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materials, which include 2D[6–10] and 
3D[11–15] multimaterials lattices as well as 
bi-materials microstructures,[16,17] are all 
porous and characterized by a response 
that is very difficult to be tuned after 
manufacturing.

Origami—the ancient art of paper 
folding—not only leads to aesthetically 
pleasant structures but also enables the 
design of materials with novel mechanical 
properties, including negative and adjust-
able Poisson’s ratio,[18–21] programmable 
curvature[22] and mechanical response,[23] 
and multistability.[24] Here, we focus on 
a simple origami tessellation, the Miura-
ori,[25] and combine experiments with 
simulations to demonstrate that this 

system can also provide a platform for the design of mate-
rials with a wide range of coefficients of thermal expansion. 
To achieve this goal, we introduce into the tessellation bilayer 
faces, which undergo a bending deformation upon changes in 
temperature. Our results indicate that a careful choice of the 
bilayer facets location and of the creases stiffness can produce a 
variety of qualitatively very different responses upon variations 
in temperature. Moreover, we demonstrate that folding of the 
Miura-ori enables in situ tunability of the coefficient of thermal 
expansion, opening avenues for the design of a new class of 
nonporous systems whose thermal properties can be adapted to 
the surrounding environment.

To illustrate this concept, we focused on a Miura-ori fab-
ricated from paper (Boise ASPEN 30, 92 Brightness, 20 lb, 
11 × 17 in.), with Young’s modulus Epaper = 4700 MPa, coef-
ficient of thermal expansion αpaper = 2 × 10−6 K−1 and 
thickness tpaper = 0.1 mm, and adhesive-backed ultra-high 
molecular weight (UHMW) polyethylene film (McMaster-
Carr identification number 1441T12), with EPE = 400 MPa, 
αPE = 1.3 × 10−4 K−1, and tPE = 0.127 mm (see the Supporting 
Information for details). The proposed Miura-ori (see sche-
matic in Figure 1a) is comprised of both single-layer (white) 
and bilayer (gray) plates, connected through a combination 
of soft (green) and stiff (red) creases. The single-layer facets 
are made purely of paper, while the bilayer ones include 
a paper bottom layer and a polyethylene top layer, glued 
together. Similarly, the soft creases are made of paper only, 
while the stiff ones comprise paper and polyethylene film. 
We started by investigating the response of three different 
Miura-ori structures, all presenting parallelogram facets with 
sides a = b = 30 mm and acute angle β = 60°. Design #A is 
comprised of only bilayer plates, all connected by soft creases 
(see Figure 1b). Differently, designs #B and #C include an 
identical number of single-layer and bilayer plates and pre-
sent all soft creases except some of those connecting the 

Materials with engineered thermal expansion, capable of achieving targeted 
area/volume changes in response to variations in temperature, are important 
for a number of aerospace, optical, energy, and microelectronic applications. 
While most of the proposed structures with engineered coefficient of thermal 
expansion consist of bi-material 2D or 3D lattices, here it is shown that 
origami metamaterials also provide a platform for the design of systems with 
a wide range of thermal expansion coefficients. Experiments and simula-
tions are combined to demonstrate that by tuning the geometrical para-
meters of the origami structure and the arrangement of plates and creases, 
an extremely broad range of thermal expansion coefficients can be obtained. 
Differently from all previously reported systems, the proposed structure is 
tunable in situ and nonporous.

Metamaterials

From engines, buildings, and solar energy systems to lenses, 
space crafts, and tooth fillings, many systems require compo-
nents capable of achieving targeted area/volume changes in 
response to variations in temperature.[1–6] While some of them 
(including bearings and structures with high tolerances) benefit 
from materials whose area/volume is unaltered by changes in 
temperature, others (such as piping connections and tooth fill-
ings) require materials that match the thermal expansion of the 
surrounding environment.

Motivated by these needs, two main strategies have been 
proposed to create components capable of achieving a wide 
range of coefficients of thermal expansion, from extremely 
negative, through zero, to largely positive. On the one hand, it 
has been shown that the coefficient of thermal expansion can 
be controlled by exploiting supramolecular mechanisms, such 
as ferroelectric, magnetostrictive and displacive phase transi-
tions, low-frequency phonon modes, and rigid unit modes.[2] 
However, the resulting materials typically possess characteris-
tics that limit their use in applications demanding robustness 
and durability over large temperature changes. On the other 
hand, coefficients of thermal expansion outside the range 
attainable with conventional materials have been achieved 
by carefully designing the architecture of structures made 
of multiple constituents. However, the proposed architected 
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bilayer plates. More specifically, in design #B the stiff creases 
are located on the mountains between the bilayers (see 
Figure 1c), while in #C they are on the valleys between them 
(see Figure 1d).

