
J. Mech. Phys. Solids 163 (2022) 104849

A
0
(

T
o
A
a

b

c

d

A

K
T
P
T
F

1

p
f
m
o

s
w
e
m

o
T
b
R
r

h
R

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

unable phononic bandgap materials designed via topology
ptimization
nna Dalklint a,∗, Mathias Wallin a, Katia Bertoldi b, Daniel Tortorelli c,d

Division of Solid Mechanics, Lund University, Box 118, SE-22100 Lund, Sweden
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Center for Design and Optimization, Lawrence Livermore National Laboratory, Livermore, CA, USA

R T I C L E I N F O

eywords:
opology optimization
hononic crystal
unable material properties
inite strain

A B S T R A C T

Topology optimization is used to design phononic bandgap materials that are tunable by
mechanical deformation. A periodic media is considered, which due to the assumption of length
scale separation, allows the dispersion relations to be obtained by analyzing a single unit cell
subjected to Floquet–Bloch boundary conditions. A finite macroscopic deformation is applied to
the unit cell to affect its geometry and hence dispersion. We tune the dispersion–deformation
relation to our liking by solving a topology optimization problem using nonlinear programming.
The adjoint method is employed to compute the sensitivities, and the non-differentiability
of degenerate eigenvalues is avoided using symmetric polynomials. Several tunable phononic
crystal designs are presented. Also, a verification analysis is performed, wherein the optimized
design is interpreted and analyzed using a conforming finite element mesh.

. Introduction

Phononic crystals are periodic structures engineered to control the propagation of elastic waves. The ability to tailor the wave
ropagation properties is partly attributed to Bragg scattering, in which a periodic arrangement of scatters allows waves with certain
requencies to propagate, whereas others, with frequencies in the so-called bandgap, cannot (Brillouin, 1953). An incident wave
ight also give rise to local resonance within the crystal, such that the energy is captured in the resonators and no propagation

ccurs (Liu et al., 2000; Raghavan and Phani, 2013).
Various applications can benefit from the control of elastic wave propagation. These include waveguides (Vasseur et al., 2007),

ensors (Lucklum and Li, 2009) and multiplexing devices (Pennec et al., 2004). The investigation of bandgap elastic structures
as first considered by Sigalas and Economou (1992) and Kushwaha et al. (1993), who found that bandgaps could be obtained by
mbedding stiff cylinders in a compliant matrix. The frequency range of the bandgaps can be tailored by the choice of the constituent
aterials, the lattice topology (square, hexagonal, etc.) and by the morphology of the inclusions.

The systematic design of phononic crystals is an obvious candidate for optimization. This was exemplified in the seminal work
f Sigmund and Jensen (2003), whereby the relative size of bandgaps was maximized using gradient based topology optimization.
he analogous design for photonic bandgaps, i.e. of electromagnetic wave propagation materials, was shortly thereafter investigated
y Borel et al. (2004). Other examples of bandgap maximization using topology optimization include e.g. Hussein et al. (2007),
upp et al. (2007), Men et al. (2014), Wormser et al. (2017) and Liu et al. (2020) and Swartz et al. (2021). A detailed literature
eview appears in Li et al. (2019).
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Recently, the tunability of phononic crystals has attracted attention, wherein bandgaps are controlled by applying external stimuli
in the form of e.g. mechanical deformation (Bertoldi and Boyce, 2008a), temperature variations (Jim et al., 2009) and piezoelectric
effects (Hou et al., 2004). We focus on the former in this work. The effect of prestress on bandgaps was first investigated by Bertoldi
and Boyce (2008a,b), where microstructural elastic instabilities were shown to disrupt the lattice periodicity, effectively allowing
the bandgaps to open or close. The analysis was based on the small-on-large deformation framework (Ogden, 2007), wherein
an incremental deformation is superimposed on a prestressed configuration in quasi-static equilibrium. This work was extended
by Wang et al. (2014), whereby local resonance was considered, and by Zhang and Parnell (2017), whereby deformation independent
bandgaps were obtained.

Topology optimization is a promising tool for tailoring phononic crystals which are tunable through elastic deformation. The
method was pioneered by Evgrafov et al. (2008), for designing tunable wave-guides using a gradient based topology optimization
framework. Hedayatrasa et al. (2016) demonstrated the approach using a genetic optimization algorithm (GA). A GA was also used
by Bortot et al. (2018), to design dielectric elastomers actuated by external electric fields. The GA studies are subject to coarse
design resolutions for obvious reasons. To address this limitation, the use of gradient based topology optimization is a must. To this
end, the framework developed by Bortot et al. (2018) was repeated with gradient base optimization in the recent work by Sharma
et al. (2021).

In this study, we use density based topology optimization to design hyperelastic phononic crystals with tunable wave propagation
properties. More specifically, we generate designs for which a maximum bandgap between two preselected modes exists in the
deformed configuration, but not in the undeformed configuration. We assume separation of length scales in the micro-to-macro
transition to limit the analysis to a single unit cell. The deformed configuration is obtained by applying periodic boundary conditions
on the unit cell, and the dispersion relations are identified by applying Floquet–Bloch boundary conditions to a sequence of
generalized eigenvalue problems. The numerical analysis is based on a standard finite element framework. To solve the optimization
problem, we employ the gradient based method MMA (Method of Moving Asymptotes, cf. Svanberg, 1987). This is a numerical
study, i.e. we do not validate these designs. However, we believe that existing fabrication methods would allow us to do so in
future research, cf. e.g. Vasseur et al. (1998).

2. Governing equations

We consider a macroscopic body with a periodic microstructure which occupies the region 𝛺𝑀 ∈ R2 in the undeformed, reference
configuration, cf. Fig. 1. The material response at each macroscopic material point 𝑿𝑀 ∈ 𝛺𝑀 is represented by the response of
a microstructural unit cell 𝛺 ∈ R2, for which it holds that |𝛺| ≪ |𝛺𝑀

|, where | ⋅ | denotes the area.1 This assumption permits us
to treat the macroscopic body as an infinite periodic array of unit cells with identical microstructural properties. Without loss of
generality, we consider rectangular unit cells with lattice vectors 𝑨1 = 𝑎1𝒆1 and 𝑨2 = 𝑎2𝒆2, where 𝒆1 and 𝒆2 are the orthonormal
basis vectors and (𝑎1, 𝑎2) ∈ (R × R). The unit cell boundary 𝜕𝛺 with outward unit normal 𝒏 is decomposed into the disjoint sets
𝜕𝛺+ = 𝜕𝛺+

1 ∪ 𝜕𝛺+
2 and 𝜕𝛺− = 𝜕𝛺−

1 ∪ 𝜕𝛺−
2 , containing material points on opposite boundaries, cf. Fig. 1.

The macroscopic body is deformed into the current equilibrium configuration, 𝛺𝑀
𝑐 ∈ R2, by a smooth mapping 𝝋𝑀 ∶ 𝛺𝑀 → 𝛺𝑀

𝑐 ,
when loaded. The macroscopic deformation is locally described by the macroscopic deformation gradient, 𝑭𝑀 = 𝛁𝑀𝝋𝑀 , where 𝛁𝑀

is the gradient operator with respect to the macroscopic reference location 𝑿𝑀 .
The macroscopic deformation 𝑭𝑀 drives the microscopic displacement field 𝒖 ∶ 𝛺 → R2, such that each microscopic material

point in the unit cell identified by its position vector 𝑿 ∈ 𝛺, is displaced to the position 𝒙 = 𝒖(𝑿, 𝑡) +𝑿 ∈ 𝛺𝑐 , where

𝒖(𝑿, 𝑡) =
(

𝑭𝑀 (𝑡) − 𝟏
)

𝑿 + 𝒖𝐹 (𝑿, 𝑡), (1)

and 𝒖𝐹 (𝑿, 𝑡) is the heterogeneous displacement fluctuation field, cf. Saeb et al. (2016). From (1), we find that the microscopic
deformation gradient 𝑭 is additively decomposed into a uniform part and a fluctuation part, i.e.

𝑭 (𝑿, 𝑡) = 𝟏 + 𝛁𝒖(𝑿, 𝑡) = 𝑭𝑀 (𝑡) + 𝛁𝒖𝐹 (𝑿, 𝑡), (2)

where 𝛁 is the gradient operator with respect to the microscopic reference coordinates 𝑿.

2.1. Micro–macro relations

To maintain consistency between the micro–macro derivations we enforce the conservation of deformation, i.e. we require

𝑭𝑀 = 1
|𝛺|

∫𝛺
𝑭 𝑑𝑉 , (3)

assuming the absence of voids. A common way to satisfy this condition is to restrict 𝒖𝐹 to the space of periodic functions. We take
this approach. As such, the following kinematic constraint is enforced on the displacement field

𝒖(𝑿+
𝑗 ) − 𝒖(𝑿+

𝑗 −𝑨𝑗 ) = (𝑭𝑀 − 𝟏)𝑨𝑗 , on 𝜕𝛺+
𝑗 , 𝑗 = 1, 2. (4)

1 Subsequently, we will employ the (⋅)𝑀 notation for all macroscopic quantities, whereas the customary (⋅) notation is used for microscopic quantities.
2
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Fig. 1. The deformation of a macroscopic body and its effect on the periodic microstructure.

