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d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, 72085 Le Mans,
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Domain walls, commonly occurring at the interface of different
phases in solid-state materials, have recently been harnessed at
the structural scale to enable additional modes of functionality.
Here, we combine experimental, numerical, and theoretical tools
to investigate the domain walls emerging upon uniaxial compres-
sion in a mechanical metamaterial based on the rotating-squares
mechanism. We first show that these interfaces can be gener-
ated and controlled by carefully arranging a few phase-inducing
defects. We establish an analytical model to capture the evolution
of the domain walls as a function of the applied deformation.
We then employ this model as a guideline to realize interfaces
of complex shape. Finally, we show that the engineered domain
walls modify the global response of the metamaterial and can be
effectively exploited to tune its stiffness as well as to guide the
propagation of elastic waves.
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The coexistence of two or more phases plays a central role in
many ordered solid-state materials, including ferroelectrics

(1–3), ferromagnets (4, 5), ferroelastics (6, 7), shape memory
alloys (7, 8), and liquid crystals (9). Despite being intrinsically
different, these materials all share the emergence of domain
walls—a type of topological defect that separates regions of
different phases (10). Such interfaces are crucial for the con-
trol of many material properties, including coercivity, resistance,
and/or fatigue (11), and have also been exploited to enable
logic operations (12), racetrack memory (13), and line scan-
ners for reading optical memories (14). Inspired by the recent
advancements in domain walls control strategies at the atomistic
scale, researchers have designed a variety of nonlinear mechani-
cal structures to support these interfaces (15–25). Domain walls
engineered at the structural scale have facilitated the control of
elastic pulses (16, 17, 19, 25), the encryption of information (23),
and the realization of deployable structures (20) as well as of
phase-transforming metamaterials (15, 18). However, due to the
structural complexity of mechanical metamaterials, no analyti-
cal solution has been proposed that fully describes the physics of
such domain walls. This limits their systematic application in the
design of smart structures and devices and hinders the discovery
of additional functionalities.

Here, we use a combination of experiments and analyses to
study the domain walls emerging in a mechanical metamaterial
based on the rotating-squares mechanism. We start by intro-
ducing defects into the system to locally impose nucleation of
one of the two supported buckling-induced rotated phases upon
compression. Importantly, when such defects lead to the coex-
istence of two phases within the specimen, domain walls form,
across which the angle of individual squares switches from one
direction of rotation to the other. We establish an analytical
model that fully describes the emerging domain walls, including
their profile and position as a function of the applied deforma-
tion. Guided by our model, we then introduce pinning defects to
reshape the energy landscape of the system and, therefore, engi-

neer domain walls along arbitrary complex paths. Based on our
findings we foresee the exploitation of domain walls in the realm
of mechanical metamaterials to realize additional functionali-
ties, as we hereby demonstrate by achieving stiffness tuning and
reconfigurable elastic wave guiding.

Flexible Mechanical Metamaterial Based on the
Rotating-Squares Mechanism
We consider an elastomeric structure of thickness t = 3 mm
comprising an array of 21 × 21 squares with center-to-center
distance a = 10 mm, connected at their vertices by ligaments
with width and length of 1 mm (see Fig. 1A and SI Appendix,
section S1 for fabrication details). In all our tests we uniaxially
compress the structure by applying a vertical displacement ∆stage
to the top edge (which results in a nominal longitudinal strain
εyyapplied = ∆stage/(21a)), while using a transparent acrylic plate to
prevent its out-of-plane deformation. The deformation of the
sample is captured with a camera (SONY RX100), and the posi-
tion and rotation of the squares are tracked via image processing
conducted in Matlab (see SI Appendix, section S2 for testing
details). Under the applied compression, one of the beam-like
ligaments in the sample buckles first, because of immeasurable
small imperfections introduced during fabrication. This provides
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Fig. 1. (A) The system consists of a network of 21×21 square domains connected by thin ligaments. The positive direction of rotation alternates for
neighboring squares: A counterclockwise rotation of the [i, j]th square (the square located on the ith row and jth column) is defined positive if i + j is an
even number and negative if i + j is odd. (B) Deformation of the sample when subjected to εyy

applied =−4%. The color indicates the rotation of the squares.

(C) We model the system as an array of rigid squares connected at their vertices by elastic springs. (D) Evolution of θst as a function of εyy
applied as predicted

by Eq. 5 (solid lines) and measured in our experiment (circles).

a unique nucleation site that leads to the formation of a uni-
form buckling pattern in which all squares alternately rotate in
clockwise and counterclockwise directions (Fig. 1B and Movie
S1). Note that to facilitate the analysis, we define the positive
direction of rotation alternately for neighboring squares. Specif-
ically, we choose the square at the bottom left corner to be unit
[1, 1] and define a counterclockwise rotation of the [i, j]th square
(i.e., the square located on the ith row and jth column) positive if
i + j is an even number and negative if i + j is odd (Fig. 1A).
Using these definitions, we find that in our sample, buckling
induces a negative rotation of all squares. On the other hand,
if the ligament that acts as a nucleation site had buckled in the

opposite direction, all units would have experienced a positive
rotation.

The nonlinear behavior of our system can be captured using
a discrete model comprising rigid squares connected at their
vertices by a combination of springs (Fig. 1C) (26–30). Three
degrees of freedom are assigned to the [i , j ]th rigid square: 1)
the displacement in the x direction, u [i,j ]; 2) the displacement in
the y direction, v [i,j ]; and 3) the rotation around the z axis, θ[i,j ].
As for the ligaments, their longitudinal and shearing response is
captured by linear springs with stiffness kl and ks , respectively,
whereas their bending behavior is modeled by using a nonlinear
hardening rotational spring with linear and cubic terms that exert
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a torque M = kθ(∆θ+ γ∆θ3), where ∆θ is the relative rotation
between the connected squares, kθ is the bending stiffness, and
γ is a dimensionless parameter (SI Appendix, section S3.1). Note
that for the structure considered in this study kl = 1,080 N/m,
ks = 239 N/m, kθ = 1.62× 10−4 N·m, and γ= 0.5 (SI Appendix,
section S3.5) and that, to facilitate the analysis, we assume that
the longitudinal and shearing springs are always parallel either to
the x or to the y axis (an assumption which is valid only for small
global rotations of the system). When adopting such a discrete
model, the response of a structure comprising Nx ×Ny units
can be obtained by numerically solving the 3NxNy coupled non-
linear equations derived by imposing force equilibrium at each
square. Further, a deeper insight can be achieved by deriving
analytical solutions. To this end, we assume small rotation of the
squares and take the continuum limit of the discrete equilibrium
equations to obtain (SI Appendix, section S4)

kl∂xxu + ks∂yyu + klθ∂xθ= 0, [1a]
kl∂yyv + ks∂xxv + klθ∂yθ= 0, [1b]

− a2(ksa
2− 4kθ)∇2θ+ 32kθθ+ 4

(
kla

2 + 32γkθ
)
θ3

+ 4kla
2(θ− θ3/6) (∂xu + ∂yv)= 0, [1c]

where ∂αf = ∂f /∂α; ∇2 = ∂xx + ∂yy ; and u , v , and θ are three
continuum functions that interpolate the discrete variables u [i,j ],
v [i,j ], and θ[i,j ] as

u (x = a j , y = a i)= u [i,j ],

v (x = a j , y = a i)= v [i,j ],

θ (x = a j , y = a i)= θ[i,j ].

[2]

The uniaxial compression loading considered in our experiments
is then modeled by imposing

v (y = a Ny)− v (y = a)= a(Ny − 1)εyyapplied, [3]

and
∂xu + θ2/2 = 0, [4]

where Eq. 4 is obtained by requiring the longitudinal forces in
all horizontal ligaments to vanish (since the vertical edges of the
structure are traction-free).

For the case of a homogeneous deformation (as shown in
Fig. 1B), both the rotation of the squares and the longitudinal
strain in the y direction are spatially constant (i.e., θ= θst and
∂yv = εyyst , where θst and εyyst are the constant rotation and longi-
tudinal strain). It follows that, when substituting Eq. 4 into Eqs.
1, Eqs. 1a and 1b vanish, whereas Eq. 1c becomes(

1− (24γ+ 1)εyycr
3

)
θ3st + 2 (εyyst − ε

yy
cr )θst = 0, [5]

where εyycr =−8kθ/kla
2. Further, Eq. 3 reduces to εyyst = εyyapplied.

Eq. 5 can be solved to obtain the rotation of the squares, θst , as
a function of the strain εyyst as

θst =


0, εyyst >ε

yy
cr

±

√
−6 (εyyst − εyycr )

3− (24γ+ 1)εyycr
, εyyst <ε

yy
cr .

[6]

Eq. 6 defines the pitchfork-shape bifurcation diagram shown
in Fig. 1D. At εyycr the initially stable solution (θst = 0) bifur-
cates into two new stable branches that correspond to positive
and negative rotation of the squares and, therefore, to the two
buckling-induced phases supported by the system (which we
refer to as phase+ and phase−). Note that the evolution of the

average rotation of the squares as a function of εyyapplied extracted
from the experiments (Fig. 1 D, circles) nicely follows the phase−
branch, confirming the validity of our model.