Samples composed of 5 × 5 unit cells were manufactured 
by laser-cutting the pattern of creases into both the paper 
and the polyethylene sheets, which were subsequently glued 
together (see the Supporting Information for further fabrica-
tion details). Finally, the Miura-ori were manually folded so 
that their opening angle was δ ≈ 70° and heated uniformly by 
placing them in an oven (model 414004-580 VWR) and slowly 

increasing the temperature by ΔT = 50 °C. In Figure 1 we report 
snapshots of the three structures taken before and after heating 
and we indicate with a red dashed box the projected area of 
the samples at room temperature. Surprisingly, we find that 
the three considered Miura-ori respond very differently to the 
increase in temperature. Design #A does not display a visible 
change in area upon heating (Figure 1b). Differently, structure 
#B considerably shrinks (Figure 1c) and design #C significantly 
expands (Figure 1d).

The response of the three structures upon heating can be 
characterized by calculating the effective coefficients of thermal 
expansion along both the x and y-directions. To minimize the 
influence of edge effects, we focused on four unit cells in the 
center of the sample and calculated αx and αy as (see the Sup-
porting Information for details) 
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where Δx[i,j] and Δy[i,j] denote the change in size of the [i, j]
th unit cell along the x and y-directions, respectively; more-
over, Lx

[i,j]  and Ly
[i,j] are the initial dimensions of the unit cell 

along x and y (see the inset in Figure 2b), and 〈 · 〉 indicates 
the average operation. For the configurations of designs #A, 
#B, and #C shown in Figure 1 we found that the normalized 
thermal expansion coefficients are ( / ; / )PE PEx yα α α α  = (−1.4; 
−2.1), (−4.6; −6.0), and (9.3; 7.4), respectively.

Since our origami structures are foldable, we repeated the 
experiments for different opening angles δ. The experimental 
results shown as markers in Figure 2a,b reveal an important 
feature of our system: the coefficient of thermal expansion can 
be tuned in situ by varying the opening angle. More specifically, 
we find that, for the δ range considered, the shrinkage and 
expansion of designs #B and #C tend to progressively decrease 
as the opening angle δ increases. This marks a difference with 
previously proposed concepts, whose response is characterized 
by fixed coefficients of thermal expansion, that are typically 
extremely difficult to tune and control after the assembly.[6,14,15] 
Finally, we note that δ has almost no effect on design #A, which 
is always characterized by negligible area changes.

To better understand the behavior of our origami structures, 
we investigated their response through numerical simulations 
conducted with the finite element code Abaqus/Standard. In all 
our simulations we considered a unit cell with suitable periodic 
boundary conditions applied to its edges.[26] 3D models were 
constructed using quadratic six-noded shell elements and the 
bilayer plates were simulated by building a composite stack and 
assigning the appropriate material parameters to each layer. 
The mechanical response of the paper and polyethylene sheets 
was captured using linear elastic models with Young’s modulus 
Epaper and EPE, Poisson’s ratio νpaper = νPE = 0.3, and coefficients 
of thermal expansion αpaper and αPE. Moreover, the behavior 
of the soft and stiff creases was captured by connecting neigh-
boring plates through linear rotational springs with stiffness 
ksoft or kstiff, respectively. Note that the stiffness of the soft 
and stiff creases was characterized experimentally by testing 
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Figure 1. Origami metamaterials for tunable coefficient of thermal expan-
sion. a) Schematic of the unit cell of the considered origami metamate-
rial. The structure is comprised of both single-layer (white) and bilayer 
(gray) plates, connected by a combination of soft (green) and stiff (red) 
creases. Top views of samples b) #A, c) #B, and d) #C at 20 °C (left) 
and at 70 °C (right). For each structure, a schematic of the unit cell is 
highlighted in the center of the sample. The red dashed box indicates the 
projected area of the sample at 20 °C. (Scale bars: 30 mm).
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rectangular plates connected by three folds (see the Supporting 
Information for more details). We found that the response of 
the creases can be modeled using linear rotational springs with 
stiffness ksoft = 0.0021 ± 0.0003 N rad−1 and kstiff = 0.0205 ± 
0.0055 N rad−1. These results clearly show that the stiff creases 
are one order of magnitude stiffer than the soft ones. More-
over, they also indicate that there is non-negligible variability 
in the creases stiffness, since their response is highly affected 
by the way they are manually folded—a process that is very dif-
ficult to precisely control. As such, to take this into account, 
in our simulations we considered ksoft ∈ [0.0018, 0.0024] and 
kstiff ∈ [0.015, 0.026]. Finally, the numerical effective coefficients 
of thermal expansion in the x and y-directions were calculated 
from the macroscopic strains εxx and εyy of the Miura-ori unit 
cell as 

α ε α ε=
∆

=
∆

,
T T

x
xx

y
yy

 
(2)

In Figure 2a,b we report as shaded areas the numerical pre-
dictions for αx and αy as a function of the opening angle δ for 
the considered ranges of kstiff and ksoft. The numerical results 
show an overall agreement with the experimental ones and con-
firm that changes in the opening angle can be exploited to in 
situ tune α . Note that the discrepancies between numerical and 

experimental results are due to the difficulties in controlling 
and measuring the creases stiffness with current materials and 
manufacturing procedure.