To remove rigid body modes, a single material point 𝑿𝑢 ∈ 𝛺 is restricted from motion, i.e. 𝒖(𝑿𝑢) = 𝟎, wherefore the kinematically
dmissible microscopic displacement field belongs to the space  = {𝒖 ∈ 𝐻1 ∶ 𝒖(𝑿𝑢) = 𝟎, 𝒖(𝑿+

𝑗 ) = 𝒖(𝑿+
𝑗 −𝑨𝑗 )+(𝑭𝑀 −𝟏)𝑨𝑗 for 𝑿+

𝑗 ∈
𝛺+

𝑗 , 𝑗 = 1, 2}.
To maintain consistency between the virtual works in the micro–macro relations, we invoke the celebrated Hill–Mandel condition

Hill, 1972; Mandel, 1971), which stipulates that

𝛿𝑭𝑀 ∶ 𝑷𝑀 = 1
|𝛺|

∫𝛺
𝛿𝑭 ∶ 𝑷 𝑑𝑉 , (5)

here 𝑷 = 𝜕𝑊
𝜕𝑭 is the microscopic first Piola–Kirchhoff stress tensor, 𝑊 is the strain energy and 𝛿𝑭 = 𝛁𝛿𝒖.

By choosing 𝛿𝒖𝐹 = 𝟎 and 𝛿𝑭𝑀 = 𝑩 for the arbitrary constant 2nd order tensor 𝑩, (5) reduces to the stress homogenization
relation

𝑷𝑀 = 1
|𝛺|

∫𝛺
𝑷 𝑑𝑉 . (6)

If we instead equate 𝛿𝑭𝑀 = 𝟎 in (5), we obtain

∫𝛺
𝛿𝑭 ∶ 𝑷 𝑑𝑉 = 0, (7)

which yields the quasi-static local microscopic equilibrium equation

𝛁 ⋅ 𝑷 (𝑿,𝛁𝒖) = 𝟎, in 𝛺, (8)

assuming no body forces. To obtain the above, we use the product rule, the divergence theorem and the anti-periodicity of the
traction 𝑷 ⋅ 𝒏, which follows since 𝒏(𝑿+

𝑗 ) = −𝒏(𝑿−
𝑗 ) and 𝒖𝐹 (𝑿+

𝑗 ) = 𝒖𝐹 (𝑿−
𝑗 ). This implies 𝛁𝒖𝐹 (𝑿+

𝑗 ) = 𝛁𝒖𝐹 (𝑿−
𝑗 ) and 𝑷 (𝑿+

𝑗 ) = 𝑷 (𝑿−
𝑗 ).

3. Elastic wave propagation in a 2D periodic solid

To investigate the elastic wave propagation in an infinite prestressed 2D periodic solid, we follow Bertoldi and Boyce (2008b)
and consider an infinitesimal time-dependent deformation �̊�(𝑿, 𝑡) superimposed on a given equilibrium configuration, defined by
he displacement 𝒖𝑐 . The local microscopic equation of motion at time 𝑡 follows from (8)

𝛁 ⋅ 𝑷 (𝑿,𝛁𝒖) = 𝜌(𝑿)
𝜕2𝒖(𝑿, 𝑡)

𝜕𝑡2
in 𝛺, (9)

where 𝜌 is the mass density. The split

̊

3

𝒖(𝑿, 𝑡) = 𝒖𝑐 (𝑿) + 𝒖(𝑿, 𝑡), (10)
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𝛁 ⋅ 𝑷 (𝑿,𝛁𝒖𝑐 + 𝛁�̊�) = 𝜌(𝑿)
𝜕2�̊�(𝑿, 𝑡)

𝜕𝑡2
. (11)

Performing a Taylor series expansion of the left hand side in (11) and ignoring higher order terms provides

𝛁 ⋅ 𝑷 (𝑿,𝛁𝒖𝑐 + 𝛁�̊�) ≈ 𝛁 ⋅ 𝑷 (𝑿,𝛁𝒖𝑐 ) + 𝛁 ⋅
[

L(𝑿,𝛁𝒖𝑐 ) ∶ 𝛁�̊�(𝑿)
]

, (12)

where L = 𝜕2𝑊
𝜕𝑭 𝜕𝑭

|

|

|𝛁𝒖=𝛁𝒖𝑐
is the fourth order incremental elasticity tensor. Combining (8) and (12), and inserting the result into (11),

ives

𝛁 ⋅ [L ∶ 𝛁�̊�] = 𝜌 𝜕
2�̊�
𝜕𝑡2

. (13)

Using separation of variables, the solutions to (13) are constructed from the harmonic oscillations

�̊�(𝑿, 𝑡) = 𝝓(𝑿)𝑒−𝑖𝜔𝑡, (14)

where 𝝓(𝑿) are the mode shapes, 𝑖 =
√

−1 and we assume non-attenuating waves, i.e. that the angular frequencies 𝜔 ∈ R. The
assumption (14) allows us to pose (13) as

𝛁 ⋅ [L ∶ (𝛁𝝓)] 𝑒−𝑖𝜔𝑡 = −𝜔2𝜌𝝓𝑒−𝑖𝜔𝑡, (15)

which, since 𝑒−𝑖𝜔𝑡 is spatially independent and non-zero, reduces to
1
𝜌
𝛁 ⋅ [L ∶ (𝛁𝝓)] = −𝜔2𝝓, in 𝛺. (16)

he above is an eigenvalue problem which we solve for the eigenpairs (−𝜔2,𝝓).
According to Bloch’s theorem, we can solve (16) over a single unit cell, to obtain the response over the infinite periodic domain

Kittel, 1976; Joannopoulos et al., 2011). The solutions to (16) take on Floquet–Bloch form

𝝓(𝑿) = 𝝓𝑝(𝑿)𝑒𝑖𝒌⋅𝑿 , (17)

hich can be seen as a plane wave 𝑒𝑖𝒌⋅𝑿 which propagates in the direction described by the wave vector 𝒌 ∈ R2, and is modulated
by a spatially periodic function 𝝓𝑝(𝑿).

Due to the microstructural periodicity, the material properties at any point 𝑿 ∈ 𝛺 must be invariant with respect to any
translation along the lattice vector 𝑹 = 𝑅1𝑨1 + 𝑅2𝑨2, for integers 𝑅1, 𝑅2 ∈ Z. Accordingly, we enforce

𝝓𝑝(𝑿 +𝑹) = 𝝓𝑝(𝑿), (18)

hich, in combination with (17), leads to the classical Bloch condition

𝝓(𝑿 +𝑹) = 𝝓(𝑿)𝑒𝑖𝒌⋅𝑹 , (19)

hich represents a kinematical constraint on 𝝓. We note that for 𝒌 = 𝟎, (19) constitutes regular periodic boundary conditions.
A wave vector 𝒌 is expanded as

𝒌 = 𝑘1𝑩1 + 𝑘2𝑩2, (20)

here

𝑩1 = 2𝜋
𝑨2 × 𝒆3

‖

‖

𝑨1 ×𝑨2
‖

‖

, 𝑩2 = 2𝜋
𝒆3 ×𝑨1

‖

‖

𝑨1 ×𝑨2
‖

‖

, (21)

re the reciprocal lattice vectors which are defined such that 𝑨𝑘 ⋅𝑩𝑙 = 2𝜋𝛿𝑘𝑙, with 𝒆3 =
𝑨1×𝑨2

‖𝑨1×𝑨2‖
. In the reciprocal space spanned by

𝑩1 and 𝑩2, we define the reciprocal lattice vectors 𝑮 = 𝑔1𝑩1 + 𝑔2𝑩2, for integers 𝑔1, 𝑔2 ∈ Z, so that 𝑮 ⋅𝑹 = 2𝜋𝑁 , 𝑁 ∈ Z. Because
of this, we see that

𝝓(𝑿 +𝑹) = 𝝓(𝑿)𝑒𝑖𝒌⋅𝑹 = 𝝓(𝑿)𝑒𝑖(𝒌⋅𝑹+2𝜋𝑁) = 𝝓(𝑿)𝑒𝑖(𝒌+𝑮)⋅𝑹 , (22)

i.e. the modes 𝝓 are invariant with respect to the increment 𝑮 of 𝒌. Therefore, we do not need to consider all wave vectors 𝒌 in the
attice, rather only those 𝒌 that lie in the so-called Brillouin zone BZ = {𝒌 ∈ R2 ∶ 𝒌 = 𝑘1𝑩1 + 𝑘2𝑩2, −

𝜋
𝑎1

≤ 𝑘1 ≤
𝜋
𝑎1
, − 𝜋

𝑎2
≤ 𝑘2 ≤

𝜋
𝑎2
},

cf. Fig. 2. Effectively, for each 𝒌 ∈ BZ, we solve (16) to evaluate the full spectrum of eigenpairs (−𝜔2,𝝓). If there is an interval
[𝜔1, 𝜔2] for which no 𝜔 resides, then no waves with these frequencies can propagate the media, creating a ‘‘bandgap’’.

