for varying geometric parameters of the TBC.

5.2.2. Effect of different oxide coatings
A comparison between the damping of three TBCs featuring

different coating oxides is shown in Fig. 7. Interestingly, the
damping peak of each TBC occurs at the same peak temperature
of the corresponding oxide phase, and it is in excellent agree-
ment with the experimental data shown for the same oxides



Fig. 9. Vibration damping associated to the first four eigenmodes of the TBC for different values of the 7YSZ layer thickness ðtYSZÞ, and for b = 1.

Fig. 10. Variation of the loss peak Q�1
MaxðaÞ associated to different vibration modes as

a function of the thickness parameter a.
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in Fig. 1. Whereas the peak temperature of the TBC is only dic-
tated by the activation energy and relaxation time of its oxide
layer, the maximum damping capacity of the system is also
influenced by design features such as the thickness and width
of each layer. The effects of such parameter on the damping per-
formance of the TBC will be discussed in Section 6.
5.2.3. Damping of different vibration modes
Next, we investigate how the damping properties observed for

flexural motion carry over to different vibration modes. Knowledge
of the vibration damping of individual modes is critical for the de-
sign of turbine blades in which complex excitation mechanisms of-
ten trigger a broadband multimodal response. Without any loss of
generality, analyses are conducted considering the TBC shown in
Fig. 3 with a 7YSZ topcoat. Fig. 8 illustrates the main damping
peaks characterizing the first four eigenmodes of the beam
(Fig. 5). Interestingly, results show a significant increase of the
peak temperature associated to higher vibration modes. This phe-
nomenon is consistent with the thermally-activated nature of the
relaxation mechanism in which frequency dictates the tempera-
ture range of maximum material loss. The maximum damping
capacity of each mode, instead, depends on the relaxation strength
of the constituent materials and the strain energy density stored in
each layer. For instance, Fig. 8 shows that in-plane bending vibra-
tions, mostly dominated by the fourth eigenmode, feature a mod-
est amount of damping at intermediate temperatures compared to
the bending or torsional motion of the beam (modes 1–3). The var-
iation of such properties for different design configurations is
investigated in the following section.
6. Effects of design parameters on the TBC damping capacity

This section investigates the effects of relevant design parame-
ters on the damping capacity of the first four vibration modes of
the TBC. Emphasis is given to the intermediate temperature range



Fig. 11. Vibration damping associated to the first four eigenmodes of the TBC system for different values of the beam length (L), and for a = 1.

(a) (b)
Fig. 12. Variation of the loss peak Q�1

MaxðbÞ (a), and modal strain energy Ur
TOT (b) of different vibration modes as a function of the length parameter b.
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between 100 �C and 400 �C where the main damping peak induced
by the oxide layer is observed. The two-layer beam considered in
the previous section (Fig. 3) is used as a baseline configuration.
Analyses are conducted to separately investigate the effects of the
7YSZ layer thickness ðtYSZÞ and the beam length (L) on the overall
damping performance. Specifically, the thickness of the oxide layer
is parametrized as tYSZ ¼ atPWA where a is a non-dimensional thick-
ness coefficient. Analyses are also conducted for varying beam’s
length such that L ¼ bL0 in which L0 ¼ 16:9 mm is the length of
the baseline configuration, and b is a non-dimensional parameter.

6.1. Effect of the thickness parameter (a)

Fig. 9 illustrates the effect of the 7YSZ layer thickness on the
modal loss factor of the TBC. The behavior of the first and second
bending modes (Figs. 9a and c) generally corroborates the physical



Fig. 13. Finite element discretization of a model coated turbine blade. Fig. 15. Distribution of the strain energy (normalized units) associated to the first
bending mode of the blade.

Table 2
Modal damping properties of the blade coated with different oxides.