Further understanding into the mechanisms resulting in the 
different responses of designs #A, #B, and #C can be obtained 
by inspecting the numerical snapshots of the three heated 
structures. In Figure 2c we report the deformed configura-
tion for the three considered Miura-ori designs characterized 
by δ = 70°, kstiff/ksoft = 10.3, and ksoft = 0.0021 N rad−1. It can 
be noted that, as expected, all bilayer plates bend and take a 
dome-like shape upon the increase in temperature. However, 
while in design #A (with all soft creases) such bending mini-
mally affects the opening angle of the creases, in structures #B 
and #C it forces the soft creases to significantly close and open, 
respectively, triggering a change in the area occupied by the 
Miura-ori upon heating. Therefore, we can conclude that the 
large coefficients of thermal expansion of designs #B and #C 
are driven by the stiff creases, which are strong enough to resist 
changes in their opening angle and to force the soft creases to 
significantly open/close.

Next, to better understand the role of the soft/stiff creases 
and of the monolayer/bilayer plates arrangement, we numeri-
cally explored the response upon heating of Miura-ori struc-
tures characterized by a/b = 1, β = 60°, δ = 70°, and different 
arrangements of ksoft, kstiff, and monolayer/bilayer facets. Note 
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Figure 2. Experimental and numerical results. Comparison of experimental and numerical results for a) α αx / PE and b) α αy / PE. The inset at the bottom 
of (b) shows a schematic of a Miura-ori unit cell with the initial dimensions and the change in size upon heating; these quantities have been used in 
the postprocessing of the experimental data to derive the effective thermal expansion coefficients of the samples (see Equation (1)). c) Rotated and 
top views of the numerical deformed configuration for designs #A, #B, and #C. These models are characterized by δ = 70°, ksoft = 0.0021 N rad−1, and 
kstiff/ksoft = 10.3. For each of the three cases, the obtained values of α αx / PE and α αy / PE are reported.
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that for this set of simulations we used kstiff/ksoft = 10.3 and 
ksoft = 0.0021 N rad−1. The results reported in Figure 3 indi-
cate that negative values of thermal expansion are achieved in 
the presence of bilayer facets when the stiff creases are located 
prevalently on mountains (see designs #B and #D–#N). We also 
find that by moving the stiff creases from mountains to val-
leys, the coefficients of thermal expansion change from nega-
tive to positive values (see designs #C and #O–#S). Moreover, 
our simulations show that to maximize α| | the stiff creases need 
to be arranged between bilayer plates. Differently, small effec-
tive coefficients of thermal expansion, comparable with αpaper, 
are observed when either all plates are single-layer (see designs 
#T and #U), or the stiff creases connect single-layer facets (see 
designs #V–#X) or the stiff creases are located evenly on moun-
tains and valleys (because of their contrasting effect on α ; see 
designs #Y and #Z), or all creases are identical (see designs #A 
and #AA–#DD). Additionally, it is worth pointing out that the 
ratio α α/y x is controlled by the geometrical parameters, while it 
is independent on the arrangement of the bilayer plates and of 
the soft and stiff creases. As a result, all the points in Figure 3a 
lay on a straight line, whose slope can be controlled by changing 
the geometry of the structure. As an example, in Figure 3b we 
report the coefficients of thermal expansion for identical struc-
tures, but with opening angle δ = 100°. By changing δ from 70° 
to 100° we find that α α/y x varies from 1.01 to 0.57 (see the Sup-
porting Information for additional results). Finally, it should be 
noted that the configurations considered in Figure 3 that com-
prise stiff creases between monolayers or between a bilayer and 
a monolayer are extremely difficult to be realized experimentally 
with the materials and fabrication procedure used in this study. 

However, they have been included to offer a more complete 
picture of the responses that can be achieved with the proposed 
concept.

While the results reported in Figures 1, 2, 3 are all for a 
Miura-ori characterized by a/b = 1 and β = 60°, further 
tunability can be achieved by altering the geometry of the 
structure. In Figure 4 we report as contour plots the evolution 
of α α/ PEx  and α α/ PEy  as a function of the angles β and δ for 
two different geometries characterized by a/b = 1 and a/b = 5. 
Our results indicate that the facets aspect ratio a/b does not 
affect the distribution of αx  and αy as a function of β and δ, 
but only changes their magnitude. Moreover, we find that the 
most negative values of αx can be achieved for large acute 
angles β and small opening angles δ, while large negative 
values of αy are achieved for small δ and intermediate values 
of β. Finally, we note that also the Young’s moduli, thermal 
expansion coefficients, and thicknesses of the two layers affect 
the macroscopic thermal response of the Miura-ori, with the 
Young’s moduli and the layers thickness also influencing the 
stiffness of the creases (see the Supporting Information for 
details).

Our combined experimental and numerical results indicate 
that by varying the bilayers and creases arrangement and by 
altering the geometry of the Miura-ori, qualitatively very dif-
ferent responses can be achieved upon changes in tempera-
ture. However, for practical applications it is very important 
to be able to easily identify configurations resulting in specific 
values of the coefficients of thermal expansion. Such a problem 
can be expressed as a numerical optimization problem 
whose solution is the set of input parameters that minimize 
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Figure 3. Effect of creases and plates arrangement. Numerical predictions of α x and αy for different arrangements of the bilayer plates and of the soft 
and stiff creases. A magnification of the numerical results around the origin of the axes is shown on the bottom right of the plots. Results are reported 
for a) δ = 70° and b) δ = 100°.



© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1700360 (5 of 6)

www.advmat.dewww.advancedsciencenews.com

a prescribed objective function.[27] For the considered origami 
structures, the objective function Ζ can be defined in terms of 
the in-plane thermal expansion coefficients αx  and αy, whereas 
the input parameters to that objective function are taken to be 
the acute angle β, the opening angle δ, and the ratio of lengths 
of the parallelogram facets a/b (note that to avoid excessive 
complexity in the calculations, we considered in every opti-
mization problem a fixed arrangement of plates and creases). 
The optimization problem was solved using the COBYLA algo-
rithm,[28] which is a gradient-free algorithm that uses linear 
approximations to the objective and constraint functions and 
is suitable for nonlinear constrained optimization problems 
with low dimensionality. For each evaluation of the objective 
function, a numerical simulation using Abaqus/Standard was 
conducted to derive αx  and αy  for the set of inputs β, δ, and 
a/b determined by COBYLA. Note that the input parameters 
were constrained as β ∈ [10, 90]°, δ ∈ [20, 160]°, and (a/b) ∈ 
[0.2, 2] to make sure that the resulting Miura-ori configuration 
was always well defined. In Figure 5 we report results for two 
different cases that are of particular interest for applications. 
First, we determined the optimal Miura-ori geometry resulting 

in the most negative pair of identical coeffi-
cients of thermal expansion along the x and 
y-directions. To this end, we minimized the 
following objective function 

Z 1 0.5
1

x y x yα α α α( )= + ⋅ + − 
−

 
(3)

using the arrangement of plates and creases 
of configuration #N, since the results of 
Figure 3 indicate that this design is a reason-
ably good candidate to achieve the target. As 
shown in Figure 5a, after 44 iterations the 
algorithm finds the most negative pair of αx, 
αy that simultaneously satisfies the condition 
αx = αy for β = 62.73°, δ = 62.10°, and a/b = 
0.689. In fact, for this set of geometric para-
meters, we obtain α α/ PEx  = α α/ PEy  = −26.40. 
Second, we were interested in a Miura-
ori geometry characterized by α| |x  and α| |y  
both ≈0. To identify this configuration, we 
minimized 

Z 108 2 2 2 1/4

x y x yα α α α( )= − + + −





−

 
(4)

and, guided by the results of Figure 3, consid-
ered the arrangement of plates and creases of 
configuration #AA. As shown in Figure 5b, 
we find that for β = 53.69°, δ = 111.21°, and 
a/b = 0.68 we achieve α α/ PEx  = 0.0009 and 
α α/ PEy  = −0.0007. It is important to point 
out that such α| | values are lower than the 
thermal expansion coefficient of the paper  
(in fact, αpaper/αPE = 0.015).

In conclusion, we have combined experi-
ments and simulations to demonstrate 

that origami metamaterials provide a new platform for the 
design of systems with a wide range of coefficients of thermal 
expansion. In particular, we have shown that by controlling 
the arrangement of single and bilayer facets, the stiffness of 
the creases, and the geometric parameters, we can achieve 
a variety of qualitatively different responses upon varia-
tions in temperature. The structure proposed here presents 
two main differences with respect to existing systems: first, 
it is possible to tune its thermal response in situ simply by 
changing the opening angle δ, without the need to fabricate 
a new structure; second, it is intrinsically nonporous and 
therefore can be preferred in applications where a separation 
between two regions is required. Additionally, while here we 
focused on structures at centimeter scale made of paper and 
polyethylene, the proposed design can be potentially extended 
to different materials and length scales. As such, our study 
provides new opportunities for the design of materials and 
components capable of achieving extreme and customizable 
thermal expansion properties that can be of particular interest 
for applications in aerospace,[4,29] optics,[6,30] energy,[1,3,31] and 
microelectronics.[5,32]
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Figure 4. Effect of geometry. Contour plots showing the distribution of α αx / PE (left) and α αy / PE 
(right) as a function of the angles β and δ. Numerical results for a) a/b = 1 and for b) a/b = 5 
are reported.
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I. EXPERIMENTS

A. Fabrication

The Miura-ori considered in this study were fabricated from paper (Boise ASPEN 30,

92 Brightness, 20lb, 11 x 17) and adhesive-backed UHMW (ultra-high molecular weight)

polyethylene films (McMaster-Carr identification number 1441T12). As shown in Fig. S1,

samples composed of 5 × 5 unit cells were manufactured by etching the creases pattern

separately on the paper and on the polyethylene film with a laser cutter (Versa Laser 2.0).

Then the polyethylene film was glued on top of the paper in the desired locations. Finally,

the bilayer Miura-ori structures were manually folded.

paper PELaser 
cutting

Peeling of 
PE layer

PE layer
glued on 

paper

Folding

FIG. S1: Fabrication of the Miura-ori structures. From left to right: firstly the paper is

etched and the polyethylene layers are cut using a laser cutter; secondly the polyethylene layers

are peeled off the protective film and glued in appropriate locations on top of the paper; finally

the structure is manually folded.