We assume that the unit cell exhibits orthotropic symmetry, so we can further limit the space of wave vectors to the irreducible
Brillouin zone (IBZ). It is however crucial to remember that the applied deformation affects these symmetries, as depicted in Fig. 1.
Indeed, the lattice vectors in the current configuration, 𝒂𝑗 , are related to their undeformed counterparts 𝑨𝑗 , as 𝒂𝑗 = 𝑭𝑀𝑨𝑗 , 𝑗 = 1, 2
(Zhang and Parnell, 2017). We limit ourselves to macroscopic prestrains which retain domain symmetry with respect to reflections
about the 𝒆 and 𝒆 axes. As such our IBZ = {𝒌 ∈ R2 ∶ 𝒌 = 𝑘 𝑩 + 𝑘 𝑩 , 0 ≤ 𝑘 ≤ 𝜋 , 0 ≤ 𝑘 ≤ 𝜋 } is the first quadrant, cf. Fig. 2.
4
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Fig. 2. Illustration of the irreducible Brillouin zone for the square unit cell under prestress.

Most researchers only consider the 𝒌-vectors that lie on the boundary 𝜕IBZ of the IBZ, i.e. they only interrogate a finite subset
f 𝜕IBZ, constructed as

𝜕𝑘 = {𝒌𝑛 ∈ 𝜕IBZ, 1 ≤ 𝑛 ≤ 𝑁𝑘}, (23)

where 𝒌𝑛, 1 ≤ 𝑛 ≤ 𝑁𝑘 are the wave vectors along 𝜕IBZ and 𝑁𝑘 ∈ N is the number of sampling points. However, according to Maurin
et al. (2018), the band extrema may not be located on the boundary, and therefore the full IBZ must be interrogated to confirm the
omnidirectionality of a band-gap. As a compromise, we perform the optimization by considering only those 𝒌 ∈ 𝜕𝑘, but confirm
the findings by searching the entire IBZ in a post-processing step, i.e. for all 𝒌 ∈ 𝐾 = {𝒌𝑛 ∈ IBZ, 1 ≤ 𝑛 ≤ 𝑁𝐾} where 𝑁𝐾 ≫ 𝑁𝑘.

As seen in (17), the incremental displacement field 𝝓 is in general complex-valued. In our implementation, we follow Åberg and
Gudmundson (1997) and decompose 𝝓 into its real and imaginary parts

𝝓 = ℜ(𝝓) + 𝑖ℑ(𝝓), (24)

so that the eigenvalue problem (16) reads

𝛁 ⋅
[

L ∶ (𝛁ℜ(𝝓) + 𝑖𝛁ℑ(𝝓))
]

= −𝜔2𝜌(ℜ(𝝓) + 𝑖ℑ(𝝓)). (25)

Separating the real and imaginary parts of (25) results in

𝛁 ⋅
[

L ∶ (𝛁ℜ(𝝓))
]

= −𝜔2𝜌ℜ(𝝓),

𝛁 ⋅
[

L ∶ (𝛁ℑ(𝝓))
]

= −𝜔2𝜌ℑ(𝝓),
(26)

which are subject to the kinematic Bloch constraints (19)

ℜ(𝝓(𝑿 +𝑹)) = ℜ(𝝓) cos(𝒌 ⋅𝑹) −ℑ(𝝓) sin(𝒌 ⋅𝑹),

ℑ(𝝓(𝑿 +𝑹)) = ℜ(𝝓) sin(𝒌 ⋅𝑹) +ℑ(𝝓) cos(𝒌 ⋅𝑹),
(27)

that couple the two real problems in (26). The weak forms corresponding to (26) are stated as finding the ℜ(𝝓) ∈ ℜ() and
ℑ(𝝓) ∈ ℑ(), such that

∫𝛺
ℜ(𝛁𝛿𝝓) ∶

[

L ∶ (𝛁ℜ(𝝓))
]

𝑑𝑉 = 𝜔2
∫𝛺

𝜌ℜ(𝛿𝝓) ⋅ℜ(𝝓) 𝑑𝑉 ,

∫𝛺
ℑ(𝛁𝛿𝝓) ∶

[

L ∶ (𝛁ℑ(𝝓))
]

𝑑𝑉 = 𝜔2
∫𝛺

𝜌ℑ(𝛿𝝓) ⋅ℑ(𝝓) 𝑑𝑉 ,
(28)

for all ℜ(𝛿𝝓) ∈ ℜ() and ℑ(𝛿𝝓) ∈ ℑ() where ℜ() = {ℜ(𝝓) ∈ 𝐻1 ∶ ℜ(𝝓)(𝑿 +𝑹) = ℜ(𝝓) cos(𝒌 ⋅𝑹) − ℑ(𝝓) sin(𝒌 ⋅𝑹) for 𝑿 ∈ 𝛺}
and ℑ() = {ℑ(𝝓) ∈ 𝐻1 ∶ ℑ(𝝓)(𝑿 +𝑹) = ℜ(𝝓) sin(𝒌 ⋅𝑹) +ℑ(𝝓) cos(𝒌 ⋅𝑹) for 𝑿 ∈ 𝛺}.

4. Total Lagrangian FE-formulation

We discretize (7) and (28) using a structured finite element mesh over the rectangular unit cell. The sets of finite element
degrees-of-freedoms and finite elements, are denoted N𝑛 = {1, 2,… , 𝑛𝑑𝑜𝑓 } and N𝑒 = {1, 2,… , 𝑛𝑒𝑙𝑚}, respectively. A Galerkin based
FE-formulation (cf. e.g. Crisfield, 1993) is utilized, wherein both physical and variational displacement fields are approximated using
element polynomial shape functions 𝗡, e.g. in element 𝛺𝑒 ∈ 𝛺, 𝒖(𝑿, 𝑡) ≈ 𝗡(𝑿)𝘂𝑒(𝑡) and 𝛿𝒖(𝑿) ≈ 𝗡(𝑿)𝛿𝘂𝑒, where 𝘂𝑒(𝑡) and 𝛿𝘂𝑒 are
element nodal coefficients.

4.1. Equilibrium computation, 𝒖

To determine the equilibrium configuration 𝛺𝑐 , we discretize (7) as
𝑇 𝑇 ( )
5

𝛿𝘂 𝗿(𝘂) = 𝛿𝘂 𝗙𝑖𝑛𝑡(𝘂) − 𝗙𝑒𝑥𝑡 = 𝟎, (29)
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where 𝗿 ∈ R𝑛𝑑𝑜𝑓 is the residual vector, 𝘂 ∈ R𝑛𝑑𝑜𝑓 is the global degrees-of-freedom vector and
(

𝗙𝑖𝑛𝑡,𝗙𝑒𝑥𝑡
)

∈
(

R𝑛𝑑𝑜𝑓 × R𝑛𝑑𝑜𝑓
)

are the
internal and external force vectors, respectively.

Following Ivarsson et al. (2020) and Wallin and Tortorelli (2020), we employ a standard master–slave elimination to impose
(4), wherein the slave degrees-of-freedom are explicitly eliminated from the global degrees-of-freedom vector 𝘂 ∈ R𝑛𝑑𝑜𝑓 by defining
the mapping

𝘂 = 𝗧�̌� + 𝗜𝛥𝒖, (30)

from the master degrees-of-freedom vector �̌� corresponding to nodes on the boundary 𝜕𝛺− and in the interior 𝛺 ⧵ 𝜕𝛺, to 𝘂. The
atrix 𝗜 = [𝗜11, 𝗜12, 𝗜21, 𝗜22] has unit entries for the degrees-of-freedom on the boundary 𝜕𝛺+ where the macroscopic displacement
𝒖 = [𝛥𝑢11, 𝛥𝑢12, 𝛥𝑢21, 𝛥𝑢22]𝑇 is defined, such that [𝛥𝑢11, 𝛥𝑢21]𝑇 = (𝑭𝑀 − 𝟏)𝑨1 and [𝛥𝑢12, 𝛥𝑢22]𝑇 = (𝑭𝑀 − 𝟏)𝑨2.