Phase-Inducing Defects and Domain Walls
While in our sample the emerging buckling-induced phase is
determined by unavoidable small imperfections introduced dur-
ing fabrication, one can impose a prescribed phase by placing
stiff plastic plates with length ld = 1.2a into selected holes to act
as phase-inducing defects (Fig. 2A and SI Appendix, Fig. S2).
Such plates fully determine the buckling direction of the liga-
ments to which they are connected and, therefore, depending on
their position and orientation, can induce the formation of either
phase+ or phase−. To demonstrate our approach, we evenly
distribute eight of such defects in the holes next to the horizon-
tal boundaries. We find that when the eight defects are located
and oriented as shown in Fig. 2A (see SI Appendix, Fig. S3 for
details), they overcome the imperfections introduced during fab-
rication and make phase+ appear upon buckling (Fig. 2A and
Movie S2). Further, by simply rotating the defects next to the top
boundary by 90◦ (SI Appendix, Fig. S3), we can get phase− to
propagate from the top boundary and phase+ from the bottom
one (Fig. 2B). This leads to the coexistence of two phases within
the specimen and to the formation of a horizontal domain wall
in which the angles of individual squares switch from positive to
negative values. For εyyapplied =−4% such a domain wall is located
near the center of the specimen. However, when the applied
compression is increased to εyyapplied =−6%, it shifts toward the
bottom (Fig. 2C and Movie S2).

To ensure that the phenomena observed in the experiments
are not artifacts introduced by friction or unavoidable imperfec-
tions, we next conduct discrete simulations in which we model
the phase-inducing defects as stiff springs with stiffness kd� kl
and length at rest ld (SI Appendix, section S3.2). We find a
very good agreement between the numerical and experimen-
tal results (Fig. 2 A–C), with the simulations capturing both
the deformation-induced shifting and thinning of the domain
walls (see Movie S2 and SI Appendix, Figs. S12–S18 for simu-
lation results conducted on larger 51× 51 structures). Having
confirmed that our experimental observations emerge because
of the bulk properties of the medium (rather than friction or
geometrical imperfections), we then seek analytical solutions to
describe both the profile and position of the emerging domain
walls. To this end, since both our experiments and discrete simu-
lations indicate that gradients of deformation along the domain
wall are negligible (Fig. 2 B and C), we assume that ∂x (·) = 0 (SI
Appendix, section S4.1). It follows that Eqs. 1 and 4 reduce to

dyyv + θdyθ= 0, [7a]

− a2(ksa
2− 4kθ)dyyθ+ 32kθθ+ 2

(
kla

2 + 64γkθ
)
θ3

+ 4kla
2(θ− θ3/6)dyv = 0. [7b]

Next, we integrate Eq. 7a to obtain

dyv =−θ2/2 +C , [8]

where C is an integration constant that can be determined by
assuming homogeneous deformation inside each phase (i.e., far
away from the domain wall). Specifically, by imposing

∂yv |phase±= εyyst , θ|phase±=±θst , [9]

and using Eq. 5 to connect εyyst and θst , C is determined as

C = εyycr

[
1 +

(24γ+ 1)θ2st
6

]
. [10]
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Fig. 2. (A) Deformation at εyy
applied =−4% of a sample with eight phase-inducing defects arranged to induce nucleation of phase+. (B and C) Deformation at

(B) εyy
applied =−4% and (C) εyy

applied =−6% of a sample with eight phase-inducing defects arranged to induce nucleation of phase+ near the bottom boundary
and phase- near the top one. Experimental and numerical snapshots are shown at Top and Bottom, respectively. The color corresponds to the rotation of the
squares. Zoom-ins of the defects are also shown. (D) Comparison between analytically predicted (solid lines) and experimentally extracted (circles) evolution
of the squares’ rotation θ across the sample for different values of applied strain. (E) Analytically predicted evolution of the total energy of the structure as
a function of domain wall position y0 for different values of applied strain. (F) Evolution of the domain wall position y0 as a function of the applied strain
ε

yy
applied as predicted by theory (solid line) and numerical simulations (dashed line) and extracted from experiments (triangles). (G) Evolution of the energy

barrier ∆E as a function of applied strain εyy
applied.

Finally, by substituting Eqs. 8 and 10 into Eq. 7b we obtain

dyyθ=
16kθ (1 + 24γ)

3a2 (ksa2− 4kθ)
θ(θ− θst)(θ+ θst). [11]

Eq. 11 has the form of the Klein–Gordon equation with
quadratic and cubic nonlinearities and has been shown to admit
analytical solutions of the form (24, 31, 32)

θ= θst tanh
y − y0
w

, [12]

where y0 denotes the position of the domain wall and

w =
a

θst

√
3 (ksa2− 4kθ)

8kθ (1 + 24γ)
[13]

indicates its characteristic width. Having determined θ, the solu-
tion for the displacement field u(x , y) and v(x , y) is then cal-
culated by integrating Eqs. 4 and 8 and θst is determined as a
function of εyyapplied by imposing Eq. 3 (note that because of the
existence of the domain wall, εyyst 6= εyyapplied) (SI Appendix, section
S4.1). At this point, it is worth noting that by multiplying both
sides of Eq. 11 by dyθ and integrating with respect to y , its effec-
tive Lagrangian (from which Eq. 11 can be retrieved by imposing
dyL= 0) is obtained as

L=
1

2
(dyθ)

2− 1

w2

[
θ4

2θ2st
− θ2

]
. [14]

Remarkably, Eq. 14 is identical to the Lagrangian of the φ4

mode—a well-known model established to describe second-
order phase transitions and domain walls in solid-state materials

(33). Next, we verify the validity of our analytical solution by
comparing the evolution of the squares’ rotation across the sam-
ple as recorded in our tests and predicted by Eq. 12 (Fig. 2D).
When choosing y0 to best match the experimentally observed
location of the domain wall (magenta lines in Fig. 2D), we find an
excellent agreement between analytical and experimental results,
with the analytical solution nicely capturing the deformation-
induced thinning of the domain wall. However, it is important to
note that y0 can also be calculated by minimizing the total energy
of the system, Etotal (SI Appendix, sections S3.3 and S4.2). As
shown in Fig. 2E, we find that initially (i.e., for εyyapplied >−2.3%)
Etotal is a convex function with a minimum located at the cen-
ter of the specimen (i.e., at y0 = 11 a). However, as the applied
compression is increased, it gradually turns into a multiwelled
landscape with a local maximum at the center and two min-
ima that progressively move toward the horizontal boundaries.
Therefore, since the structure always seeks to minimize its total
energy, our model indicates that for εyyapplied <−2.3% the domain
wall tends to shift toward one of the horizontal boundaries (solid
line in Fig. 2F). While such shifting of the domain wall is present
in both our experiments and simulations, it is found to start for
larger values of applied deformation in simulations (triangles
and dashed line in Fig. 2F). Such discrepancy is attributed to the
small energy barrier ∆E for moderate levels of applied strain
(Fig. 2G), which makes the shifting very sensitive to imperfec-
tions and friction. However, despite this discrepancy, the results
of Fig. 2 indicate that our analytical model captures all of the
experimentally observed salient features of the emerging domain
walls.

Pinning Defects and Stable Domain Walls
As shown in Fig. 2, by carefully arranging a few phase-inducing
defects in the metamaterial we can induce the formation of a
domain wall, whose location varies as a function of the applied

4 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.2015847117 Deng et al.
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deformation. To program the position of the domain wall, one
can prevent the rotation of selected squares by introducing pin-
ning defects consisting of square-shaped rigid plates (with size
0.95a × 0.95a) placed into neighboring holes (SI Appendix, Fig.
S2). In Fig. 3A we present results for a sample with four pinning
defects equally spaced along a horizontal line (see SI Appendix,
Fig. S4 for details), in addition to the previous eight phase-
inducing defects arranged as in Fig. 2 B and C. We find that
in this case the location of the domain wall is fully determined
by the square defects that act as pinning sites (see Fig. 3A for
εyyapplied =−6% and Movie S3). This is due to the pinning defects
that modify the total energy of the system and make it convex
for any value of applied deformation, with a clear minimum at
the defects’ locations (see Fig. 3B and SI Appendix, Figs. S19 and
S20 for additional results). Moreover, we find that the density of
the pinning defects plays an important role. For example, it is
possible to create a wavy domain wall by increasing the spatial
separation between defects. In Fig. 3C and Movie S3, we show a
60 × 21 sample (larger width to minimize boundary effects) with
pinning defects separated by 10 holes instead of 5. The compe-
tition between the pinning sites and the tendency of the domain
wall to shift toward the boundary to minimize the total energy
both cooperate in the formation of an undulating phase sepa-
ration (see SI Appendix, Figs. S21–S23 for additional results).
Finally, while in Fig. 3 we considered pinning defects positioned
on the central line, the location of the domain wall can be pro-
grammed at any location in the sample (see SI Appendix, Fig. S19
for additional results).

Domain Walls with Arbitrary Orientations
The domain wall’s orientation can be easily varied by arranging
the defects along lines that form an angle ϕd with the horizon-
tal axis. In Fig. 4A we show samples with eight phase-inducing
defects linearly arranged and angled at ϕd = arctan(1/2) and
π/4 to induce opposite phases across the joining line (see SI
Appendix, Fig. S3 for details on the arrangement of the defects).