B. Materials characterization

The Young’s modulus of both the paper sheets and the polyethylene films was

experimentally measured conducting tensile tests with an Instron model 5566 equipped with

a 100 N load cell. We found that Epaper = 4700 MPa and EPE = 400 MPa.

Finally, while for the thermal expansion coefficient of the paper we assumed αpaper =

2× 10−6 K−1 [1], to characterize αPE we measured the curvature κ upon heating of a bilayer

strip made of paper and polyethylene film. We then used the Timoshenko formula [5] to

2



obtain αPE as

αPE = αpaper +
κ

∆T
·
h(3(1 +m)2 + (1 +mn)(m2 + 1

mn
))

6(1 +m)2
(S1)

where ∆T is the applied change in temperature, m = tpaper/tPE, n = Epaper/EPE and

h = tpaper + tPE. We found αPE = 1.3× 10−4 K−1, in accordance with the seller information.

C. Creases stiffness

The stiffness for both the soft (only paper layer) and stiff (paper-polyethylene

bilayer) creases was characterized experimentally by performing uniaxial tensile tests on

a rectangular strip comprising three folds (see Fig. S2). The strips were tested using an

Instron electromechanical testing system (model 5566) equipped with a 10 N load cell and

imposing a gradual folding. The two ends of the strip were fixed as shown in Fig. S2 and

the reaction force F was monitored during folding. Assuming the creases act as torsional

springs with stiffness kcrease per unit length, work balance yields

F∆u = 2(ξf − ξi)kcreasewf (S2)

where ∆u is the displacement applied by the Instron, ξi and ξf are the initial and final

opening angle of the crease, respectively, and wf denotes the width of the crease (see Fig.

S2(a)). Note that ξi and ξf can be calculated as:

ξi = 2 arcsin

hi
l

 , ξf = 2 arcsin

hi + ∆u

l

 (S3)

where hi is the initial opening of the strip and l denotes the length of the plates (see Fig.

S2). Substitution of Eqs. (S3) into Eq. (S2), yields

kcrease =
F∆u

4wf

arcsin

hi + ∆u

l

− arcsin

hi
l

 . (S4)

By using Eq. (S4) to calculate the stiffness of the creases from our experimental data, we

found that kcrease varies noticeable among different samples. This is because the response

of the creases is highly affected by the way they are manually folded - a process that is

very difficult to precisely control. Moreover, we also found a certain degree of nonlinearity,
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l
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w
f
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h
i

FIG. S2: Creases stiffness measurement. (a) Schematic of the fold. (b) Picture of the sample

mounted on the Instron.

especially for small opening angles. For the sake of simplicity, we decided to approximate

the response of the creases using linear torsional springs, therefore neglecting the deviation

from linearity that the folds present upon varying opening angles. By averaging the results

obtained from four tests per crease type, we found ksoft = 0.0021 ± 0.0003 N/rad and

kstiff = 0.0205± 0.0055 N/rad. As expected, stiff creases are one order of magnitude stiffer

than the soft ones.

D. Testing

To characterize the effective coefficients of thermal expansion of the proposed structures,

we placed them in an oven (model 414004-580 VWR) and gradually increased the

temperature, while monitoring the evolution of their projected area with a camera. The

pictures were then analyzed by digital image processing (Matlab) and their contrast was

digitally increased in order to clearly distinguish the creases.

For each experiment, we first focused on the picture at room temperature and calculated

the opening angle δ. To minimize the influence of edge effects, we focused on four unit cells

in the center of the sample (highlighted by the red squares in Fig. S3). For each unit cell,
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[i , j]

1 2

4 3

FIG. S3: Digital image postptocessing. Unit-cells used to calculate δ, ᾱx and ᾱy.

we calculated the opening angle as [4]

δ[i,j] = π − 2 arcsin

 1

sin(β)

√√√√
1−

(
L

[i,j]
x

)2

4a2

 ,

where L
[i,j]
x denotes the initial length of the [i, j]-th cell along x direction,

L[i,j]
x =

(
X

[i,j]
3 −X [i,j]

4

)
+
(
X

[i,j]
2 −X [i,j]

1

)
2

, (S5)

X
[i,j]
γ being the x coordinate of the γ-th vertex of the cell in the undeformed configuration

(see Fig. S3). Finally, the opening angle for the Miura-ori is obtained as

δ̄ =
1

4

2∑
i=1

2∑
j=1

δ[i,j]. (S6)

We then used the picture taken after heating to obtain ᾱx and ᾱy. Again, to minimize

the influence of edge effects, we focused on four unit cells in the center of the sample. For

each unit cell, the elongation along the x and y directions, ∆x[i,j] and ∆y[i,j], were calculated

from the position of the Miura-ori’s vertices as

∆x[i,j] =

(
x

[i,j]
3 − x[i,j]

4 −X [i,j]
3 +X

[i,j]
4

)
+
(
x

[i,j]
2 − x[i,j]