To mimic uniaxial loading conditions, we prescribe a non-vanishing uniaxial displacement increment 𝛥𝑢11 ≠ 0, and determine
𝑢12, 𝛥𝑢21 and 𝛥𝑢22 such that 𝑷𝑀 = 𝑃𝑀

11 𝒆1 ⊗ 𝒆1. Due to the assumption of orthotropy, we know that 𝛥𝑢12 = 0 and 𝛥𝑢21 = 0 for any
iaxial stress state, cf. Wallin and Tortorelli (2020). As such, 𝛥𝑢22 is defined such that 𝑃𝑀

22 = 02. Equivalently, in our analysis we
nforce

𝗜𝑇22𝗙𝑒𝑥𝑡 = 0. (31)

o facilitate the solution process, we rearrange (30) as

𝘂 = 𝗣𝘂∗ + 𝗜11𝛥𝑢11, (32)

here 𝗣 =
[

𝗧, 𝗜22
]

and 𝘂∗ =
[

�̌�, 𝛥𝑢22
]𝑇 . Ultimately, we find 𝘂∗ such that

𝛿𝘂∗𝑇 𝗣𝑇 𝗿(𝘂) = 𝛿𝘂∗𝑇
(

𝗣𝑇 𝗙𝑖𝑛𝑡(𝘂) − 𝗧𝑇 𝗙𝑒𝑥𝑡
)

= 0, (33)

or all 𝛿𝘂∗. Noting that 𝗧𝑇 𝗙𝑒𝑥𝑡 = 𝟎 due to the PBC, and using the arbitrariness of 𝛿𝘂∗, the above reduces to

𝗿∗ = 𝗣𝑇 𝗙𝑖𝑛𝑡 = 0, (34)

here the partitioned residual 𝗿∗ =
[

𝗧, 𝗜22
]𝑇

𝗙𝑖𝑛𝑡 is introduced.
To find the displacement vector 𝘂 which fulfills (34), we employ Newton’s method, wherein the linearization of (34) is required

𝗿∗(𝘂∗ + 𝛿𝘂∗) ≈ 𝗿∗ + 𝜕𝗿∗

𝜕𝘂
𝑑𝘂 = 0 ⇒

𝜕𝗿∗

𝜕𝘂
𝑑𝘂 = 𝗞∗𝑑𝘂∗ = −𝗿∗, (35)

where 𝑑𝘂 = 𝗣𝑑𝘂∗, 𝗞∗ ∶= 𝗣𝑇𝗞𝗣 and 𝗞 = 𝜕𝗿
𝜕𝘂 . To summarize, we prescribe the macroscopic deformation 𝛥𝑢11 through (32), and iterate

by solving (35) for 𝑑𝘂∗ and updating 𝘂 ← 𝘂 + 𝗣𝑑𝘂∗ until convergence, i.e. until ‖𝗿∗‖2 ≈ 0. In the equilibrium configuration, 𝛺𝑐 , we
investigate the wave propagation properties of the material.

Lastly, we mention that biaxial loading conditions are obtained by prescribing the non-vanishing biaxial displacements 𝛥𝑢11 ≠ 0
and 𝛥𝑢22 ≠ 0.

4.2. Eigenpair computation, (𝜔2,𝝓)

The wave Eqs. (28) are discretized analogously to the displacement, i.e. we use the same mesh and shape functions to interpolate
ℜ(𝝓𝑗 ) and ℑ(𝝓𝑗 ), from the degrees-of-freedom vectors ℜ(𝝓𝑗 ) and ℑ(𝝓𝑗 ). Their variational counterparts are similarly interpolated.
The discretization of (28) therefore becomes

[

ℜ(𝛿𝝓𝑇
𝑗 ) ℑ(𝛿𝝓𝑇

𝑗 )
]

[

𝗞 𝟬

𝟬 𝗞

][

ℜ(𝝓𝑗 )

ℑ(𝝓𝑗 )

]

= 𝜆𝑗
[

ℜ(𝛿𝝓𝑇
𝑗 ) ℑ(𝛿𝝓𝑇

𝑗 )
]

[

𝗠 𝟬

𝟬 𝗠

][

ℜ(𝝓𝑗 )

ℑ(𝝓𝑗 )

]

, 𝑗 ∈ N𝜆, (36)

where 𝗠 is the mass matrix, 𝜆𝑗 ∶= 𝜔2
𝑗 and N𝜆 = {1, 2,… , 𝑛𝜆} ⊆ N𝑛. The Bloch constraints (27), are expressed as

[

ℜ(𝝓)

ℑ(𝝓)

]

= 𝗪(𝒌)

[

ℜ(𝝓∙)

ℑ(𝝓∙)

]

, (37)

in our master–slave implementation, where 𝗪 = 𝗪(𝒌) is the linear Bloch transformation matrix (cf. Åberg and Gudmundson, 1997),
and 𝝓∙ = ℜ(𝝓∙) + 𝑖ℑ(𝝓∙) contains the master degrees-of-freedom.

The analysis proceeds by substituting (37) in (36) and using the arbitrariness of 𝛿𝝓∙
𝑗 , to obtain the unconstrained eigenvalue

problem

𝗪(𝒌)𝑇
([

𝗞 𝟬

𝟬 𝗞

]

− 𝜆𝑗

[

𝗠 𝟬

𝟬 𝗠

])

𝗪(𝒌)

[

ℜ(𝝓∙
𝑗 )

ℑ(𝝓∙
𝑗 )

]

= 𝟬, 𝑗 ∈ N𝜆. (38)

2 Note that we require 𝑃𝑀
22 = 0, i.e. we use the first Piola–Kirchhoff stress rather than the Cauchy stress 𝝈. However, since 𝐹𝑀

12 = 𝐹𝑀
21 = 0 the 𝑃22 = 0 condition
6

s equivalent to 𝜎22 = 0.
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By utilizing the notation (⋅) for block quantities, (38) becomes
(

𝗞∙ − 𝜆𝑗𝗠
∙)𝝓∙

𝑗
= 𝟬, 𝑗 ∈ N𝜆, (39)

here

𝗞∙(𝒌) = 𝗪(𝒌)𝑇
[

𝗞 𝟬

𝟬 𝗞

]

𝗪(𝒌), 𝗠∙(𝒌) = 𝗪(𝒌)𝑇
[

𝗠 𝟬

𝟬 𝗠

]

𝗪(𝒌), 𝝓∙
𝑗
=

[

ℜ(𝝓∙
𝑗 )

ℑ(𝝓∙
𝑗 )

]

. (40)

Following the usual convention, the eigenvalues of (39) are sorted in ascending order, i.e. 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛𝜆 , and the eigenvectors
are mass-orthonormalized such that

𝝓∙𝑇
𝑗
𝗠∙𝝓∙

𝑙
= 𝛿𝑗𝑙 , 𝑗, 𝑙 ∈ N𝜆. (41)

The (24) decomposition of the eigenvectors provides a real generalized eigenvalue problem (39), which is readily solved using
traditional solvers.

5. Design dependent material model

We assume isotropic hyperelastic material behavior, and we use a compressible neo-Hookean material model in which the strain
energy 𝑊 is

𝑊 = 1
4
𝐾

((

𝐽 2 − 1
)

− ln
(

𝐽 2)) + 1
2
𝐺
(

𝐽−2∕3tr
(

𝑭 𝑇𝑭
)

− 3
)

, (42)

where 𝐾 and 𝐺 are design dependent bulk and shear modulii, and 𝐽 = det(𝑭 ).
In our topology optimization, we optimally distribute two material phases in the unit cell. The material distribution is described

y the continuous design volume fraction field 𝑧 ∶ 𝛺 → [0, 1]. The elastic material parameters 𝐾 and 𝐺, and the mass density 𝜌, are
ubsequently interpolated as

𝜌(𝑧) = (1 − 𝑧)𝜌1 + 𝑧𝜌2,

𝐺(𝑧) = (1 − 𝑧)𝐺1 + 𝑧𝐺2,

𝐾(𝑧) = (1 − 𝑧)𝐾1 + 𝑧𝐾2,

(43)

here the subscripts refer to the two material phases. For standard compliance minimization, the linear interpolation (43) does not
romote binary designs. However, for phononic bandgap maximization, Sigmund and Jensen (2003) obtained nearly binary designs
hen using (43). Indeed, this follows the intuition that stark material contrasts are favored for large bandgaps, cf. Joannopoulos
t al. (2011).

