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We investigate the mechanical response of thin sheets perforated with a square array of mutually
orthogonal cuts, which leaves a network of squares connected by small ligaments. Our combined
analytical, experimental and numerical results indicate that under uniaxial tension the ligaments buckle out
of plane, inducing the formation of 3D patterns whose morphology is controlled by the load direction. We
also find that by largely stretching the buckled perforated sheets, plastic strains develop in the ligaments.
This gives rise to the formation of kirigami sheets comprising periodic distribution of cuts and permanent
folds. As such, the proposed buckling-induced pop-up strategy points to a simple route for manufacturing
complex morphable structures out of flat perforated sheets.
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In recent years, origami [1–9] and kirigami [10–27]
have become emergent tools to design programmable
and reconfigurable mechanical metamaterials. Origami-
inspired metamaterials are created by folding thin sheets
along predefined creases, whereas kirigami allows the
practitioner to exploit cuts in addition to folds to achieve
large deformations and create 3D objects from a flat sheet.
Therefore, kirigami principles have been exploited to
design highly stretchable devices [18–24] and morphable
structures [25–27]. Interestingly, several of these studies
also show that precreased folds are not necessary to form
complex 3D patterns, as mechanical instabilities in flat
sheets with an embedded array of cuts can result in out-of-
plane deformation [19–26]. However, while a wide range of
3D architectures have been realized by triggering buckling
under compressive stresses [25,26], instability-induced
kirigami designs subjected to tensile loading are limited
to a single incision pattern comprised of parallel cuts in a
centered rectangular arrangement [19–23].
In this Letter, we investigate the tensile response of

elastic sheets of thickness t perforated with a square
array of mutually orthogonal cuts. This perforation pattern
introduces a network of square domains of edge l separated
by hinges of width δ [Fig. 1(a)]. While the planar response
of such perforated sheets in the thick limit (i.e., for large
values of t=δ) has received significant attention, as it is
characterized by effective negative Poisson’s ratio [28–36]
[Fig. 1(b)], here we add another dimension and study how
the behavior of the system evolves when the thickness is
progressively decreased (i.e., for decreasing values of t=δ).
Our combined analytical, numerical, and experimental
results indicate that in sufficiently thin sheets mechanical
instabilities triggered under uniaxial tension can be
exploited to create complex 3D patterns and even to guide
the formation of permanent folds. We also find that the
morphology of the instability-induced patterns is strongly

affected by the loading direction [see Figs. 1(c) and 1(d)
and movies 1 in the Supplemental Material [37]), pointing
to an effective strategy to realize functional surfaces
characterized by a variety of architectures.
We start by experimentally investigating the effect of the

sheet thickness t and hinge width δ on the response of
the system subjected to uniaxial tension along the square
diagonals [i.e. for γ ¼ 45°—Fig. 1(c)]. Specimens are
fabricated by laser cutting an array of 3 × 8 mutually
perpendicular cuts [see Fig. 2(b)] into plastic sheets (Artus
Corporation, NJ) with Young’s modulus E ¼ 4.33 GPa
and Poisson’s ratio ν≃ 0.4 (see Supplemental Material:
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(b)
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FIG. 1. (a) Schematic of the system: an elastic sheet of
thickness t perforated with a square array of mutually orthogonal
cuts. (b) In the thick limit (i.e., for large values of t=δ) the
perforated sheet deforms in plane and identically to a network of
rotating squares [28]. (c)–(d) For sufficiently small values of t=δ
mechanical instabilities triggered under uniaxial tension result
in the formation of complex 3D patterns, which are affected by
the loading direction. The 3D patterns obtained for γ ¼ 45° and
γ ¼ 0° are shown in (c) and (d), respectively. Scale bars: 6 mm.
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Experiments [37]). In Fig. 2(a), we report the experimental
stress-strain responses for 10 samples characterized
by different values of normalized thickness t=δ and
normalized hinge width δ=l.
First, it is apparent that the initial response for all

samples is linear. At this stage, all hinges bend in-plane,
inducing pronounced rotations of the square domains
[Fig. 1(b)], which result in large negative values of the
macroscopic Poisson’s ratio [29,30]. As such, the stiffness
of the perforated sheets, Ē, is governed by the in-plane
flexural deformation of the hinges and it can be shown that
(see Supplemental Material: Analytical Exploration [37])