We find that at εyyapplied =−4% not only are the emerging domain
walls shifted from the center of the region defined by the line
of defects, but also they have a very different orientation from
that prescribed by the defects (i.e., the domain wall forms an
angle ϕ= 0.37 and 0.33 radians with the horizontal axis for
ϕd = arctan(1/2) and π/4, respectively; Movie S4). To under-
stand this behavior, we extend our model to domain walls with
ϕ 6= 0 by introducing the local coordinates (Fig. 4A)

ζ = x sinϕ+ y cosϕ, η= x cosϕ− y sinϕ. [15]

When we neglect the variation of deformation along the domain
wall (i.e., we assume ∂η(·) = 0), we find that the profile of the
domain wall is described by (SI Appendix, section S4.1)

θ= θst tanh
ζ − ζ0
w

, [16]

where ζ0 denotes the position along the ζ axis of the domain
wall and

w =
a

θst

√√√√ 3(ksa2− 4kθ)

8kθ(1 + 24γ) + 3kskla
2 sin2 ϕ

ks sin2 ϕ+kl cos
2 ϕ

. [17]

Using the analytical solution given by Eq. 16, we then calculate
the total energy of the system as a function of the orientation
ϕ and position ζ0 of the domain wall. As shown in Fig. 4B, we
find that the domain walls observed in our experiments mini-
mize Etotal (SI Appendix, Figs. S24 and S25). However, once again
the position and orientation of the domain walls can be con-
trolled by introducing a few square pinning defects to reshape the
energy landscape of the structure. For example, by placing four
pinning defects along a line which runs parallel to those defined
by the phase-inducing defects (Fig. 4C and Movie S4), we can
manipulate Etotal to assume a single-welled landscape with a min-
imum at ϕ=ϕd and ζ0 = 21a/ cosϕd (Fig. 4D). Hence, given

A

C

B

Fig. 3. (A) Deformation at εyy
applied =−6% of a sample with four pinning defects and eight phase-inducing defects arranged as in Fig. 2 B and C. Experimental

and numerical snapshots are shown on Left and Right, respectively. The color corresponds to the rotation of the squares. A zoom-in of a pinning defect is
also shown. (B) Analytically predicted evolution of the total energy of the structure as a function of domain wall position y0 for different values of applied
strain. (C) Numerically predicted deformation at εyy

applied =−6% of structures comprising 21× 60 squares with pinning defect separated by 10 holes. The
domain wall becomes wavy for large enough values of applied compression.
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Fig. 4. (A) Deformation at εyy
applied =−4% of a sample with eight phase-

inducing defects arranged along two lines that form an angle ϕd =

arctan(1/2) and π/4 with the horizontal axis. (B) Analytically predicted evo-
lution of Etotal at εyy

applied =−4% as a function of ζ0 and ϕ. The triangle
corresponds to the configuration of the experimentally observed domain
wall. (C) Deformation at εyy

applied =−4% of a sample with four pinning
defects in addition to eight phase-inducing defects arranged as in A. (D)
Analytically predicted evolution of Etotal at εyy

applied =−4% as a function of
domain wall position ζ0 and orientation ϕ. The triangle corresponds to the
configuration of the experimentally observed domain wall. (E) Numerically

this energy landscape, the domain walls form exactly along the
lines defined by the pinning defects (Fig. 4C). Further, by arrang-
ing the pinning defects along complex paths and carefully placing
a few phase-inducing defects to initiate phase+ and phase− at
desired locations, information in the form of arbitrary images
can be encoded into the system, which can be revealed upon
the application of a large enough compressive load (Fig. 4E and
Movie S4).

Applications
Having demonstrated that domain walls can be engineered by
arranging a few defects in selected locations, we then explore
how these can be harnessed to enhance the static and dynamic
behavior of the system. To begin with, we focus on the effect of
the domain walls on the nonlinear stress–strain response of the
material. If we assume that near the horizontal boundaries of the
structures (i.e., far away from the domain wall) the deformation
is homogeneous (i.e., θ= θst and ∂v/∂y = εyyst ), the averaged
normal stress in the y direction can be analytically obtained by
taking the continuum limit of the longitudinal forces acting on
the vertical hinges as (SI Appendix, section S4.3)

σyy =
kl
t

(
εyyst +

θ2st
2

)
. [18]

In the absence of domain walls (i.e., for the case of homo-
geneous deformation), εyyst = εyyapplied and θst can be determined
as a function of εyyapplied using Eq. 5. Differently, in the pres-
ence of a domain wall θst and εyyst are simultaneously deter-
mined as a function of εyyapplied by imposing Eqs. 3 and 5. In
Fig. 5A we report the stress–strain curves predicted by Eq. 18
for systems with and without domain walls. We find that the
structures become stiffer when a domain wall arises and the
two opposite phases interact. Moreover, in Fig. 5A we com-
pare the stress–strain curves predicted by our analytical model
with those numerically calculated and the ones measured exper-
imentally in 21× 21 structures with 1) no defects (green line)
and 2) eight phase-inducing defects arranged as in Fig. 2 B
and C (magenta line). The good agreement between all sets of
data shows that our analytical model has potential to comple-
ment numerical tools for the design of systems with a targeted
mechanical response. In its current form the model can cap-
ture only the response of systems with a single domain wall.
However, we show in Fig. 5B that this stiffening effect can be
amplified by the interactions of multiple domain walls. There-
fore, our future work will aim at improving the current analytical
model to predict more complex scenarios with multiple domain
walls.

Next, we study the effect of the domain walls on the propaga-
tion of small-amplitude elastic waves. To this end, we consider
a metamaterial with alternating light (with mass m) and heavy
(with mass 3m/2) squares and numerically calculate its disper-
sion relations as a function of θst , assuming a state of homoge-
neous deformation (Fig. 5D and SI Appendix, section S3.6). We
find that for θ= 0 (i.e., for unrotated squares) a complete band
gap exists at frequency f = 3,293 to 3,674 Hz (highlighted as the
gray-shaded area in Fig. 5C), so that waves within this frequency
range are not expected to propagate in the system. However,
as the rotation of the squares is increased, this band gap shifts
to a lower-frequency range (f = 2,652 to 2,941 Hz; Fig. 5 C and
D). Importantly, since |θ| ∼ 0 within the domain wall and |θ|> 0
in the surrounding compressed medium, such shifting can be

predicted deformation at εyy
applied =−4% for 51× 51 structures with the pin-

ning defects arranged along complex paths (in addition to phase-inducing
defects to initiate phase+ and phase− at desired locations). The color in all
snapshots corresponds to the rotation of the squares.
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Fig. 5. (A) Experimentally measured (triangles), numerically calculated (dashed lines), and theoretically predicted (solid lines) stress–strain curves for 21× 21
structures without a domain wall (structure considered in Fig. 1B) and with a horizontal domain wall (structure considered in Fig. 2 B and C). Note that
the numerical and analytical predictions for the structure without a domain wall match perfectly, so that the green solid and dashed lines overlap. (B)
Numerically calculated stress–strain curve for 21× 21 structures with two vertical domain walls (blue line) and two perpendicular domain walls at ϕ=π/4
(red line). The corresponding deformations are shown as Insets. (C) Dispersion relations for planar elastic waves in the undeformed (θ= 0) and compressed
(θ= 0.4) configurations. (D) Evolution of the band gap frequency, f , as a function of the squares rotation θ. (E) Evolution of θ along the y direction for
a 21× 21 sample with an horizontal domain wall at εyy

applied = 0%, −4%, and −8%. (F) Modal displacement fields at εyy
applied = 0% (f = 2,811 Hz), −4%

(f = 2,812 Hz) and −8% (f = 2,779 Hz).

harnessed to guide elastic waves along the paths defined by the
domain walls. Our analytical model can be used to predict the
width of the propagating channels, wchannel, at a given frequency
f . To demonstrate this, we focus on f = 2,800 Hz—a frequency
for which waves can propagate only if−0.25<θ< 0.25 (Fig. 5D).
In Fig. 5E we report the evolution of θ predicted by Eq. 12
along the y direction for a 21 × 21 sample at three different
deformation levels εyyapplied = 0%, −4%, and −8%. The width of
the propagating channels can be easily determined by identify-
ing the region in which −0.25<θ< 0.25. For this specific case
we find that wchannel = 21a (entire structure), 8.0a , and 5.5a at
εyyapplied = 0, −4%, and −8%, respectively. Next, to verify these
predictions, we report the eigenmodes associated to the fre-
quency of f ∼ 2,800 kHz at εyyapplied = 0, −4%, and −8% for a
system with defects arranged to form a horizontal domain wall
(Fig. 5F and SI Appendix, section S3.6). As predicted by our con-

tinuum model, we find that, when the system is undeformed (i.e.,
for εyyapplied = 0%), the vibrations are spread through the entire
structure. Differently, at εyyapplied =−4% and −8% they are con-
fined near the domain wall, in a prescribed region. Importantly,
the width of this region is very close to the one predicted by
our analytical model wchannel. As such, our results indicate that
domain walls generated by localized defects can be exploited to
tune global properties of the system such as stiffness and wave
guiding and that our analytical model can be leveraged to guide
the design of functional systems.

Conclusions
To summarize, we have shown that in a rotating-squares–based
mechanical metamaterial domain walls across which the rota-
tion of the squares varies from positive to negative values can
be formed by carefully arranging a few phase-inducing defects
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that control the nucleation of the two rotated buckling-induced
phases. We have established an analytical model that explicitly
describes the spatial profile of the domain walls for different ori-
entations and predicts their evolution as a function of the applied
deformation. Further, guided by this model, we have shown that
domain walls of arbitrary shapes can be engineered by introduc-
ing a few pinning defects to modify the energy landscape of the
structure. Importantly, since the considered defects can be eas-
ily placed and removed (the deformation is purely elastic), our
platform can be used to efficiently explore how the shape and
orientation of the emerging domain walls affect the mechanical
properties of the material. Moreover, our study indicates that the
metamaterial creates long-range interactions between the local
defects, which may generate domain walls and ultimately affect
the material’s global mechanical properties. We envision the
exploitation of domain walls in order to encode additional modes

of functionality in mechanical systems, including information
encryption, stiffness tuning, and wave guiding.