Mode 1 Mode 2 Mode 3

Q�1
max ð—Þ Tp (�C) Q�1

max ð—Þ Tp (�C) Q�1
max ð—Þ Tp (�C)

7YSZ 3.60 209.2 3.59 209.2 3.54 209.2
Y4Zr3O12 2.90 330.1 2.89 330.1 2.84 330.1
Gd2Zr2O7 3.25 429.3 3.23 429.3 3.19 429.3
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intuition underlying the modal strain energy method according to
which the damping peak increases as the thickness of the oxide
layer is increased. The same results also show a moderate shift of
the damping peak towards higher temperatures due to the mono-
tonic increase of the corresponding natural frequencies of
vibration.

A rather different behavior characterizes the trend of the first
torsional and in-plane bending modes (Figs. 9b and d). For
intermediate values of the thickness parameter, in fact, Fig. 9b re-
veals a counter-intuitive effect whereby the damping peak of the
second mode does not increase monotonically with the thickness
of the oxide topcoat. Also, Fig. 9d shows a rapid increase of the loss
factor associated to the fourth mode occurring at values of
a ’ 1.25.

These considerations are also illustrated in Fig. 10 which shows
the variation of the damping peak Q�1

MaxðaÞ ¼ maxT Q�1ðT;aÞ as a
function of the considered thickness parameter a. These results
indicate that for a [ 1.0 the first three modes feature roughly
the same damping capacity which increases monotonically as a
function of the topcoat thickness. The loss factor of the second (tor-
sional) mode reaches a maximum at a ’ 1.15 after which the
damping of the third (in-plane bending) mode becomes more rel-
evant. The existence of stationary points (i.e. maxima and minima)
in the functional dependence of damping occurring for specific
combinations of the design parameters suggests the possibility of
optimizing the performance of the TBC over a broad frequency
range.
Fig. 14. Comparison between the loss factor variations of the first bending mode of
the blade shown in Fig. 13 coated with the oxides shown in Fig. 1.
6.2. Effect of the length parameter (b)

The effect of the TBC length on the mechanical loss of the sys-
tem is investigated by varying the length parameter (b). Results
presented in Fig. 11a and c show that the damping of the first
and second bending modes monotonically decreases of about 1%
as the TBC length is varied from once to twice its original length.
As b increases, the results in Fig. 11a and c also indicate that the
damping peak of the bending modes tend to occur at lower tem-
peratures due to the lowering of the corresponding natural fre-
quencies. Figs. 11b and d reveal a sudden change of the TBC loss
factor associated to the second and fourth modes occurring at a
critical value of bcr ’ 1.55. This behavior is also shown in Fig. 12a
showing a direct comparison between the damping peak
Q�1

MaxðbÞ ¼maxT Q�1ðT; bÞ of the first four modes. Analysis of the
mode shapes of the structure, in fact, reveals that the deformation
Fig. 16. Frequency response function of the blade coated with a 125 lm thick layer
of 7YSZ for increasing temperatures.
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patterns of the second and fourth eigenmodes tend to swap as the
length parameter is increased above bcr. As shown in Fig. 12b, this
corresponds to a redistribution of the strain energy of the two
modes which leads to a switch of the corresponding modal damp-
ing characteristics.

Although the analysis presented herein focuses on a rather sim-
ple geometrical configuration, the obtained results reveal complex
or even counter-intuitive trends which must be considered in the
design and optimization of oxide layers for multifunctional TBCs.
7. Analysis of a coated turbine blade

In this section, the computational model is used to investigate
the damping performance that a TBC can provide to a turbine
blade-shaped specimen.

7.1. Finite element model

A prototypical blade, shown in Fig. 13, is discretized using the
ABAQUS FEA package while the actual FE computations are con-
ducted using an in-house developed code. The blade, representing
a sector of the turbine rotor, is modeled as a PWA 1484 superalloy
core that is protected by a 125 lm thick thermal barrier coating.
Analyses are conducted using the three oxides previously investi-
gated (i.e. 7YSZ, Gd2Zr2O7, and Y4Zr3O12) whose damping material
properties are summarized in Table 1. The Young’s modulus and
density of the superalloy are reduced by a factor of five to account
for the presence of cooling passages and vanes not explicitly incor-
porated in the model.