1 −X [i,j]
2 +X

[i,j]
1

)
2

∆y[i,j] =

(
y

[i,j]
4 − y[i,j]

1 − Y [i,j]
4 + Y

[i,j]
1

)
+
(
y

[i,j]
3 − y[i,j]

2 − Y [i,j]
3 + Y

[i,j]
2

)
2

(S7)
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where X
[i,j]
γ , Y

[i,j]
γ and x

[i,j]
γ , y

[i,j]
γ are the x and y coordinates of the γ-th vertex for the

cell [i, j], in the undeformed and deformed configurations, respectively (see Fig. S3). For

the [i, j]-th unit cell macroscopic values of the coefficient of thermal expansion were then

obtained as

α[i,j]
x =

∆x[i,j]

L
[i,j]
x ∆T

,

α[i,j]
y =

∆y[i,j]

L
[i,j]
y ∆T

,

(S8)

where ∆T is the change in temperature and L
[i,j]
x is given by Eq. (S5) and L

[i,j]
y denotes the

initial length of the cell along y,

L[i,j]
y =

(
Y

[i,j]
4 − Y [i,j]

1

)
+
(
Y

[i,j]
3 − Y [i,j]

2

)
2

. (S9)

Finally, the ensemble average of the four central unit cells under consideration was computed,

ᾱx =
1

4

2∑
i=1

2∑
j=1

α[i,j]
x , ᾱy =

1

4

2∑
i=1

2∑
j=1

α[i,j]
y . (S10)

Lastly, we want to emphasize the fact that the response of the system is reversible and

repeatable. In fact, upon cooling back to room temperature the component recovers the

initial configuration. Therefore, numerous thermal tests can be performed on the same

sample.

II. NUMERICAL ANALYSIS

In order to investigate the response of the considered Miura-ori structures, implicit

static analyses were performed using the software Abaqus/Standard (Dassault Systèmes,

Providence, RI). The behavior of the system was simulated considering a unit cell with

suitable periodic boundary conditions. The models were meshed using six nodes quadratic

triangular shell elements (Abaqus element type STRI65) with a mesh element size equal to

(a+b)/120. The bilayer plates were simulated as composite layups, composed of a paper and

a polyethylene layer. The materials behavior was captured using linear elasticity, assigning

the Young’s moduli measured in Section I B and assuming the Poisson’s ratio equal to 0.3

for both paper and polyethylene. Finally, isotropic thermal expansion was assumed for both

6



materials and the coefficients of thermal expansion reported in Section I B were assigned.

The creases were modeled using pin constraints to connect every pair of neighboring nodes

on neighboring plates. A torsional spring constraint was also applied to each pair of nodes,

using spring-dashpot objects. The spring stiffness assigned to each pair of nodes, knode pair,

was determined as

knode pair =
kcrease wc

np
(S11)

where kcrease is either ksoft or kstiff depending on the type of crease, wc is the width of the

considered crease and np is the number of nodes pairs on the considered crease. A uniform

temperature change was applied to the whole model in an implicit simulation step and the

evolution of the macroscopic strains ε̄xx and ε̄yy was monitored.

A. Effect of material properties

While the Miura-ori considered in this study were fabricated from paper and adhesive

polyethylene film, we also investigated numerically the effect of the material properties on

ᾱ. To this end, we focused on design #B (see Fig. 1-c in the main text) with a/b=1, β = 60

deg and δ = 70 deg and studied how the macroscopic coefficient of thermal expansion is

affected by the thickness, stiffness and coefficients of thermal expansion of the individual

layers. It is important to note that changes in the Young’s modulus and thickness of the two

layers alter the stiffness of the creases and, as a consequence, the response of our system.

We assumed that the bilayer creases behave as linear rotational springs with stiffness [7]

kstiff = ktop+bottom = C EI

(
1

ttop + tbottom

)1/3

(S12)

where C is a parameter that relates bending of a flat panel and folding at creases and

EI =
Etop

1− ν2
top

[
t3top

12
+ ttopd

2
top

]
+

Ebottom

1− ν2
bottom

[
t3bottom

12
+ tbottomd

2
bottom

]
(S13)

is the equivalent flexural rigidity of the bilayer. Moreover, Eγ, νγ and tγ (γ = top, bottom)

are the Young’s modulus, Poisson’t ratio and thickness of the γ-th layer and

dtop = tbottom +
ttop

2
− yneutral axis, dbottom =

tbottom

2
− yneutral axis, (S14)
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with the position of the neutral axis given by

yneutral axis =

t2bottom

2
+ ttop

Etop

Ebottom

tbottom +
ttop

2


tbottom + ttop

Etop

Ebottom

. (S15)

Note that for creases made of the bottom layer only, the stiffness of the rotational spring

can be calculated from Eq. (S12) by setting ttop = 0, yielding

ksoft = kbottom = C
Ebottom

1− ν2
bottom

t3bottom

12

(
1

tbottom

)1/3

(S16)

In Fig. S4 we show how kstiff/ksoft depends on the contrast in stiffness and thickness

between the two layers (i.e. on Etop/Ebottom and ttop/tbottom), assuming νtop = νbottom.