Traditional density based structural topology optimization is plagued by ‘‘checkerboard-patterns’’ and mesh-dependency, which
tem from the inherent ill-posedness of the underlying optimization problem, cf. Sigmund and Petersson (1998). These issues are
ften mitigated through the use of filtration techniques (Bruns and Tortorelli, 2003; Lazarov and Sigmund, 2011), by which a
inimal length-scale is introduced in the design. Fortunately, in bandgap topology optimization, these issues are mute, as evidenced

y numerical results (Sigmund and Jensen, 2003; Borel et al., 2004; Men et al., 2014; Swartz et al., 2021). In addition, Sigmund
nd Hougaard (2008) and Li et al. (2018) showed that optimized bandgap materials could be obtained from simple geometric
onsiderations, which further justify this claim. Nonetheless, we follow Sigmund and Jensen (2003) and Swartz et al. (2021) and
ntroduce a filter to limit the minimal feature size for fabrication considerations and to hasten the convergence of the optimization.
owever, unlike Sigmund and Jensen (2003) who adopted the sensitivity filter (cf. Sigmund, 1997), and Swartz et al. (2021) who
dopted the cone filter (cf. Bruns and Tortorelli, 2001), we impose a length-scale restriction by penalizing the fine-scale oscillations
f 𝑧 via the Helmholtz PDE-filter proposed in Lazarov and Sigmund (2011). In this way, 𝑧 in (43) is replaced by the smooth field
∶ 𝛺 → [0, 1], obtained from the solution of the boundary-value problem

−𝑙2𝛥𝜈 + 𝜈 = 𝑧, (44)

ubject to PBC. In (44), 𝛥 is the Laplacian with respect to 𝛺 and the amount of smoothing of 𝑧 is controlled by 𝑙 ∈ R+. To solve
44), we parameterize 𝑧 via the piece-wise uniform design field 𝗓 ∶ 𝛺 → [0, 1] over the finite elements 𝛺𝑒 ∈ 𝛺, such that 𝑧(𝑿) = 𝗓𝑒
or 𝑿 ∈ 𝛺𝑒. However, the same mesh and shape functions that are used to interpolate 𝒖 and 𝝓 are used to interpolate 𝜈 via the

nodal filtered density degrees-of-freedom vector 𝝂. The PBC are implemented by enforcing

𝝂 = 𝗧𝜈𝝂∗, (45)

where 𝗧𝜈 and 𝝂∗ are analogous to 𝗧 and 𝘂∗ in (30). Following Lazarov and Sigmund (2011), the discretized version of (44) is
(

𝑙2𝑜𝗞
∗
𝜈 +𝗠∗

𝜈
)

𝝂∗ = 𝗙∗𝜈𝘇, (46)

where 𝗞∗
𝜈 = 𝗧𝑇

𝜈 𝗞𝜈𝗧𝜈 , 𝗠∗
𝜈 = 𝗧𝑇

𝜈 𝗠𝜈𝗧𝜈 and 𝗙∗𝜈 = 𝗧𝑇
𝜈 𝗙𝜈 .

We restrict ourselves to unit cells that exhibit orthotropic symmetry. As such, we reduce the design space by one quarter and
write

𝘇 = 𝗤𝗱, (47)

where 𝗱 ∈ R𝑛∗𝑒𝑙𝑚 contains the 𝑛∗𝑒𝑙𝑚 = 𝑛𝑒𝑙𝑚∕4 design variables corresponding to the volume fractions of the elements in the reduced
𝑛∗𝑒𝑙𝑚 𝑛𝑒𝑙𝑚
7

domain, and 𝗤 ∶ R → R provides the 4-fold design symmetry illustrated in Fig. 3.
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Fig. 3. Illustration of square unit cell with symmetry domain.

. Optimization problem

We use topology optimization to design structures with tunable bandgaps. More specifically, we seek the design 𝗱 which
maximizes the bandgap in the deformed configuration 𝛺𝑐 , whilst minimizing it in the undeformed configuration 𝛺. To this end, we
define the objective function

�̄�𝑜(𝗱, 𝘂𝑐 ) = 𝐻(�̄�𝑏(𝗱, 𝟬)) − �̄�𝑏(𝗱, 𝘂𝑐 ), (48)

where 𝐻 = 𝐻(𝑥) = 1
2 + 1

2 tanh(10 ⋅ 𝑥) is an approximate Heaviside step function and

�̄�𝑏(𝗱, 𝘂) =
min
𝒌∈𝑘

𝜆𝑏+1(𝗱, 𝘂;𝒌) − max
𝒌∈𝑘

𝜆𝑏(𝗱, 𝘂;𝒌)

min
𝒌∈𝑘

𝜆𝑏+1(𝗱, 𝘂;𝒌) + max
𝒌∈𝑘

𝜆𝑏(𝗱, 𝘂;𝒌)
, (49)

is the gap/midgap ratio (Joannopoulos et al., 2011) between the eigenvalues 𝜆𝑏 and 𝜆𝑏+1, that we want to separate. By minimizing
the cost function defined in (48), we promote �̄�𝑏(𝗱, 𝟬) → 0 and �̄�𝑏(𝗱, 𝘂𝑐 ) → ∞.

Unfortunately, the objective defined in (48) leads to convergence issues since the max/min operators in (49) are non-
differentiable. Also, (48) is not differentiable when degenerate eigenvalues occur (see e.g. Seyranian et al., 1994; Dalklint et al.,
2020). To mitigate both of these issues, we first follow Men et al. (2010), and separate the eigenpairs into two sets for each wave
vector 𝒌 ∈ 𝑘 and displacement 𝘂

𝑙(𝗱, 𝘂,𝒌) = {𝜆𝑗 (𝗱, 𝘂;𝒌) ≤ 𝜆𝑏(𝗱, 𝘂;𝒌), 𝑛min
𝜆 ≤ 𝑗 ≤ 𝑏, 𝒌 ∈ 𝑘},

𝑢(𝗱, 𝘂,𝒌) = {𝜆𝑗 (𝗱, 𝘂;𝒌) ≥ 𝜆𝑏+1(𝗱, 𝘂;𝒌), 𝑏 + 1 ≤ 𝑗 ≤ 𝑛max
𝜆 , 𝒌 ∈ 𝑘},

(50)

where 𝑛min
𝜆 > 1 and 𝑛max

𝜆 < 𝑛dof truncate the full eigenspace. These sets let us introduce the differentiable conservative approximations

max
𝒌∈𝑘

(

max
𝜆𝑗∈𝑙(𝗱,𝘂,𝒌)

𝜆𝑗 (𝗱, 𝘂;𝒌)

)

≈ ‖𝑳(𝗱, 𝘂)‖𝑝𝑘 =

⎛

⎜

⎜

⎜

⎝

𝑛𝑘
∑

𝑛=1

⎛

⎜

⎜

⎝

𝑛max
𝜆
∑

𝑗=𝑛min
𝜆

𝜆𝑗 (𝗱, 𝘂;𝒌𝑛)𝑝𝜆
⎞

⎟

⎟

⎠

𝑝𝑘∕𝑝𝜆⎞
⎟

⎟

⎟

⎠

1∕𝑝𝑘

,

min
𝒌∈𝑘

(

min
𝜆𝑗∈𝑢(𝗱,𝘂,𝒌)

𝜆𝑗 (𝗱, 𝘂;𝒌)
)

≈ 1
‖𝑼 (𝗱, 𝘂)‖𝑝𝑘

=

⎛

⎜

⎜

⎜

⎝

𝑛𝑘
∑

𝑛=1

⎛

⎜

⎜

⎝

𝑛max
𝜆
∑

𝑗=𝑛min
𝜆

1
𝜆𝑗 (𝗱, 𝘂;𝒌𝑛)𝑝𝜆

⎞

⎟

⎟

⎠

𝑝𝑘∕𝑝𝜆⎞
⎟

⎟

⎟

⎠

−1∕𝑝𝑘

.

(51)

As seen above, two 𝑝-norms are used to approximate the max/min operations, such that

lim
𝑝𝑘→∞

(

‖

‖

‖

‖

lim
𝑝𝜆→∞

𝑳(𝗱, 𝘂)
‖

‖

‖

‖𝑝𝑘

)

= max
𝒌∈𝑘

(

max
𝜆𝑗∈𝑙 (𝗱,𝘂,𝒌)

𝜆𝑗 (𝗱, 𝘂;𝒌)

)

,

lim
𝑝𝑘→∞

(

‖

‖

‖

‖

lim
𝑝𝜆→∞

𝑼 (𝗱, 𝘂)
‖

‖

‖

‖

−1

𝑝𝑘

)

= min
𝒌∈𝑘

(

min
𝜆𝑗∈𝑢(𝗱,𝘂,𝒌)

𝜆𝑗 (𝗱, 𝘂;𝒌)
)

.