Materials and Methods
Details of fabrication are described in SI Appendix, section S1. The protocol
for experiments is provided in SI Appendix, section S2. The discrete model
used to investigate the response of the system and additional numerical
results are presented in SI Appendix, section S3. Details of the continuum
model are presented in SI Appendix, section S4.

Data Availability. All study data are included in this article and SI Appendix.
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S1 Fabrication

Our sample is fabricated by laser cutting a natural sheet with a thickness of 3.2 mm (McMaster-

Carr part number: 87145K73). The pattern is designed to comprise 21 square cells in both the

horizontal and vertical directions (Fig. S1(a)). The squares have diagonals of 10mm-length and

are connected by hinges with width and length of 1 mm (Fig. S1(b) and (c)).

Since rubber is notoriously difficult to laser cut, we set up a custom procedure in order

to obtain a clean cut. Firstly the geometry is created with a custom code in MATLAB (The

MathWorks, Inc.), exported as pdf file and passed on to the laser cut rig (PLS6.150D, Universal

1
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Laser Systems). Secondly the distance between the laser head and the rubber sheet is calibrated

as instructed in the machine’s operating manual, in order to assure a sharp focus. The design is

then cut into the rubber sheet, producing a groove of about 1 mm in depth. The parameters used

for the cut are 70% of the laser power and 10% of the maximum translation speed of the rig.

Next, the laser head is lowered of 1mm in order to move the focus on the base of the groove.

The same procedure is repeated for a second and a third time, cutting about 1 mm each time

and finally achieving the cut through of the material.

21 X 1 cm

2
1

 X
 1

 c
m

10 mm

1 mm

1 mm

3 mm

(a)
(b)

(c)

Figure S1: Snapshots of our sample comprising an array of 21 × 21 squares connected at their vertices
by thin hinges.

As part of this study we introduce two types of defects to guide the deformation of our

samples:

• Phase-inducing defects: to determine the direction of rotation of certain squares we

insert a stiff orange plate (12 mm × 5 mm × 0.76 mm, laser cut from plastic shim,

McMaster-Carr part number: 9513K75) into the adjacent hole (see Fig. S2(a)). By vary-

ing the orientation of this orange plate from horizontal to vertical we can change the

direction of rotation of the neighboring squares. Similarly, the direction of rotation can

2



be switched by translating the plate to one of the neighboring holes (while keeping its

orientation). In Fig. S3 we show how we arrange 8 of such defects within the sample to

generate the deformation fields shown in Figs. 2 and 4 of the main text.

• Pinning defects: to prevent certain units to rotate we insert a blue stiff square (9.5 mm

× 9.5 mm × 3.18 mm, laser cut from a blue acrylic plate, McMaster-Carr part number:

8505K741, see Fig. S2(b)) into the neighboring hole. In Fig. S4 we show how we arrange

4 of such defects within the sample to generate the deformation fields shown in Figs. 3

and 4 of the main text.

(a) (b)phase-inducing

defect
pinning defect

Figure S2: (a) Magnified view of a phase-inducing defect. (b) Magnified view of a pinning defect.
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[20,2] [20,8] [20,14] [20,20]

[1,2] [1,8] [1,14] [1,20]

[7,1]

[5,5]

[9,3]

[13,1]

[18,12]

[16,16]

[14,20]

[7,1]

[5,3]

[7,3] [11,1]

[20,14] [18,16]

[16,18]

[14,20]

(a) (b)

(c) (d)

[20,8]

Figure S3: Distribution of phase-inducing defects within the sample to generate the deformation fields
shown in (a) Fig. 2A of the main text; (b) Fig. 2B-C of the main text; (c) Fig. 4A of the main text
(ϕd = arctan(1/2)); (d) Fig. 4A of the main text (ϕd = π/4).
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(a) (b) (c)

Figure S4: Distribution of pinning defects within the sample to generate the deformation fields shown in
(a) Fig. 3A of the main text; (b) Fig. 4C of the main text (ϕd = arctan(1/2)); (c) Fig. 4C of the main
text (ϕd = π/4).

(a) (b)

[1,11] [20,11]

[11,11]

[9,11] [13,11]

[11,13]

[11,9]

Figure S5: Distribution of phase-inducing and pinning defects within the sample to generate the defor-
mation fields shown in (a) Fig. 5B of the main text; (b) Fig. 5C of the main text.
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S2 Testing

To test the mechanical response of our sample, we place it on a base plate (black acrylic plate,

3.18 mm thickness, McMaster-Carr part number: 8505K741) and cover them with a transpar-

ent plate (clear acrylic plate, 3.18 mm thickness, McMaster-Carr part number: 8560K239) to

prevent out-of-plane buckling while being able to observe its deformation (see Fig.S6(a) for top

view and (b) for side view). Note that to minimize friction between the sample and the plates,

plastic stickers (Amazon Standard Identification Number (ASIN): B07M6NDG4X) are glued

on the sample (see Fig.S6(c)).

(a)

(b)

(c)

(d)

linear actuator

force sensor

lo
a

d
in

g
 p

la
te

loading plate

sample

cover plate

base plate

plastic stickers

Figure S6: (a) Top view of the testing setup. (b) Front view of the testing setup. (c) Magnified view of the
sample, with plastic stickers on the center of square cells. (d) Magnified view of the setup highlighting
the cover and base plates used to prevent out-of-plane deformation.

The samples are uniaxially compressed using two acrylic plates (made using McMaster-

Carr part number: 8505K741): an end plate to prevent their motion and a loading plate to

6



apply the deformation. During the test, the loading plate is inserted in between the cover plate

and base plate to compress the sample (see Fig.S6(d) for a zoomed-in view). The loading

plate is connected to a translation stage (LTS300 - Thorlabs) and a force sensor (1 lb Load

Cell, LSB200 Miniature S-Beam Load Cell, FUTEK Advanced Sensor Technology, Inc.) is

assembled between them to monitor the reaction force from the sample during the test. Note

that lubricant is applied to both the end and loading plates so that the squares on the boundaries

of the samples can slide along the plates.

The uniaxial compression tests are captured with a camera (SONY, RX100) recording at 30

fps and with a resolution of 1920×1080 pixels and the deformation is tracked via image digital

processing conducted in MATLAB. Specifically, the deformation is tracked using the following

3 steps

• Step 1 Each frame is converted to black-and-white and the holes between the squares are

extracted by setting a threshold on gray scale of the image. Since the sample comprises

21×21 squares, 400 holes are extracted (see Step 1 in Fig. S7).

• Step 2 The boundaries of each hole are fitted with four segments (see Step 2 of Fig. S7

- in the zoom-in we highlight the boundaries of one hole with magenta dashed line and

the four segments with red, purple, yellow and green continuous lines. Note that the blue

dots corresponds to the pixels).

• Step 3 The position and rotation of each square element is calculated from the position

and rotation of the four surrounding segments obtained in Step 2 (see Step 3 of Fig. S7).

Specifically, the position of the square’s center is calculated by the averaged coordinates

of the center points of the four segments and its rotation by averaging the rotation of the

segments. The squares are colored to show their rotation.
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Note that the whole process is automatized in Matlab and it typically takes 2 minutes to

process a recorded video.

Orignal frame Step1

Step2 Step3

Figure S7: Procedure for tracking the deformation of our samples.
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S3 Discrete Model

S3.1 Governing equations

Our system consists of square crosses that are connected by thin and flexible hinges (see Fig.

S1). As recently shown in several studies [1, 2, 3, 4, 5], the response of such system can

be accurately captured by modeling it as an array of rigid bodies connected at the vertices

via a combination of longitudinal and rotational springs (see Fig. S8(a) for the schematics).

Specifically, in our discrete model we consider the squares to be rigid and to have three degrees

of freedom: the displacement in the x-direction, u, the displacement in the y-direction, v, and

the rotation around the z-axis, θ (see Fig. S8(b)). Note that to facilitate the analysis, we define

the positive direction of rotation alternatively for neighboring squares. Focusing on the [i, j]th

square, we define a counter clockwise rotation positive if i + j is an even number and negative

if i + j is odd. As for the hinges, we model them using a combination of three springs. Their

longitudinal response is captured by a linear spring with stiffness kl; their shearing is captured

by a linear spring with stiffness ks and their bending is captured by a non-linear torsional spring,

which obeys

M = kθ(θ + γθ3), (S1)

where M is the torque exerted by the spring, kθ is the rotational stiffness and γ is a dimension-

less material parameter. Note that, to facilitate the analysis, we assume that the longitudinal and

shearing springs are always parallel either to the x or y axis (an assumption which is valid only

for small global rotations of the system).