As expected, we find that in the absence of the top layer (i.e. for ttop = 0 or Etop = 0)

kstiff/ksoft = 1 and that, as the contrast in properties between the two layers increases,

kstiff/ksoft increases.

k
stiff
/k
soft

FIG. S4: Crease stiffness. Effect of Etop/Ebottom and ttop/tbottom on the crease stiffness of a

bilayer fold.

Having determined the effect of the Young’s modulus and thickness of the two layers on

the stiffness of the creases, we then investigated how the thermal expansion coefficients of
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design #B is affected by changes in material properties and thicknesses. To this end, for

each set of geometric (i.e. ttop and tbottom) and material (i.e. Etop, αtop and Ebottom, αbottom)

parameters, we calculated the stiffness of the stiff and soft creases using Eqs. (S12) and

(S16), respectively. To extract ᾱx and ᾱy, we then conducted a FE simulation on a unit cell

with the appropriate geometric and material parameters and values of kstiff and ksoft.

In Fig. S5 we report as contour plots the evolution of αx and αy (normalized by αbottom)

as a function of αtop/αbottom and Etop/Ebottom for three different cases. First, we considered

ttop/tbottom = 1.27 (as in our experiments) and C = Csoft = 0.002 and C = Cstiff = 0.01 in

Eqs. (S12) and (S16). Note that this values of C were chosen to best fit the experimentally

measured values of ksoft and kstiff. Then, we assumed ttop/tbottom = 3 and C = Csoft = 0.002

and C = Cstiff = 0.01. Finally, we chose ttop/tbottom = 1.27 (as in our experiments) and

C = Csoft = 0.02 and C = Cstiff = 0.1. The results reported in Fig. S5 show that for all

three cases the thermal expansion coefficients of the Miura-ori are highly sensitive to the

ratio αtop/αbottom and become more negative as the ratio increases. Differently, the ratio

Etop/Ebottom is found to have a more limited effect on ᾱx and ᾱy. Moreover, as expected,

our results indicate that the absolute value of ᾱx and ᾱy decreases as ttop/tbottom and the

coefficients C increase. This is because in these cases the bendability of the plates and

deformability of the creases is reduced.
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FIG. S5: Effect of material parameters and layers thickness. Evolution of ᾱx and ᾱy

(normalized by αbottom) as a function of αtop/αbottom and Etop/Ebottom for three different cases.
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B. Additional numerical results
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FIG. S6: Effect of the arrangement of soft and stiff creases. Response upon an increase in

temperature for 8 different arrangements of soft and stiff creases. For each case the arrangement

of the creases is shown on the left (green and red lines correspond to soft and stiff creases,

respectively). Both rotated (left) and top (right) views are shown. The contours show the

normalized displacement in z-direction. The values of ᾱx/αPE and ᾱy/αPE are also reported.
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FIG. S7: Effect of kstiff/ksoft and δ on ᾱx and ᾱy. Evolution of ᾱx and ᾱy as a function of
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2 of the main text.
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FIG. S8: Effect of β on the ratio ᾱy/ᾱx. Numerical predictions for ᾱx and ᾱy for different

arrangements of the bilayer plates and the soft and stiff creases, assuming a/b = 1, δ = 70 deg and

β = 30 deg. We find that for this particular choice of geometric parameters ᾱy/ᾱx = 9.5.
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FIG. S9: Effect of angles β and δ. In Fig. 4 of the main text we present contour plots showing

the evolution of of ᾱx/αPE (left) and ᾱy/αPE (right) as a function of the angles β and δ for design

#B (for a/b = 1). Here, we show such contour plots also for designs (a) #A and (b) #C.
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FIG. S10: Effect of the bilayers orientation. In this study we considered origami structures

comprising single-layer plates made of paper and bilayer plates with paper on the bottom and

polyethylene on the top. However, it is worth noting that the study can be further extended by

introducing also bilayers with paper on the top and polyethylene on the bottom. To demonstrate

this possibility, here we consider design #B and replace the single-layer faces with bilayer faces

having paper on the top and polyethylene on the bottom and connected by a stiff crease. For a

Miura-ori characterized by a/b = 1, β = 60◦, and δ = 70◦ we find that ᾱx/αPE = −15.85 and

ᾱy/αPE = −16.07. Note that these coefficients of thermal expansion are more negative than those

presented in the main text for the same structure, demonstrating the benefits of the introduction

of bilayers with opposite orientation.
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FIG. S11: Coefficient of thermal expansion in z-direction. While in the main text we

focused on ᾱx and ᾱy, here we also report ᾱz for design #B with a/b = 1. Numerical predictions

are reported for β = 20, 50, and 80◦ and for δ ∈ [20◦, 160◦]. As expected, when the the Miura-ori

shrinks in-plane, it expands along the z-direction.
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III. OPTIMIZATION