(52)

This approach was also used by Swartz et al. (2021) and Quinteros et al. (2021).
To further improve the rate of convergence, and obtain a more versatile problem formulation, we next follow Qian and Sigmund

(2011) and introduce the auxiliary design variables

𝜆𝑙 ∶= max
𝒌∈𝑘

𝜆𝑏(𝗱, 𝘂𝑐 ;𝒌) ≈ ‖

‖

𝑳(𝗱, 𝘂𝑐 )‖‖𝑝𝑘 > 0, 𝜆𝑢 ∶= min
𝒌∈𝑘

𝜆𝑏+1(𝗱, 𝘂𝑐 ;𝒌) ≈
1

‖

‖

𝑼 (𝗱, 𝘂𝑐 )‖‖𝑝𝑘
> 0,

𝜆𝑙𝑜 ∶= max
𝒌∈𝑘

𝜆𝑏(𝗱, 𝟬;𝒌) ≈ ‖𝑳(𝗱, 𝟬)‖𝑝𝑘 > 0, 𝜆𝑢𝑜 ∶= min
𝒌∈𝑘

𝜆𝑏+1(𝗱, 𝟬;𝒌) ≈
1

‖𝑼 (𝗱, 𝟬)‖𝑝𝑘
> 0,

(53)

nd append these to the vector of design variables, i.e. 𝜻 =
[

𝗱, 𝜆𝑢, 𝜆𝑙 , 𝜆𝑢𝑜, 𝜆
𝑙
𝑜
]𝑇 , so that (49) simplifies to

𝐵𝑏(𝜻 , 𝟬) =
𝜆𝑢𝑜 − 𝜆𝑙𝑜
𝑢 𝑙 and 𝐵𝑏(𝜻 , 𝘂𝑐 ) =

𝜆𝑢 − 𝜆𝑙
𝑢 𝑙 . (54)
8

𝜆𝑜 + 𝜆𝑜 𝜆 + 𝜆
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Fig. 4. Illustration of the effect on the eigenvalues when employing the constraints (55) in combination with (48) for 𝑏 = 3 and 𝑏 + 1 = 4. The bandgap (a) is
minimized in 𝛺 and (b) is maximized in 𝛺𝑐 .

To accommodate the (53) design variables we enforce four constraints in our optimization problem

𝑔1 = ‖

‖

𝑳(𝗱, 𝘂𝑐 )‖‖𝑝𝑘 − 𝜆𝑙 ≤ 0

𝑔2 = 𝜆𝑢 − 1
‖

‖

𝑼 (𝗱, 𝘂𝑐 )‖‖𝑝𝑘
≤ 0

𝑔3 = 𝜆𝑙𝑜 − ‖𝑳(𝗱, 𝟬)‖𝑝𝑘 ≤ 0

𝑔4 =
1

‖𝑼 (𝗱, 𝟬)‖𝑝𝑘
− 𝜆𝑢𝑜 ≤ 0

, ∀𝒌 ∈ 𝑘, (55)

cf. Fig. 4.
Unfortunately, the block composition of (39) poses problems in the subsequent sensitivity analysis, as all eigenvalues appear

at least twice. Therefore, each eigenvalue of (39) satisfies either; 1) the eigenvalue is twice-degenerate and originally simple, or
2) the eigenvalue is 2𝑁-degenerate and originally 𝑁-degenerate. For case 1), the two associated eigenvectors simply differ by the
scalar factor 𝑖, wherefore any of the two eigenvectors could be used in the subsequent sensitivity analysis. The second case is more
involved, since it is not obvious which eigenvectors differ by the factor 𝑖, and which span the 𝑁-dimensional complex hyperplane.

owever, since we approximate the constraints using the symmetric polynomials (51), we overcome this issue by simply including
ll 2𝑁-tuples of eigenvalues of interest in N𝜆.

Combining (49)–(55) leads to a ‘‘bound’’ formulation used for fundamental eigenfrequency maximization, cf. Bendsøe et al.
1983). To summarize, the optimization problem that we solve is formulated as

(P)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
𝜻

𝑔𝑜 = 𝐻(𝐵𝑏(𝜻 , 𝟬)) − 𝐵𝑏(𝜻 , 𝘂𝑐 ),

s.t
⎧

⎪

⎨

⎪

⎩

𝑔𝑗 ≤ 0, 𝑗 ∈ {1,… , 4},
0 < 𝜆𝑢, 𝜆𝑙 , 𝜆𝑢𝑜, 𝜆

𝑙
𝑜,

0 ≤ 𝖽𝑒 ≤ 1, 𝑒 ∈ N∗
𝑒 .

(56)

.1. Sensitivity analysis

The gradient based nonlinear programming method MMA, cf. Svanberg (1987), is used to solve (56). The gradients of the cost
nd constraint functions with respect to the design variables 𝗱 are derived below. The sensitivities with respect to the auxiliary
ariables 𝜆𝑢, 𝜆𝑙, 𝜆𝑢𝑜 and 𝜆𝑙𝑜 are trivially obtained.

The symmetry (47) and filter (44) operations in combination with the chain rule, provide the sensitivities with respect to 𝗱, i.e.
𝜕𝑔𝑗
𝜕𝗱

=
𝜕𝑔𝑗
𝜕𝝂

𝜕𝝂
𝜕𝝂∗

𝜕𝝂∗
𝜕𝘇

𝜕𝘇
𝜕𝗱

, 𝑗 ∈ {0,… , 4}. (57)

n the above, 𝜕𝑔𝑗
𝜕𝝂 is obtained via the adjoint method described in Appendix A and 𝜕𝝂

𝜕𝝂∗ = 𝗧𝜈 , cf. (45). The product 𝜕𝑔𝑗
𝜕𝝂

𝜕𝝂
𝜕𝝂∗

𝜕𝝂∗
𝜕𝘇 is

obtained by a second adjoint sensitivity analysis described in Lazarov and Sigmund (2011). Finally, 𝜕𝘇
𝜕𝗱 = 𝗤 is readily obtained from

(47).

7. Numerical examples

The unit cell with side-length 𝑎1 = 𝑎2 = 𝑎 = 10 mm, is discretized using 2D bilinear quadrilateral plane strain fully integrated
elements, unless stated otherwise. We assume an elastomeric matrix (material phase 1) and aluminum inclusions (material phase
2), described by material parameters stated in Table 1, cf. (43).

We solve the optimization problem (P) using the MMA-scheme with default parameters, cf. Svanberg (1987). Following Swartz
et al. (2021), we solve (P) on a sequence of four increasingly refined finite element meshes to improve the convergence and reduce
9
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Table 1
Material parameters.
𝐾1 [GPa] 𝐾2 [GPa] 𝐺1 [GPa] 𝐺2 [GPa] 𝜌1 [103 kg∕m3] 𝜌2 [103 kg∕m3]

1.167 72.92 0.2500 26.12 1.000 2.700

the CPU wall-time. Each refinement is uniform, such that the meshes contain 10 × 10, 20 × 20, 40 × 40 and 80 × 80 elements. The
refinement is performed in optimization iteration 𝑗 when ‖

‖

‖

𝜻 𝑗 − 𝜻 𝑗−1
‖

‖

‖2
< 10−2. The filter (44) is only activated on the 80 × 80 mesh,

with 𝑙 = 0.25∕2
√

3 mm. On each mesh we initially choose 𝜆𝑢, 𝜆𝑙, 𝜆𝑢𝑜 and 𝜆𝑙𝑜 such that the constraints (55) are inactive, i.e. such that
𝑔1 = 𝑔2 = 𝑔3 = 𝑔4 = 10−4. In this way, we ensured a feasible initial design, which improves convergence.

To improve the numerical stability when computing (51), we scale (39) as
(

�̂�
∙ − �̂�𝑗𝗠

∙
)

𝝓∙
𝑗
= 𝟬, 𝑗 ∈ N𝜆, (58)

where �̂�
∙ = 𝗞∙∕𝑐2𝑡0, �̂�𝑗 = 𝜆𝑗∕𝑐2𝑡0 and 𝑐𝑡0 =

√

𝐺1∕𝜌1 is the transverse speed of sound of the matrix material. In all examples, we sample
the boundary of the Brillouin zone, i.e. we solve (39), 𝑁𝑘 = 35 times, and equate 𝑛min

𝜆 = 1, 𝑛max
𝜆 = 12, cf. (50), and 𝑝𝑘 = 𝑝𝜆 = 16.

Also, to limit convergence oscillations, we explicitly control the moving asymptotes, i.e. the MMA approximation, for the 𝜆𝑢, 𝜆𝑙, 𝜆𝑢𝑜
and 𝜆𝑙𝑜 bound variables, cf. Verbart et al. (2017).

The bandgaps of the optimized designs have been verified by querying the entire IBZ, i.e. 𝑘 on a 11 × 11 grid.

7.1. Uniaxial loading

In the first example, we impose uniaxial loading with 𝛥𝑢11 = 1 mm. We equate 𝑏 = 3 in the objective function (48), wherefore
we aim to tune the 𝜆3–𝜆4 bandgap. The initial design 𝗱 is random. The topology optimization problem is nonconvex and it is well
known that the MMA finds relative minimum that are ‘‘close’’ to the initial design. In addition, the occurrence of mode-crossing
might inhibit the optimization from generating designs with bandgaps. For these reasons, the problem is solved for 20 initial designs.
In Fig. 5 we depict the three best performing designs, together with their corresponding dispersion diagrams.