Under the assumptions listed above, the equations of motion for the [i, j]th square are given
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i, j

i+1, j

i-1, j

i, j+1i, j-1

longitudinal spring

shearing spring

torsional spring
i, j

(a) (b)

Figure S8: Discrete model based on rigid units connected at their vertices by springs. (b) Schematic view
of the [i, j]th rigid square unit.

by [4]

m
∂2u[i,j]

∂t2
=

4∑
p=1

F x [i, j]
p ,

m
∂2v[i,j]

∂t2
=

4∑
p=1

F y [i, j]
p ,

J
∂2θ[i,j]

∂t2
=

4∑
p=1

M [i, j]
p ,

(S2)

where m and J are the mass and rotational inertia of the squares, F x [i, j]
p and F y [i, j]

p are the

normalized forces in the x-direction and the y-direction generated at the p-th vertex of the [i,

j]th unit by the springs and M [i, j]
p represents the corresponding moment. For the set of springs
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considered in this study Eqs. (S2) specializes to

m
∂2u[i,j]

∂t2
= kl

(
u[i,j+1] + u[i,j−1] − 2u[i,j]

)
+ ks

(
u[i+1,j] + u[i−1,j] − 2u[i,j]

)
−kla

2

[
cos
(
θ[i,j+1]

)
− cos

(
θ[i,j−1]

)]
+ (−1)i+j

ksa

2

[
sin
(
θ[i+1,j]

)
− sin

(
θ[i−1,j]

)]
,

m
∂2v[i,j]

∂t2
= kl

(
v[i+1,j] + v[i−1,j] − 2v[i,j]

)
+ ks

(
v[i,j+1] + v[i,j−1] − 2v[i,j]

)
−kla

2

[
cos
(
θ[i+1,j]

)
− cos

(
θ[i−1,j]

)]
−(−1)i+j

ksa

2

[
sin
(
θ[i,j+1]

)
− sin

(
θ[i,j−1]

)]
,

J
∂2θ[i,j]

∂t2
= −kθ

(
θ[i+1,j] + θ[i−1,j] + θ[i,j+1] + θ[i,j−1] + 4θ[i,j]

)
−γkθ

(
(θ[i+1,j] + θ[i,j])3 + (θ[i−1,j] + θ[i,j])3 + (θ[i,j+1] + θ[i,j])3 + (θ[i,j−1] + θ[i,j])3

)
−kla

2

4
sin θ[i,j](8− cos θ[i+1,j] − cos θ[i−1,j] − cos θ[i,j+1] − cos θ[i,j−1] − 4 cos θ[i,j])

−kla
2

2
sin θ[i,j](u[i,j+1] − u[i,j−1] + v[i+1,j] − v[i−1,j])

+
ksa

2

4
cos θ[i,j](sin θ[i,j+1] + sin θ[i,j−1] + sin θ[i+1,j] + sin θ[i−1,j] − 4 sin θ[i,j])

+(−1)i+j2kla
2(−u[i+1,j] + u[i−1,j] + v[i,j+1] − v[i,j−1]).

(S3)

For a structure comprising Nx rows and Ny columns of squares Eqs. (S3) result in a system

of 3Nx × Ny coupled differential equations, which we numerically solve using the 4th order

Runge-Kutta method (via the Matlab function ode45). In all our simulations we bind the vertical

displacement of the bottom row of squares to zero (i.e. we set v[1,j] = 0) and apply a homoge-

neous displacement ∆stage in the vertical direction onto the top row (i.e. we set v[Ny ,j] = ∆stage).

Further, to eliminate rigid body motion, we also set the horizontal displacement of the center

unit in the bottom row to be zero (i.e., u[1,floor(Nx/2)] = 0). Note that to minimize dynamic effects

the displacement is applied very slowly (i.e. at a velocity three order of magnitude smaller than

that of linear waves travelling through the system).
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S3.2 Defects

To model the defects introduced in our samples, we use very stiff linear springs with stiffness

kd = 10kl. Each phase-inducing defect is modelled using one spring with initial length ld =

1.2a (since the orange plates used in our experiments have a length of 1.2a) that connects

the opposite vertices of the hole (see Fig. S9(a)). Each pinning defect is modelled using two

springs with initial length ld = a that connect two sets of opposite vertices of the hole (see

Fig. S9(b)). Since the defects are not glued to the sample, we assume that the springs only

support compression loads

Fdefect =

kd (ld − lver) , if ld > lver

0, if ld < lver

(S4)

where lver denotes the distance in the deformed configurations between the two vertices to which

the spring is attached.

Figure S9: (a) A phase-inducing defect is modelled using one spring. (b) A pinning defect is modelled
using two springs.
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S3.3 Total energy of the structure

Given a deformed configuration defined by u[i,j], v[i,j] and θ[i,j], he total energy of the structure,

Etotal, can be calculated as

Etotal
(
u[i,j], v[i,j], θ[i,j]

)
=

Ny∑
i=1

Nx−1∑
j=1

{
1

2
kθ

[
(θ[i,j] + θ[i,j+1])2 +

γ

2
(θ[i,j] + θ[i,j+1])4

]
+

1

2
ks

[
v[i,j+1] − v[i,j] − a

2

(
sin θ[i,j+1] + sin θ[i,j]

)]2
+

1

2
kl

[
u[i,j+1] − u[i,j] +

a

2
(2− cos θ[i,j+1] − cos θ[i,j])

]2}

+

Ny−1∑
i=1

Nx∑
j=1

{
1

2
kθ

[
(θ[i,j] + θ[i+1,j])2 +

γ

2
(θ[i+1,j] + θ[i,j])4

]2
+

1

2
ks

[
u[i+1,j] − u[i,j] − a

2

(
sin θ[i+1,j] + sin θ[i,j]

)]2
+

1

2
kl

[
v[i+1,j] − v[i,j] +

a

2
(2− cos θ[i+1,j] − cos θ[i,j])

]2}
+Edefects,

(S5)

where Edefects denotes the energy associated to all defects placed into the sample. Specifically,

for a structure with ns stiff springs introduced to mimic the experimental defects, Edefects can be

written as

Edefects =
ns∑
p=1

1

2
kd (ld − lsver)

2 , (S6)

where lsver denotes the distance in the deformed configuration of the two vertices to which the

spring is attached and depends of the location of the defect.

S3.4 Uniaxial compression of a structure without defects

While in the presence of defects Eqs. (S3) have to be solved numerically, an analytical solution

can be obtained when a sample without defects is subjected to uniaxial compression in the

vertical direction. For this case
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• (i) the inertia terms can be neglected,

∂2u[i, j]

∂t2
=
∂2v[i, j]

∂t2
=
∂2θ[i, j]

∂t2
= 0, ∀ i, j (S7)

• (ii) the deformation is homogeneous,

v[i+1, j] − v[i, j] = aεyyst ,

θ[i, j] = θst, ∀ i, j
(S8)

where εyyst is the homogeneous strain and θst is the constant angle by which all squares

rotate (with neighboring units rotating in opposite direction) due to the applied static

deformation.

• (iii) the longitudinal forces in all horizontal ligaments vanish (since we have traction free

boundary conditions on the left and right edges)

F
x [i, j]
1 = F

x [i, j]
3 = kl

[
u[i+1,j] − u[i,j] +

a

2

(
2− cos θ[i,j] − cos θ[i+1,j]

) ]
= 0, ∀ i, j,

(S9)

When substituting Eqs. (S7) - (S9) into Eqs. (S3), we find that the first two equations vanish

and the third one simplifies to

8kθθst
(
1 + 4γθ2st

)
+ kla

2 sin θst (1− cos θst) + kla
2 sin θst ε

yy
st = 0. (S10)

While Eq. (S10) can only be solved numerically to find the relation between the strain εyyst

and the resulting rotation of the squares θst, analytical solution can be obtained by assuming

θst � 1, so that sin θst ≈ θst − θ3st/6 and cos θst ≈ 1− θ2st/2. Under this assumption Eq. (S10)

reduces to (
1− (24γ + 1)εyycr

3

)
θ3st + 2 (εyyst − εyycr ) θst = 0, (S11)

with

εyycr = − 8kθ
kla2

. (S12)
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Eq. (S11) can be solved analytically to obtain the rotation of the squares, θst, as a function of

the strain εyyst as

θst =


0, εyyst > εyycr

±

√
−6 (εyyst − εyycr )

3− (24γ + 1)εyyst
, εyyst < εyycr

(S13)

Eq. (S13) indicate that, when loaded starting from the undeformed configuration (i.e. from

εyyst = 0 and θst = 0), the squares initially only translate and do not rotate (i.e. θst = 0).

However, at the critical strain εyycr the solution bifurcates; the initial branch θst = 0 becomes

unstable and the squares move to the second branch and start to rotate. Note that a given unit

has equal probability to rotate in clockwise or counter-clockwise direction, but its direction

of rotation determines that of all the other squares (since neighboring units tend to rotate in

opposite directions).

Finally, in an attempt to determine the stress-strain response of the structure, we focus on

the longitudinal forces acting on all vertical ligaments,

F
y [i, j]
2 = F

y [i, j]
4 = kl

[
v[i+1,j] − v[i,j] +

a

2

(
2− cos θ[i,j] − cos θ[i+1,j]

) ]
, ∀ i, j, (S14)

which in the case of homogeneous deformation (Eq. (S8)) and θst << 1 (so that cos θst ∼

1− θ2st/2) simplify to

F
y [i, j]
2 = F

y [i, j]
4 = akl

(
εyyst +

θ2st
2

)
, ∀ i, j, (S15)

It follows that the normal stress in y-direction can be obtained as

σyy =
F
y [i, j]
2

at
=
kl
t

(
εyyst +

θ2st
2

)
, (S16)

where t = 3.2 mm is the thickness of the sample and θst is defined in Eq. (S13).

S3.5 Parameter identification

To make the discrete model parameters relevant to our experimental sample, we need to estimate

the mass of the square units (m), their rotational inertia (J), the spring stiffness (kl, Ks and Kθ)
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and the non-linear parameter γ.