In an effort to identify Miura-ori configurations resulting in specific values of coefficients

of thermal expansion, we used Python [3] and the COBYLA [2] optimization algorithm. In

particular, we defined an objective function Z in terms of the in-plane thermal expansion

coefficients ᾱx and ᾱy, whereas the input parameters to that objective function were taken

to be the acute angle β, the opening angle δ and the ratio of lengths of the parallelogram

facets a/b. It is important to note that the arrangement of plates and creases was

decided independently for each optimization and was assumed to be fixed throughout the

optimization procedure. This allows for continuous but constrained optimization, where the

constraints are introduced to ensure that any accessible point P = {β, δ, a/b} corresponds to

a well-defined Miura-ori shape. Guided by our simulations we constrained the optimization

variables to lie in the intervals β ∈ [10◦, 90◦], δ ∈ [20◦, 160◦] and (a/b) ∈ [0.2, 2]. Moreover,

in order to ensure that all the variables in the optimization have similar orders of magnitude,

we introduced the normalized geometric variables β̂, δ̂, ̂(a/b)
β̂ =

β − 10◦

90◦ − 10◦ , δ̂ =
δ − 20◦

160◦ − 20◦ , ̂(a/b) =
(a/b)− 0.2

2− 0.2
(S17)

where now β̂, δ̂, ̂(a/b) can only take values in the interval [0, 1] as long as the following

constraints are not violated,

g1(β̂) = 0.5−
∣∣∣β̂ − 0.5

∣∣∣ ≥ 0 (S18)

g2(δ̂) = 0.5−
∣∣∣δ̂ − 0.5

∣∣∣ ≥ 0 (S19)

g3( ̂(a/b)) = 0.5−
∣∣∣ ̂(a/b)− 0.5

∣∣∣ ≥ 0 (S20)

Therefore, the optimization problem can be formally introduced in the following form,

Min Z(i) , i = a, b (S21)

s.t. gj(P̂ ) ≥ 0 , j = 1, 2, 3

where P̂ = {β̂, δ̂, ̂(a/b)}. The fact that the objective functions are defined in terms of the

thermal expansion coefficients but the optimization has to be performed with respect to

the normalized geometric parameters P̂ implies that for every evaluation of the objective

function, a finite element simulation has to be performed [8]. This, in turn, entails that
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there is no natural definition of a gradient of the objective function with respect to the

optimization variables: therefore a fast, gradient free optimization algorithm had to be used

which could also handle inequality constraints in the form of (S18-S20). The COBYLA [2]

optimization algorithm, which is part of the scipy optimization module in Python, was a

great fit for this problem being a gradient free algorithm that uses linear approximations to

the objective and constraint functions and is suitable for nonlinear constrained optimization

problems with low-dimensionality.

For every iteration of the COBYLA algorithm, a candidate for the optimal solution

is obtained by solving the approximated linear programming problem [2]. Then, the

original objective and constraint functions are being used to yield a new data point in the

optimization space. The trust region for the optimization has the form of a simplex whose

relative size is determined by an independent, automatically tuned parameter ρ. Whenever

the algorithm is unable to provide significant improvements to the objective function, the

trust region is reduced by shrinking the simplex, thus refining the search. The optimization

is assumed to have converged when the parameter ρ which determines the simplex size

reaches a limiting value ρmin which is defined by the user.

A. Objective functions

In Fig. 5 of the main text we report results for two different cases that are of great

interest for applications: (a) we determined the optimal Miura-ori geometry resulting in the

most negative pair of identical coefficients of thermal expansion (i.e. we were looking for

most negative pair of ᾱx, ᾱy that simultaneously satisfies the condition ᾱx = ᾱy); (b) we are

interested in a Miura-ori geometry characterized by |ᾱx| = |ᾱy| ∼ 0. The objective functions

for these two cases were defined in terms of the normalized in-plane coefficients of thermal

expansion ᾱx and ᾱy as follows,

Z(a) =
ᾱx + ᾱy

1 + 0.5 |ᾱx − ᾱy|
(S22)

Z(b) = −
[
|ᾱx|+ |ᾱy|+ 108

(
ᾱ2
x − ᾱ2

y

)2
]−1/4

(S23)

A contour plot of the objective functions defined in (S22) and (S23) is shown in Fig. S12.

The function Z(a) was chosen so that it is minimized when ᾱx, ᾱy are both as negative
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as possible and as equal as possible. The denominator in Eq. ((S22)) serves to penalize

solutions for which the coefficients of thermal expansion are not equal. On the other hand,

function Z(b) has a global minimum when ᾱx = ᾱy = 0 in the form of divergence to negative

infinity. This ensures that the optimization will converge to configurations for which the

in-plane coefficients of thermal expansion are as close to zero as possible. Furthermore, the

term 108
(
ᾱ2
x − ᾱ2

y

)2
in Eq. ((S23)) penalizes configurations for which ᾱx 6= ᾱy and vanishes

only when ᾱx = ±ᾱy.

4 2 0 2 4

ᾱx
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ᾱ
y

Z(a)

0.10 0.05 0.00 0.05 0.10

ᾱx
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FIG. S12: Objective Functions for Optimization Contour plots of the objective functions

Z(a), Z(b) chosen to achieve (a) equal negative and (b) both zero coefficients of thermal expansion.
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