To gain physical insight of the results presented in Fig. 5, in Fig. 6 we show the eigenmodes that bound the bandgaps of the
three considered designs. We find that the modes 𝑚1 and 𝑚3 of the design reported in Fig. 5(a) as well as modes 𝑚5 and 𝑚7 of the
design reported in Fig. 5(b) localize at the thin aluminum members. Upon loading, the thin aluminum members stiffen, causing an
overall increase in the 𝑏 = 4 band frequency. Focusing on the design of Fig. 5(c), we note that the horizontal elastomeric inclusions
embedded in the large aluminum plates reduce the body’s shearing and bending resistance. This is reasonable since the upper
bound of the bandgap in the undeformed configuration consists of shearing and bending modes (cf. 𝑚9), and the bandgap should be
minimized. As before, the horizontal aluminum bars are subject to stiffening upon loading, wherefore the frequency is marginally
increased (cf. 𝑚11).

Differently, the modes 𝑚2, 𝑚4, 𝑚6, 𝑚8, 𝑚10 and 𝑚12 involves oscillations of the large aluminum plates. Interestingly, upon
pplication of uniaxial tension, the frequencies of these modes decrease. This phenomena is readily explained by examining Fig. 7,
here the 𝑝1 and 𝑝2 modes of Fig. 5(b) design are shown. We note that in the undeformed configuration, the 𝑝1 mode localizes

to the area in between the unit cells in the 𝑦-direction, whereas in the deformed configuration, the 𝑝2 mode is evenly distributed
over the entire aluminum body. This leads to an increase of the effective mass that is oscillating in the deformed configuration,
and thereby a decrease of the frequency (cf. (39)). This redistribution of the mode is attributed to the stiffening effect which occurs
when applying the load. In general, we conclude that there are mainly three effects that enables the tunability of the bandgaps,
namely the changes in 1) the local material tangent, 2) the stress distribution and 3) the effective mass.

The Fig. 5(a) design outperforms the others, and will therefore be subject to further analysis. The evolution of Fig. 5(a) unit
cell design and performance during the mesh refinement iterations is depicted in Fig. 8. Each mesh encompasses finer details than
its predecessor, while preserving the main features. As expected, we also observe a downward shift of the eigenfrequencies when
refining the mesh, with the greatest shift occurring during the first mesh refinement. Also as expected, the objective function worsens
when activating the filter.

Since Fig. 8(d) design has a diffuse boundary caused by the interpolation and filtering, we conduct a post-processing analysis
to further verify its performance. To this end, a Heaviside projection (cf. Guest et al. (2004), Kawamoto et al. (2011)) with a
large threshold parameter is imposed on the filtered field 𝜈 to obtain a strictly binary design. The internal boundaries of the
post-processed design are identified using the marching squares algorithm (cf. Lorensen and Cline (1987)), which facilitates the
subsequent triangularization performed in GMSH (Geuzaine and Remacle, 2009). We emphasize that the interpretation of Fig. 5(a)
design is non-unique.

The conforming mesh consists of fully integrated triangular elements. To ensure that the unit cell remains orthotropic, a quarter
of the unit cell is discretized and subsequently reflected to obtain the unit cell mesh. The results from the post-processing analysis
of Fig. 5(a) design are depicted in Fig. 9.

In Table 2, we denote the (48) objective function value and (49) gap/midgap ratios for the ersatz and conforming analyses.
This performance loss shows the importance of accurate interface modeling. Indeed, the greatest gap/midgap ratios in the 𝛺 and
10
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Journal of the Mechanics and Physics of Solids 163 (2022) 104849A. Dalklint et al.
Fig. 5. The undeformed unit cell designs for 𝑏 = 3, cf. (48), together with their corresponding dispersion diagrams computed in 𝛺 and 𝛺𝑐 . The bandgap between
𝜆3 and 𝜆4 is highlighted in green. The red marks indicate max

𝒌∈𝑘

𝜆3 and min
𝒌∈𝑘

𝜆4, respectively. The blue marks indicate 𝜆3 corresponding to 𝒌-point X for 𝛺 and

𝛺𝑐 . Note that 𝜈 is the filtered density field obtained from (44), i.e. 𝜈(𝑿) = 0 indicates that material point 𝑿 contains the elastomer, whereas 𝜈(𝑿) = 1 indicates
that material point 𝑿 contains the aluminum.

Table 2
The objective function value and gap/midgap ratios associated with the Fig. 5(a)
design.

Original design Conforming mesh

�̄�𝑜 [–] 0.252 0.656
�̄�3 (𝗱,𝟬) [–] 0.00511 0.197
�̄�3 (𝗱,𝘂) [–] 0.274 0.324

material contrast. Naturally, if the gap/midgap ratio in 𝛺 and 𝛺𝑐 both increase, it is not obvious that the value of our objective
function should improve. We conclude this example by depicting the deformed/undeformed 3 × 3 unit cell arrays corresponding to
the conforming mesh, cf. Fig. 10. We also illustrate the bandgaps between 𝜆3 and 𝜆4 as functions of the uniaxial stretch 𝛾.

The next example considers the same problem but for higher frequencies, by equating 𝑏 = 5 (Figs. 11 and 12) and 𝑏 = 6 (Figs. 13
and 14), cf. (48). It was difficult to find bandgap designs when starting from a random initial design. Therefore, we used stiff cross
and stiff circle initial designs to obtain Figs. 11 and 13 designs, respectively. In Figs. 12 and 14, we see the corresponding 3 × 3
arrays of unit cells and their bandgaps versus stretch 𝛾 plots.

Finally, we note that several of the identified optimal designs exhibit small structural features. To investigate the effect of such
small features on the dispersion relation, we focus on the design presented in Fig. 11(b) and conduct two additional deformation–
dispersion analyses in which some of these features are manually removed. First, we remove the aluminum members highlighted
by the red ellipses in Fig. 15. As shown in Fig. 16(a), we find that the band gaps are minimally affected by these modifications
in the design. Second, we remove all features highlighted by the red and black ellipses in Fig. 15. The band diagrams shown in
Fig. 16(b) indicate that this modification has a profound effect on the bandgaps. As such, we conclude that some of the small
structural features play an important role, while others do not. This means that additional analyses are required before concluding
11
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Fig. 6. A selection of modes for Fig. 5 designs in 2 × 2 unit cell arrays. The red arrows indicate the motion. A movie of the mode motions is provided as
Supplementary Material, see Appendix B.

Fig. 7. The 𝑝1 and 𝑝2 modes for Fig. 5(b) design. Colors indicate wave amplitude in the 𝑥-direction.

whether or not various features are necessary and whether or not the designs require strict manufacturing tolerances. A way of
addressing the latter issue is to introduce a robust formulation in the optimization formulation, cf. e.g. Wang et al. (2011).

7.2. Biaxial loading

In this example, we consider the biaxial loading conditions with 𝛥𝑢11 = 𝛥𝑢22 = 1 mm. Using a random initial design and 𝑏 = 3
renders Fig. 17 design. Choosing 𝑏 = 6 and an initial stiff circle design produces Fig. 19 design. The results further confirm that
our framework is able to produce designs with the desired dispersion–deformation behavior. When performing the post-processing
analysis, we again note a decrease in performance, cf. Figs. 17(b) and 19(b). As before, we depict the corresponding post-processed
3 × 3 arrays of unit cells and their bandgap versus stretch 𝛾 plots in Figs. 18 and 20.

8. Conclusions

We have demonstrated the use of density based topology optimization to design tunable phononic crystals. Several designs, with
tunable wave propagation properties are produced. To solve the optimization problems, we employed the gradient based MMA
scheme. A mesh refinement procedure is used to reduce the computational cost of the design optimization, and a minimal length
scale of the design is imposed via the PDE filter to facilitate their fabrication.
12
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Fig. 8. The evolution of the 5(a) design over the refinement iterations. The red marks indicate max
𝒌∈𝑘

𝜆3 and min
𝒌∈𝑘

𝜆4, respectively.

We investigate the effect of the diffuse interfaces, by comparing their performance to their corresponding binary design in a
post-processing analysis. The comparison demonstrates that diffuse boundaries have great influence on the dispersive properties of
the structures. To address this issue, a Heaviside projection continuation scheme could be included in our optimization framework.
However, this greatly increases the number of design iterations, and thereby the computational burden to an already costly procedure
due to the great number of eigenvalue solves. In addition, many different initial designs must be used due to the nonconvexity of
the topology optimization problem and the occurrence of mode-crossing. In the future, we will investigate means to reduce the cost
of the eigenvalue solves.

We limit ourselves to uniaxial and biaxial extension. In states of compression, the effects of pattern transformations caused by
instabilities (cf. Bertoldi and Boyce, 2008a,b; Wang et al., 2014) could be exploited to obtain desired wave propagation properties.
13
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Fig. 9. The results from the post-processing analysis of Fig. 5(a) design. The red marks indicate max
𝒌∈𝑘

𝜆3 and min
𝒌∈𝑘

𝜆4, respectively.