Mass m. The mass of each square is m = 0.18 g (it is calculated by multiplying the volume of

the square by the density of the rubber).

Rotational inertia J . It is calculated as J = ma2/12 = 0.0152 g·cm2.

Spring stiffness kl, kθ and non-linear parameter γ. We focus on the unixial compression

of a sample without defects (see Fig. S10(a) - also shown in manuscript Fig. 1B) and fit the

theoretically predicted force-strain curve (through Eqs. (S10) and (??)) to the experimental

measurements. In Fig. S10(b), we show that the experimentally measured stress-strain curve

(triangular markers) can be best fitted by the model (solid line) using

kl = 1080 N/m, kθ = 1.62× 10−4 N ·m, and γ = 0.5. (S17)

The initial stiffness is governed by kl, the critical strain εyycr = 0.012 is given by Eq. (S12), and

γ controls the slope of the stress-strain curve in the post-buckling regime.

(c)(b)

0 -2% -4% -6%

experiment theory

initial stiffness

buckling

hardening

experiment(a)

0.3

-0.3

20

40

60

0

Figure S10: (a) A snapshot of the experiments where uniaxial compression leads to homogeneous de-
formation. (b) Matching of the model predicted force-strain relation with the experimental measure-
ments. (c) FEM simulations for the estimation of ks.

Spring stiffness ks. To determine the normalized stiffness of the shearing spring, ks, we
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conduct Finite Element simulations using the commercial package Abaqus/Standard. In our

analysis, (i) we consider two half squares with dimensions identical to those of our samples

(see Fig. S10(c)); (ii) we assume plane stress conditions; (iii) we mesh the models using

quadratic triangular elements (Abaqus element type: CPS6) and ascertain the accuracy of the

mesh through a mesh refinement study; (iv) we use an incompressible neo-Hookean model with

initial shear modulus µ0 = 0.3 MPa to capture the material response; (v) we account for geo-

metric non-linearities. We run two simulations in which we apply an horizontal displacement

δl and a vertical displacement δs to the two vertical boundaries of our model, respectively (see

Fig. S10(c)). The stiffness kl and ks is then obtained from the measured reaction force Fl and

Fs (given by the sum of all reaction forces at the nodes located on one of the two boundaries)

as

kFE
l =

Fl
2δl

= 620
N

m
, kFE

s =
Fs
2δs

= 137
N

m
. (S18)

Note that this longitudinal stiffness calculated via Finite Element kFE
l is different from the exper-

imental measured one kl. This can be attributed to the fabrication error of the laser cut specimen.

Nerveless, we can assume that the ratio between shear and longitudinal spring stiffness should

conserve, and calculate the shear stiffness our specimen as

ks =
kFE
s

kFE
l

kl = 239 N/m. (S19)

S3.6 Propagation of linear waves

To characterize the propagation of linear waves in the considered metamaterial, we start by

linearizing the discrete equations of motion around a deformed equilibrium configuration de-

scribed by u
[i,j]
st , v[i,j]st , and θ

[i,j]
st (with i = 1, ..., Ny and j = 1, ..., Nx). We then consider
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perturbations u[i,j]w , v[i,j]w and θ[i,j]w of the displacement and rotation of the [i, j]-th square,

u[i,j]w = u[i,j] − u[i,j]st

v[i,j]w = v[i,j] − v[i,j]st

θ[i,j]w = θ[i,j] − θ[i,j]st

(S20)

which take the metamaterial to a new equilibrium configuration where Eqs. (S3) are still sat-

isfied. By substituting Eqs.(S20) into Eqs.(S3) and linearizing them with respect to u[i,j]w , v[i,j]w

and θ[i,j]w , we find that the incremental equations of motion can be written in matrix form as

M
d2

dt2
(Φw) = KΦw (S21)

where

Φw =
[
u[1,1]w , v[1,1]w , θ[1,1]w , u[1,2]w , v[1,2]w , θ[1,2]w , ..., u[Ny ,Nx]

w , v[Ny ,Nx]
w , θ[Ny ,Nx]

w

]T
, (S22)

M is the mass matrix

M = diag [m,m, J,m,m, J, ...,m,m, J ] (S23)

and K is the stiffness matrix of the system that can be determined by numerically differentiating

the total energy of the structure (Eq.(S5)) as

K =
∂2Etotal (Φst)

∂Φw∂Φw
′ (S24)

with

Φst =
[
u
[1,1]
st , v

[1,1]
st , θ

[1,1]
st , u

[1,2]
st , v

[1,2]
st , θ

[1,2]
st , ..., u

[Ny ,Nx]
st , v

[Ny ,Nx]
st , θ

[Ny ,Nx]
st

]T
, (S25)

Note that Φw and Φst are vectors with 3NxNy entries and K and M are a (3NxNy)× (3NxNy)

matrices.
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Natural frequencies and eigenmodes. To determine the natural frequencies of the system

we seek a solution of Eqs. (S21) in the form of

Φw = Φ̃we
ıωt, (S26)

where ı =
√
−1, ω is the cyclic frequency of harmonic motion and Φ̃w is a vector that defines

the amplitude of the eigenmodes. Substitution of Eq. (S26) into Eq. (S21) yields

(
K + ω2M

)
Φ̃w = 0. (S27)

Eq. (S27) defines an eigenvalue problem that we solve to numerically determine the 3NxNy

natural frequencies of the predeformed metamaterial and associated eigenmodes.

Dispersion relation. To calculate the band structure of the predeformed metamaterial with

alternating light (with mass m) and heavy (with mass 3m/2) squares (reported in Fig. 5C of

the main text) we focus on a unit cell that comprises four squares and is defined by the two

lattice vectors a1 and a2 (see Fig. S11). We then consider a supercell comprising 5 unit cells

(see Fig. S11) and seek a solution of Eqs. (S21) in the form of a harmonic wave,

Φ[p,q]
w (t) = Φ̃w e

ı(~µ·r[p,q]−ωt) (S28)

where ~µ is the two-dimensional wave vector, Φ
[p,q]
w (t) is a vector containing the 12 degree of

freedom of the [p, q]-th unit cell and

r[p,q] = pa1 + qa2 (S29)

with p, q = −1,0 and 1. Substitution of Eqs. (S28) into Eq. (S21) yields

−ω2MΦ̃w +
∑

p,q=−1,0,1

K[p,q]Φ̃w e
ı ~µ·r[p.q] = 0, (S30)

19



supercell

unit cell

Figure S11: Supercell used to calculate the dispersion relation.

where M and K[p,q] are the mass matrix and stiffness matrix of the [p, q]-th unit cell. Eq. (S30)

can be further rewritten as [
−ω2M + K̂(~µ)

]
Φ̃w = 0, (S31)

where

K̂(~µ) =
∑

p,q=−1,0,1

K[p,q]eı~µ·r
[p,q]

(S32)

depends on wave vector ~µ. Eq. (S31) defines an eigenvalue problem that can be solved to obtain

frequency ω as a function of wave vector ~µ. Eq. (S31) yields 12 dispersion branches each

corresponding to a linear wave mode that are shown in manuscript Fig. 5C.
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S3.7 Additional numerical results

no defects

-0.3

0.3

0

Figure S12: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) in the absence of intentional
defects.
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(without pinning defect)
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+ + +
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+ -0.3

0.3

0

Figure S13: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with phase-inducing defects
linearly arranged and angled at ϕd = 0 to get phase- to propagate from the top boundary and phase+
from the bottom one.

(without pinning defect)

+
+

+

-
-

-

-0.3

0.3

0

Figure S14: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with phase-inducing defects
linearly arranged and angled at ϕd = arctan(1/2) to get phase- to propagate from the top-right corner
and phase+ from the bottom-left one.
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Figure S15: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with phase-inducing defects
linearly arranged and angled at ϕd = π/4 to get phase- to propagate from the top-right corner and
phase+ from the bottom-left one.
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(with pinning defect)

-0.3

0.3

0

Figure S16: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with pinning defects equally
spaced along a horizontal line spanning their center, in addition to the previous phase-inducing defects
arranged as in Fig. S13.
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0

Figure S17: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with pinning defects equally
spaced along a line at ϕd = arctan(1/2), in addition to the previous phase-inducing defects arranged as
in Fig. S14.
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0.3

0

Figure S18: Numerically predicted deformation at applied strain εyyapplied = −2%, −4% and −8% of
structures comprising 21 × 21 squares (top) and 51 × 51 squares (bottom) with pinning defects equally
spaced along a line at ϕd = π/4, in addition to the previous phase-inducing defects arranged as in
Fig. S15.
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0.3

-0.3

0

Figure S19: Numerically predicted deformation at applied strain εyyapplied = −6% of structures comprising
21× 21 squares and pinning defects equally spaced along horizontal lines located near the top (left) and
bottom (right), in addition to the previous phase-inducing defects arranged as in Fig. 2B of the main text.