Ē ¼ σx
εx

¼ 2

3
E

�
δ

l

�
2

: ð1Þ

Second, for the thin samples (i.e., t=δ ≪ 1), the curves
reported in Fig. 2(a) also show a sudden departure from
linearity to a plateau stress caused by the out-of-plane
buckling of the hinges. Such buckling in turn induces out-
of-plane rotations of both the square domains and the cuts,
which arrange to form a 3D pattern reminiscent of a
misaligned Miura-ori [38] with an alternation of square
solid faces (corresponding to the square domains) and
rhombic open ones (defined by the cuts) [see Fig. 1(c),
Fig. 2(b) at εx ¼ 0.12 and movie 2 in the Supplemental
Material [37]]. To characterize the critical strain, εc, at
which the instability is triggered, we start by noting that
since the stress immediately after instability is almost
constant, the contribution of out-of-plane strain energy
Uo should be linear in εx, (see Supplemental Material:
Analytical Exploration [37])

UoðεxÞ ¼ Ēεcðεx − εcÞ: ð2Þ

Moreover, assuming that the square domains remain rigid
and that the deformation localizes at the hinges which can
be modeled as flexural beam segments, Uo can also be
written as

UoðεxÞ ¼ 8
1
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where Io ¼ δt3=12, ρo ¼ δ=2θo, and 2θo is the opening
angle of each cut after out-of-plane buckling, which for
γ ¼ 450 is approximated by

θ2o ≃ εx − εc: ð4Þ
Finally, by equating Eqs. (2) and (3) we find that

εc ≃ 1

2

�
t
δ

�
2

; ð5Þ

which despite the simplifications made, compares very well
with our experimental results [Fig. 2(c)] and numerical
simulations [Fig. S6]. Note that a similar expression for the
critical strain has been previously obtained for kirigami
patterns comprising parallel cuts in a centered rectangular
arrangement [23].
Third, for large enough values of the applied strain εx,

the stress σx rises sharply again. This regime starts when
the square domains align [Fig. 2(b) at εx ¼ 0.24] and the
deformation mechanism of the hinges switches from
bending dominated to stretching dominated. At this stage,
localized zones of intense strain (of plastic nature) develop
in the hinges and result in the formation of permanent
folds. Although we start with a flat elastic sheet with an
embedded array of cuts (i.e., a perforated sheet), by largely
stretching it we form a system that comprises a periodic
distribution of both cuts and folds (i.e., a kirigami sheet).
In particular, we note that our kirigami sheets possess
several deformation characteristics of the Miura-ori [2,3]
and zigzag-base folded kirigami [12,13] (see movie 3 in
Supplemental Material [37]), as (i) they are flat foldable
[Fig. 3(a)], (ii) they form a saddle shape with a negative
Gaussian curvature upon nonplanar bending [Fig. 3(b)],
and (iii) they can be twisted under antisymmetric out-of-
plane deformation, [Fig. 3(c)]. However, in contrast to the
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FIG. 2. (a) Experimental stress-strain curves for perforated sheets characterized by different normalized hinge width δ=l and
normalized sheet thickness t=δ for γ ¼ 45°. Note that the stress is normalized by the effective in-plane Young’s modulus
Ē ¼ 2=3Eðδ=lÞ2. (b) Snapshots of the sample with δ=l ¼ 0.06 and t=δ≃ 0.085 at εx ¼ 0, 0.12, and 0.24. (c) Critical strain εc as
a function of ðt=δÞ2 as obtained from experiments (markers) and predicted analytically (dashed line).
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Miura-ori, misaligned Miura-ori and zigzag-base folded
kirigami, the macroscopic Poisson’s ratio of our kirigami
sheets is positive (see movie 4 in the Supplemental Material
[37]). This is the result of the fact that not all the faces are
rigid. As such, the applied tensile deformation not only
results in the rotation of the faces about the connecting
ridges, but also in the deformation of those defined by the

cuts, allowing lateral contraction of the structure. It is also
noteworthy that, differently from the misaligned Miura-ori
that can only be folded to a plane, the additional degree
of freedom provided by the open cuts allow the Miura
kirigami to be laterally flat foldable [movie 4]. Finally, we
note that our Miura kirigami structures have higher bending
rigidity than the corresponding flat perforated sheet [see
Fig. 3(d) and Movie 3 in Supplemental Material [37]].
Having determined that instabilities in thin sheets with

an embedded array of mutually perpendicular cuts can be
harnessed to form complex 3D patterns, we further explore
the design space using finite element (FE) analyses (See
Supplemental Material: FE Simulations [37]). We start
by numerically investigating the response of finite size
samples stretched along the square diagonals (i.e., γ ¼ 45°)
and find excellent agreement with the experimental results
(Fig. S5 and Movie 2 in the Supplemental Material [37]).
This validates the numerical analyses and indicates that
they can be effectively used to explore the response of the
system. First, we use the simulations to understand how
plastic deformation evolves. By monitoring the distribution
of the von Mises stress within the sheets, we find that
plastic deformation initiates at the tip of hinges well after
the buckling onset [see Figs. S6 and S9] and then gradually
expand to fully cover the hinges when the sample is fully
stretched and the deformation mechanism changes from
bending dominated to stretching dominated. Second, we
numerically explore the effect of different loading con-
ditions and find that uniaxial tension is the ideal one to