The FE mesh of the blade comprises 29,624 4-node linear tetra-
hedral elements (Fig. 13). The functional dependance of damping
on temperature for the three oxides is computed using the modal
strain energy method imposing fully-clamped boundary conditions
at the base of the blade. The damping properties of the system are
also verified through direct frequency response functions obtained
by imposing a random excitation to the base of the blade (Fig. 13)
as typically done in vibration damping experiments [34]. Also in
this case, the maximum discrepancy between the damping esti-
mated with the two methods is below 0.5%.

7.2. Numerical results

A comparison between the damping variations associated with
the first bending mode of the coated blade is shown in Fig. 14. The
results clearly indicate that the oxide layer generates a significant
damping peak at intermediate temperatures, ranging from 200 �C
to 400 �C depending on the relaxation parameters of the specific
oxide being considered, and reproduce the temperature depen-
dence measured in the flexural beam. Fig. 14 however shows that
the magnitude of the damping peak is significantly lower than
what observed for the cantilever beam case. This can be under-
stood directly from the modal strain energy method since the rel-
ative volume of the coat and superalloy is reduced on the blade.
Fig. 15 shows that, contrary to many samples used for simple tests
[14,15,35,36], the region of high strain energy density, and hence,
damping are mostly localized in the blade.

A summary of the damping performance associated with the
first three vibration modes for different oxides are reported in Ta-
ble 2. Interestingly, the numerical results indicate that the maxi-
mum loss factor Q�1

max, and the peak temperature Tp are almost
insensitive to the specific mode of vibration of the blade. Although
Table 2 only shows data associated with the first three modes, we
observe similar trends also for higher order vibration mechanisms
(not shown for clarity), thus providing robust damping character-
istics over a broad range of frequencies.
The direct frequency response of the system is also computed to
illustrate the effect of damping on the blade’s steady-state re-
sponse at various temperatures. Analysis are presented for a blade
coated with a 7YSZ oxide layer, but analogous results are also ob-
served for the other oxides considered in this study. Fig. 16 illus-
trates the frequency response function between the imposed
base motion ub and the blade’s tip displacement utip (see Fig. 13).
The response function computed at T = 0 �C is used as a reference
to estimate the attenuation provided to the system by the point
defect relaxation mechanism in the oxide layer. Remarkably, the
results indicate that at the peak temperature of about 200 �C, the
TBC reduces by about 12 dB the amplitude of all the resonance
modes up to 10 kHz.
8. Conclusions

A finite element approach is used to predict the vibrational
damping in a multi-layer TBC system due to point defect relaxation
induced by the oxide topcoat. The proposed framework is based on
a description of damping as the result of anelastic relaxation due to
point defect rearrangement in highly defective oxides. The func-
tional dependence of mechanical loss on temperature and vibra-
tion frequency is conveniently implemented in a FE framework
which allows estimation of the damping properties of complex
three-dimensional shaped TBCs. Numerical analyses are conducted
using both the direct frequency response method and, more conve-
niently, the modal strain energy method which is found to provide
nearly identical results at a fraction of the computational cost.

Comparison with experimental data shows that the proposed
framework correctly captures the damping variation of a multi-
layer system based on experimentally-informed material proper-
ties derived for each of the constituent materials. The approach is
also used to estimate how the damping properties, typically ob-
tained for flexural motion only, carry over to other vibration
modes. Finally, parametric analyses illustrate how the proposed
approach can estimate the effects of several design parameters
on the damping performance of a TBC system. The obtained results
highlight a complex functional dependence of damping on the geo-
metrical parameters of the system, which must be considered for
the design of oxide layers for multifunctional TBCs.
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