0.3

-0.3

0

Figure S20: Deformation at εyyapplied = −6% of a sample with 4 pinning defects and 8 phase-inducing
defects arranged as in Fig. 2A of the main text. Since the phase-inducing defects induce the formation
of a single phase, no domain wall is generated (i.e. pinning defects along can not lead to the formation
of domain walls).
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5a

13a

(a) (b)

5a

10a
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20a
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15a

20a

20a 40a0 60a

20a 40a0 60a

0.3-0.3

Figure S21: (a) Numerically predicted deformation at εyyapplied = −6% of structures comprising 21 × 60
squares with pinning defect separated by 5 (top) and 13 (bottom) holes (in addition to phase-inducing de-
fects arranged to generate an horizontal domain wall). (b) Corresponding domain wall profiles extracted
at εyyapplied = −2%, −4% and −6%.

single pinning defect two pinning defect(a) (b)

0.3-0.3

Figure S22: Numerically predicted deformation at εyyapplied = −4% (top) and -10% (bottom) of structures
compromising 21× 60 squares with (a) only one pinning defect and (b) two pinning defects at the center
(in addition to phase-inducing defects arranged to generate an horizontal domain wall).
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5a 8a

(a) (b)

0.3

-0.3

0

Figure S23: Numerically predicted deformation at εyyapplied = −4% (top) and -6% (bottom) of structures
compromising 51 × 51 squares with four pinning defects arrange at the vertices of a rhombus with edge
(a) 5a and (b) 8a. In addition, two phase-inducing defects are located next to the top and bottom boundary
to promote phase -. These defects results in the formation of a rhomboid phase + region defined by the
pinning defects.
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0.3
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Figure S24: Numerically predicted deformation at εyyapplied = −6% (left) and -10% (right) of structures
compromising 21 × 21 squares with (a) only one pinning defect and (b) two pinning defects (in addition
to phase-inducing defects arranged to generate an horizontal domain wall). Similar wavy pattern are
observed for the emerged domain walls as in the wide 21 × 60 squares sample (see Fig. S21).
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S4 Continuum Model

As shown in Section S3.4, in the absence of defects the applied uniaxial loading results in

an homogenous state of deformation that can be easily described analytically. By contrast, our

experiments and discrete simulations indicate that the introduction of defects may lead to highly

inhomogenous deformation fields and the formation of distinct domain walls. Here, we simplify

the discrete equations of motions to obtain analytical solutions for a system in which the defects

generate such domain walls.

We start by considering a structure that is uniaxially deformed by applying a compressive

strain εyyapplied and has a perfectly straight domain wall at an angle ϕwith respect to the horizontal

axis and seek for an analytical solution that describes the spatially inhomogeneous deformation

of the system. Towards this end, we introduce three continuous functions u (x, y), v (x, y) and

θ (x, y) that interpolate the displacements and rotation of the [i, j]th square as

u (x = ja, y = ia) = u[i,j], (S33)

v (x = ja, y = ia) = v[i,j], (S34)

θ (x = ja, y = ia) = θ[i,j], (S35)

where x and y are the coordinate along the x- and y-axis, respectively. Assuming that the width

of the domain wall is much larger than the size of the squares, the normalized displacements u

and v and the rotation θ of the [i, j − 1]th, [i, j + 1]th, [i− 1, j]th and [i+ 1, j]th squares can
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then be expressed using Taylor expansion as

u[i,j+p] ≈
[
u+ a p ∂xu+

(a p)2

2
∂xxu

]
x=j, y=i

u[i+p,j] ≈
[
u+ a p ∂yu+

(a p)2

2
∂yyu

]
x=j, y=i

v[i,j+p] ≈
[
v + a p ∂xv +

(a p)2

2
∂xxv

]
x=j, y=i

v[i+p,j] ≈
[
v + a p ∂yv +

(a p)2

2
∂yyv

]
x=j, y=i

θ[i,j+p] ≈
[
θ + a p ∂xθ +

(a p)2

2
∂xxθ

]
x=j, y=i

θ[i+p,j] ≈
[
θ + a p ∂yθ +

(a p)2

2
∂yyθ

]
x=j, y=i

cos θ[i,j+p] ≈
[
cos θ + a p ∂x cos θ +

(a p)2

2
∂xx cos θ

]
x=j, y=i

cos θ[i+p,j] ≈
[
cos θ + a p ∂y cos θ +

(a p)2

2
∂yy cos θ

]
x=j, y=i

sin θ[i,j+p] ≈
[
sin θ + a p ∂x sin θ +

(a p)2

2
∂xx sin θ

]
x=j, y=i

sin θ[i+p,j] ≈
[
sin θ + a p ∂y sin θ +

(a p)2

2
∂yy sin θ

]
x=j, y=i

(S36)

where p ∈ {−1, 1} and ∂αf = ∂f/∂α. Substitution of Eqs. (S36) into Eq. (S3) yields the

continuum governing equations of the system,

kl∂xxu+ ks∂yyu− kl∂x cos θ = 0, (S37a)

kl∂yyv + ks∂xxv − kl∂y cos θ = 0, (S37b)

4kθa
2∇2θ + 32kθ

(
θ + 4γθ3

)
− ksa4 cos θ∇2 sin θ

kla
2 sin θ

[
8− 8 cos θ − a2∇2 cos θ + 4(∂xu+ ∂yv)

]
= 0,

(S37c)

where ∇2 = ∂xx + ∂yy. Note that in Eqs. (S37) the inertia terms are disregarded as we are

looking for quasi-static solutions. Furthermore, in deriving Eqs. (S37) from Eqs. (S3) we also
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have neglected all the terms that switch sign between each neighboring unit (i.e., the terms with

coefficient (−1)i+j), as they are intrinsically incompatible with continuous solutions and have

shown to have small influence on the final solutions [4].

The uniaxial compression loading considered in our experiments is then modeled by impos-

ing

v (y = aNy)− v (y = a) = a(Ny − 1)εyyapplied, (S38)

and

∂xu+ 1− cos θ = 0, (S39)

where Eq. (S39) is obtained by requiring the longitudinal forces in all horizontal ligaments to

vanish (by substituting Eqs. (S36) into Eq. (S9)).

S4.1 Analytical solution

Eqs. (S37)-(S39) formulate a complete mathematical problem that can be solved to obtain an-

alytical solutions. To this end, we use a third order Taylor polynomial to approximate the

functions sin and cos as

sin θ ≈ θ − θ3

6
, and cos θ ≈ 1− θ2

2
, (S40)

Substitution of Eq. (S40) into Eq. (S37) and (S39) yields

kl∂xxu+ ks∂yyu+ klθ∂xθ = 0, (S41a)

kl∂yyv + ks∂xxv + klθ∂yθ = 0, (S41b)

−a2(ksa2 − 4kθ)∇2θ + 32kθθ + 4
(
kla

2 + 32γkθ
)
θ3

+ 4kla
2(θ − 1

6
θ3) (∂xu+ ∂yv) = 0,

(S41c)

and

∂xu+ θ2/2 = 0, (S42)

31



respectively. Since Eqs. (S41) are a set of coupled nonlinear partial differential equations, to

obtain an analytical solution we want first to reduce them to a single second order differential

equation. As a first step in this direction, we substitute Eq. (S42) into Eqs. (S41) and find that

Eq. (S41a) vanishes, whereas Eqs. (S41b) and (S41c) simplify to

kl∂yyv + ks∂xxv + klθ∂yθ = 0, (S43a)

−a2(ksa2 − 4kθ)∇2θ + 32kθθ + 2
(
kla

2 + 64γkθ
)
θ3

+ 4kla
2(θ − θ3

6
)∂yv = 0.

(S43b)

Next, we introduce a local coordinate system, ζ-η, aligned with the domain wall

ζ = x sinϕ+ y cosϕ, and η = x cosϕ− y sinϕ, (S44)

where ϕ is the angle between the domain wall and the horizontal axis (which is considered pos-

itive when clockwise - see Fig. S25). Since our experiments and discrete simulations indicate

domain wall

Figure S25: Schematic of a domain wall with an orientation of ϕ and position ζ0.

that the variation of deformation along the domain wall are negligible (see Figs. S13-S18), we

further assume that ∂η(·) = 0 and write the derivatives with respect of x and y as

∂x(·) = sinϕdζ(·), and ∂y(·) = cosϕdζ(·). (S45)
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Substitution of Eq. (S45) into Eqs. (S43) yields

(kl cos2 ϕ+ ks sin2 ϕ)dζζv + kl cosϕ θdζθ = 0, (S46a)

− a2(ksa2 − 4kθ)dζζθ + 32kθθ + 2
(
kla

2 + 64γkθ
)
θ3

+ 4kla
2(θ − 1

6
θ3)dζv = 0

(S46b)

which are the governing equations of the system written as a function of ζ . To solve this system

of differential equations we first integrate Eq. (S46a) to obtain

dζv = − kl cosϕ

2(kl cos2 ϕ+ ks sin2 ϕ)
θ2 + C, (S47)

where C is an integration constant that can be determined by assuming homogeneous defor-

mation inside each phase (i.e. far away from domain wall). Specifically, by imposing

∂yv
∣∣∣
phase±

= εyyst , θ
∣∣∣
phase±

= ±θst, (S48)

and using Eq. (S11) to connect εyyst and θst, C is determined as

C =
kl cosϕ

kl cos2 ϕ+ ks sin2 ϕ
θ2st −

8kθ
kla2 cosϕ

(
1 + 4γθ2st

)
− θ2st

2 cosϕ
− 4kθθ

2
st

3kla2 cosϕ
. (S49)

By introducing Eq. (S49), Eq. (S47) can be rewritten as

dζv =
kl cosϕ

kl cos2 ϕ+ ks sin2 ϕ
(θ2st−θ2)−

8kθ
kla2 cosϕ

(
1 + 4γθ2st

)
− θ2st

2 cosϕ
− 4kθθ

2
st

3kla2 cosϕ
. (S50)