Fig. 10. The 3 × 3 unit cell array in (a) undeformed 𝛺 and (b) deformed 𝛺𝑐 configurations. In (c), the 𝜆3–𝜆4 bandgaps versus the uniaxial stretch 𝛾 are plotted.

Fig. 11. The original (a) and post-processed (b) undeformed unit cell design (left) for 𝑏 = 5, cf. (48), and their corresponding dispersion diagrams computed
over 𝛺 (center) and 𝛺𝑐 (right). The bandgaps between 𝜆5 and 𝜆6 are highlighted in green. The red marks indicate max

𝒌∈𝑘

𝜆5 and min
𝒌∈𝑘

𝜆6, respectively.
14
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Fig. 12. The 3 × 3 unit cell array in (a) undeformed 𝛺 and (b) deformed 𝛺𝑐 configurations. In (c), the 𝜆5–𝜆6 bandgaps versus the uniaxial stretch 𝛾 are plotted.

Fig. 13. The original (a) and post-processed (b) undeformed unit cell design (left) for 𝑏 = 6, cf. (48), and their corresponding dispersion diagrams computed
over 𝛺 (center) and 𝛺𝑐 (right). The bandgaps between 𝜆6 and 𝜆7 are highlighted in green. The red marks indicate max

𝒌∈𝑘

𝜆6 and min
𝒌∈𝑘

𝜆7, respectively.

Fig. 14. The 3 × 3 unit cell array in (a) undeformed 𝛺 and (b) deformed 𝛺𝑐 configurations. In (c), the 𝜆6–𝜆7 bandgaps versus the uniaxial stretch 𝛾 are plotted.
15
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Fig. 15. The Fig. 11(b) design with ellipses indicating features which are removed in a post-processing analysis.

Fig. 16. The Fig. 15 design when (a) removing the aluminum members in the red ellipses (b) removing all features in the red and black ellipses, and their
corresponding dispersion diagrams computed over 𝛺 (center) and 𝛺𝑐 (right). The bandgaps between 𝜆5 and 𝜆6 are highlighted in green. The red marks indicate
max
𝒌∈𝑘

𝜆5 and min
𝒌∈𝑘

𝜆6, respectively.
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Fig. 17. The original (a) and post-processed (b) undeformed unit cell design (left) for 𝑏 = 3, cf. (48), and their corresponding dispersion diagrams computed
over 𝛺 (center) and 𝛺𝑐 (right). The bandgaps between 𝜆3 and 𝜆4 are highlighted in green. The red marks indicate max

𝒌∈𝑘

𝜆3 and min
𝒌∈𝑘

𝜆4, respectively.

Fig. 18. The 3 × 3 unit cell array in (a) undeformed 𝛺 and (b) deformed 𝛺𝑐 configurations. In (c), the 𝜆3–𝜆4 bandgaps versus the uniaxial stretch 𝛾 are plotted.

Appendix A

The sensitivity of the objective function (54) is trivial

𝜕𝑔𝑜 = 𝟎. (59)
17
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Fig. 19. The original (a) and post-processed (b) undeformed unit cell design (left) for 𝑏 = 6, cf. (48), and their corresponding dispersion diagrams computed
over 𝛺 (center) and 𝛺𝑐 (right). The bandgaps between 𝜆6 and 𝜆7 are highlighted in green. The red marks indicate max

𝒌∈𝑘

𝜆6 and min
𝒌∈𝑘

𝜆7, respectively.

Fig. 20. The 3 × 3 unit cell array in (a) undeformed 𝛺 and (b) deformed 𝛺𝑐 configurations. In (c), the 𝜆6–𝜆7 bandgaps versus the uniaxial stretch 𝛾 are plotted.

The sensitivities of the 𝑔1 and 𝑔2 constraints functions, cf. (51), are obtained from the chain rule, i.e.

𝜕𝑔1
𝜕𝝂

= ‖𝑳‖(1−𝑝𝑘)𝑝𝑘

⎛

⎜

⎜

⎝

𝑛𝑘
∑

𝑛=1

⎡

⎢

⎢
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𝑛

⎛

⎜

⎜

⎝

𝑛max
𝜆
∑
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⎟

⎟

⎠

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠
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𝜕𝑔2
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= 1
‖𝑼‖

(1+𝑝𝑘)
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⎟
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⎤
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,

(60)

where 𝐿𝑛 =
(

∑𝑛max
𝜆
𝑗=𝑛min

𝜆
𝜆𝑗 (𝗱, 𝘂;𝒌𝑛)𝑝𝜆

)1∕𝑝𝜆
and 𝑈𝑛 =

(

∑𝑛max
𝜆
𝑗=𝑛min

𝜆

1
𝜆𝑗 (𝗱,𝘂;𝒌𝑛)𝑝𝜆

)1∕𝑝𝜆
. The unknown 𝜕𝜆𝑗

𝜕𝝂 sensitivity in (60) is derived by

premultiplying the eigenvalue problem (39) by 𝝓∙𝑇 and subtracting 𝝁∗𝑇
𝑗 𝗿∗ = 0 to the result giving the equality

𝝓∙𝑇 (

𝗞∙ − 𝜆 𝗠∙)𝝓∙ − 𝝁∗𝑇 𝗿∗ = 0, (61)
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where 𝝁∗
𝑗 is the adjoint periodic displacement. Differentiating (61) with respect to 𝝂, noting that

(

𝗞∙ − 𝜆𝑗𝗠
∙)𝝓∙

𝑗
= 𝟬 and using the

symmetries 𝗞∙𝑇 = 𝗞∙ and 𝗠∙𝑇 = 𝗠∙, yields

𝝓∙𝑇
𝑗

( 𝜕𝗞∙

𝜕𝝂
+

𝜕𝗞∙

𝜕𝘂∗
𝜕𝘂∗

𝜕𝝂
−

𝜕𝜆𝑗
𝜕𝝂

𝗠∙ − 𝜆𝑗
𝜕𝗠∙

𝜕𝝂

)

𝝓∙
𝑗
− 𝝁∗𝑇

𝑗
𝜕𝗿∗

𝜕𝝂
− 𝝁∗𝑇

𝑗
𝜕𝗿∗

𝜕𝘂∗
𝜕𝘂∗

𝜕𝝂
= 0. (62)

sing the normalization condition 𝝓∙𝑇
𝑘
𝗠∙𝝓∙

𝑙
= 𝛿𝑘𝑙 and some rearranging yields

𝜕𝜆𝑗
𝜕𝝂

= 𝝓∙𝑇
𝑗

( 𝜕𝗞∙

𝜕𝝂
− 𝜆𝑗

𝜕𝗠∙

𝜕𝝂

)

𝝓∙
𝑗
− 𝝁∗𝑇

𝑗
𝜕𝗿∗

𝜕𝝂
+
⎛

⎜

⎜

⎝

𝜕𝝓∙𝑇
𝑗
𝗞∙𝝓∙

𝑗

𝜕𝘂∗
− 𝝁∗𝑇

𝑗
𝜕𝗿∗

𝜕𝘂∗

⎞

⎟

⎟

⎠

𝜕𝘂∗

𝜕𝝂
. (63)

o annihilate the implicit 𝜕𝘂∗

𝜕𝝂 sensitivity, we choose 𝝁∗
𝑗 such that

𝗞∗𝝁∗
𝑗 = 𝗣𝑇

𝜕𝝓∙𝑇
𝑗
𝗞∙𝝓∙

𝑗

𝜕𝘂
, (64)

where we used (32), (34), (37) and (40). In this way, (63) reduces to
𝜕𝜆𝑗
𝜕𝝂

= 𝝓∙𝑇
𝑗

( 𝜕𝗞∙

𝜕𝝂
− 𝜆𝑗

𝜕𝗠∙

𝜕𝝂

)

𝝓∙
𝑗
− 𝝁𝑇

𝑗
𝜕𝗙𝑖𝑛𝑡
𝜕𝝂

, (65)

here we define 𝝁𝑗 ∶= 𝗣𝝁∗
𝑗 . The (65) sensitivity is essentially equivalent to the one obtained in the nonlinear macroscopical

ibrational problem solved by Dalklint et al. (2020). Since both 𝗞 and 𝗠 are real, symmetric and continuously differentiable with
respect to 𝝂, and (51) are symmetric polynomials of the eigenvalues, the Fréchet derivatives (60) exist in the case of degenerate
eigenvalues, cf. Torii and De Faria (2017), Torii et al. (2015) and Gravesen et al. (2011). The 𝑔3, 𝑔4 sensitivities are obtained from
(65) by replacing 𝘂𝑐 with 𝘂 = 𝟎.

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2022.104849.
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