We then substitute Eq. (S50) into Eq. (S46b) to obtain

a2dζζθ =
1

ksa2 − 4kθ

[
4

(
4

3
+ 32γ

)
kθ +

2kskla
2 sin2 ϕ

ks sin2 ϕ+ kl cos2 ϕ

]
θ(θ − θst)(θ + θst). (S51)

Eq. (S51) has the form of a Klein-Gordon Equation with quadratic and cubic non-linearities

and admits analytic solutions in the form of

θ = θst tanh
ζ − ζ0
w

= θst tanh
x sinϕ+ y cosϕ− ζ0

w
, (S52)
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where w represents the width of the domain wall and ζ0 denotes the position of the domain wall

(see Fig. S25). Note that to determine w as a function of system parameters we substitute the

solution Eq. (S52) into Eq. (S51) and find that the latter is identically satisfied only if

w =
a

θst

√√√√ 3(ksa2 − 4kθ)

8kθ(1 + 24γ) + 3kskla2 sin
2 ϕ

ks sin2 ϕ+kl cos2 ϕ

. (S53)

Finally, the displacement solutions u(x, y) and v(x, y) can be obtained by integrating Eqs. (S39)

and (S50), respectively

u(x, y) =

∫ x

0

(cos θ − 1) dx′ ≈
∫ x

0

−θ
2

2
dx′

=− wθ2st
2 sinϕ

(
x sinϕ

w
+

2

e2(x sinϕ+y cosϕ−ζ0)/w + 1
− 2

e2(y cosϕ−ζ0)/w + 1

)
,

(S54a)

v(x, y) =

∫ ζ

0

[
kl cosϕ (cos θ − cos θst)

kl cos2 ϕ+ ks sin2 ϕ
− 8kθθst (1 + 4γθ2st)

kla2 cosϕ sin θst
− 1− cos θst

cosϕ

]
dζ ′

≈
∫ ζ

0

[
kl cosϕ (θ2st/2− θ2/2)

kl cos2 ϕ+ ks sin2 ϕ
− 8kθθst (1 + 4γθ2st)

kla2 cosϕ sin θst
− 1− cos θst

cosϕ

]
dζ ′

=
klw cosϕ θ2st

kl cos2 ϕ+ ks sin2 ϕ

(
1

e−2ζ0/w + 1
− 1

e2(x sinϕ+y cosϕ−ζ0)/w + 1

)
−
[

8kθθst (1 + 4γθ2st)

kla2 cosϕ sin θst
+

1− cos θst
cosϕ

]
(x sinϕ+ y cosϕ) .

(S54b)

Finally, θst at a given level of applied strain εyyapplied is determined imposing Eq. (S38) with

v(x, y) given by Eq. (S54b).

In the special case of a structure with an horizontal domain wall (i.e. ϕ = 0) Eqs. (S52),

(S53), (S54a) and (S54b) reduce to

θ(x, y) = θst tanh
y − y0
w

,

u(x, y) = −θ
2
stx

2
tanh2 y − y0

w
,

v(x, y) = θ2stw

(
1

e−2y0/w + 1
− 1

e2(y−y0)/w + 1

)
−
[

8kθθst (1 + 4γθ2st)

kla2 sin θst
+ 1− cos θst

]
y,

(S55)
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with

w =
a

θst

√
(ksa2 − 4kθ)

2(4
3

+ 32γ)kθ
. (S56)

S4.2 Position ζ0 and orientation ϕ of the domain walls

To predict the position and orientation of the domain walls as a function of the applied

deformation, we use Eq. (S5) to calculate the total energy of the system for a given distribution

of defects with the displacements and rotation of each square (i.e. u[i,j], v[i,j] and θ[i,j]) defined

by interpolating the analytical solutions given by Eqs. (S52) and (S54),

u[i,j] = u(x = j, y = i),

v[i,j] = v(x = j, y = i),

θ[i,j] = θ(x = j, y = i).

(S57)

The position ζ0 and orientation ϕ of the domain walls are then obtained by minimizing Etotal.

Examples are reported in Figs. S26, S27 and S28.
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Figure S26: Analytical predicted evolution of Etotal as a function of domain wall position y0 at εyyapplied =
−2%,−4%,−6% and−10% for structures with (a) 21×21 squares; (b) 51×51 squares and (c) 201×201
squares and phase-inducing defects arranges to generate an horizontal domain wall. The results indicate
that, while in small structures Etotal gradually turns into a multi-welled landscape with two minima that
progressively move towards the horizontal boundaries, in larger structures present Etotal becomes flat
upon compression. As such, we expect the domain walls in large structures to remain at the center even
upon compression. In another words, the shifting of domain walls observed in our samples is caused by
boundary effects.
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Figure S27: Analytically predicted evolution of Etotal as a function of ζ0 and ϕ at εyyapplied = −2%, −4%
and −8% for structures comprising 21×21 squares and phase-inducing defects arranged as (a) in Fig.
2B-C of the main text; (b) in Fig. 4A of the main text (ϕd = arctan(1/2)) and (c) in Fig. 4A of the
main text (ϕd = π/4). As the applied compression increases, the local minima of Etotal move away from
the centered line between and shift towards the boundaries. Furthermore, for the cases with ϕd 6= 0
the domain walls also change their orientation as εyyapplied in increased. These results nicely explain the
experimental results reported in Figs. 4A and 4C.
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Figure S28: Analytically predicted evolution of Etotal at εyyapplied = −2%, −4% and −8% for structures
comprising 21×21 squares and phase-inducing and pinning defects arranged as (a) in Fig. 3A of the main
text; (b) in Fig. 4C of the main text (ϕd = arctan(1/2)) and (c) in Fig. 4C of the main text (ϕd = π/4).
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S4.3 Stress-strain curves

To determine the stress-strain curve of our structures and quantify the effect of the domain

wall on their mechanical response, we take the continuum limit of the longitudinal forces acting

on the vertical ligaments (i.e. we substitute Eqs. (S36) into Eq. (S14))

F y = akl

(
∂v

∂y
+
θ2

2

)
(S58)

By assuming that inside each phase (i.e., far away from domain wall) the deformation is homo-

geneous, we can make use of Eq. (S48) to simplify Eq. (S58) as

F y = akl

(
εyyst +

θ2st
2

)
(S59)

Finally, the normal stress in y direction can be obtained as

σyy =
F y

at
=
kl
t

(
εyyst +

θ2st
2

)
(S60)

Note that Eq. (S60) can be used to calculate the stress-strain curve of samples with or without

a domain wall. While for the case of homogeneous deformation εyyst = εyyapplied and θst can be

determined as a function of εyyapplied using Eq. (S11), in the presence of a domain wall θst and εyyst

are simultaneously determined as a function of εyyapplied by imposing Eqs. (S11) and (S38) (with

v given by Eq. (S54b)).

In Fig. S29 we compare the stress-strain curves predicted by Eq. (S60) with those obtained

experimentally and using our discrete model for 21×21 structures without phase-inducing de-

fects and with phase-inducing defects arranged along two lines that form an angle ϕd = 0,

arctan(1/2) and π/4 with the horizontal axis to generate a domain wall. We find that our

continuum model nicely captures the mechanical response of all these structures.
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Figure S29: Stress-strain curve measured in experiments (markers) and predicted by numerical simula-
tions (dashed lines) and analytical solution (solid lines) for structures with 21 × 21 squares and (a) no
phase-inducing defects; (b-d) phase-inducing and pinning defect arranged along two lines that form an
angle (b) ϕd = 0, (c) arctan(1/2) and (d) π/4 with the horizontal axis to generate a domain wall.
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S4.4 Additional analytical results
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Figure S30: (a)-(b) Comparison between analytically predicted (solid lines) and experimentally extracted
(circular markers) evolution of the squares rotation θ across the sample at εyyapplied = −4% for a 21× 21
structure with defects arranges as in (a) Fig. 4A of the main text and (b) Fig. 4C of the main text. (c)
Contour plot of domain wall width w as a function of ϕ and θst as predicted by Eq. (S53). As ob-
served in experiments, our analytical solution predicts the domain walls to become thinner for increasing
compression (i.e. for larger θst).
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S5 Description of Supporting Movies

Movie S1: Uniaxial compression of a flexible mechanical metamaterial based on the

rotating-squares mechanism

Deformation of a sample subjected to uniaxial compression in the absence of intentional de-

fects. Under the applied deformation, one of the beam-like ligaments in the sample buckles

first, because of immeasurable small imperfections introduced during fabrication. This pro-

vides a unique nucleation site that leads to the formation of a uniform buckling pattern in which

all squares alternately rotate in clockwise and counterclockwise directions.

Movie S2: Deformation of samples with phase-inducing defects

Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+.

Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+

near to the bottom boundary and phase- near the top one that forms a horizontal domain wall.

Movie S3: Deformation of samples with both phase-inducing and pinning defects

Deformation of a sample with 8 phase-inducing defects arranged to induce nucleation of phase+

and phase- and 4 pinning defects located at the center of the sample.

Numerically predicted deformation for structures comprising 21× 60 squares and with pinning

defects separated by 5 and 10 holes (in addition to phase-inducing defects arranged to induce

nucleation of phase+ and phase-).

Movie S4: Domain walls at different orientations

Deformation of samples with 8 phase-inducing defects arranged along two lines that form an

angle ϕd = arctan(1/2) and π/4 with the horizontal axis. Deformation samples with additional
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4 pinning defects arranged along two lines that form an angle ϕd = arctan(1/2) and π/4 with

the horizontal axis.
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