(a) (b)

(c) (d)

FIG. 3. The buckling-induced Miura kirigami sheet (a) is flat
foldable, (b) forms a saddle shape with a negative Gaussian
curvature upon nonplanar bending, (c) twists under antisymmet-
ric out-of-plane deformation, and (d) has much higher bending
rigidity than the corresponding flat perforated sheet (inset). Note
that the 127 μm thick Miura kirigami sheet shown here supports a
20 g weight.
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FIG. 4. Effect of loading direction γ on the mechanical response of the perforated sheets. Evolution of the (a) normalized stress σx=Ē,
(b) the in-plane macroscopic Poisson’s ratio νyx and (c) the opening angle of cuts 2θo1 and 2θo2 as a function of the applied strain εx for
different values of γ. Note that νyx is negative only for εx < εc (as at this stage the deformation of the structure is purely planar and
identical to that of a network of rotating squares) and that it increases sharply and reaches positive values once the instability is triggered.
(d) Numerical snapshots of 3D patterns obtained at εx ¼ 0.125 for different values of γ. The contours shows the normalized out-of-plane
displacements.
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trigger the formation of well-organized out-of-plane
patterns in our perforated sheets [see Fig. S7]. Third, we
investigate the effect of the loading direction by simulating
the response of periodic unit cells. In Fig. 4(a) we report the
stress-strain responses obtained numerically for perforated
sheets characterized by t=δ ¼ 0.127 and δ=l ¼ 0.04 loaded
uniaxially for γ ¼ 0°, 15°, 30°, and 45°. Our results indicate
that the mechanical response of the perforated sheets under
uniaxial tension is minimally affected by the loading direc-
tion. In fact, the evolution of both stress [Fig. 4(a)] and
macroscopic in-plane Poisson’s ratio [Fig. 4(b)] are similar
for different values of γ. By contrast, we find that the
morphology of the 3D patterns induced by the instability
is significantly affected by γ [Figs. 4(c) and 4(d)].
As the loading directions varies from γ ¼ 45° to γ ¼ 0°,
the symmetry in the opening angle of the two sets of
perpendicular cuts breaks. While for γ ¼ 45° all cuts open
equally (i.e., θo1 ¼ θo2), as we reduce γ, one set becomes
wider (i.e., θo1 monotonically increases) and the other
progressively narrower (i.e., θo2 monotonically decreases)
[Fig. 4(c)]. In the limit case of γ ¼ 0° one set of cuts remains
almost closed and a 3D cubic pattern emerges after buckling
[Fig. 1(d), movie 5]. Furthermore, permanent folds with
direction controlled by γ can be introduced by largely
stretching the perforated sheets. As such, by controlling
the loading direction a variety of kirigami sheets can be
formed [movie 6].While all of themare laterally flat foldable,
we find that by increasing γ from 0° to 45° the resulting
kirigami sheets have higher bending rigidity and their
Gaussian curvature varies from zero (for γ ¼ 0°) to large
negative values (for γ ¼ 45°). Furthermore, by increasing γ,
the resulting kirigami sheets become more compliant under
torsion (movie 6 in the Supplemental Material [37]).
In summary, our combined experimental, analytical,

and numerical study indicates that buckling in thin sheets
perforated with a square array of cuts and subjected to
uniaxial tension can be exploited to form 3D patterns and
even create periodic arrangements of permanent folds.
While buckling phenomena in cracked thin plates subjected
to tension have traditionally been regarded as a route
toward failure [39], we show that they can also be exploited
to transform flat perforated sheets to kirigami surfaces.
Our buckling-induced strategy not only provides a simple
route for manufacturing kirigami sheets, but can also be
combined with optimization techniques to design perfo-
rated patterns capable of generating desired complex 3D
surfaces under external loading [9,11,40]. Finally, since the
response of our perforated sheets is essentially scale-free,
the proposed pop-up strategy can be used to fabricate
kirigami sheets over a wide range of scales, from trans-
formable meter-scale architectures to tunable nanoscale
surfaces [24,41].
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I. ANALYTICAL EXPLORATION

To get a deeper understanding of the mechanical response of the considered patterned

sheets, we analytically investigate their behavior. We first study the initial in-plane linear

elastic response of the system and then characterize the onset of instability resulting in the

formation of 3D patterns. In all our calculations we assume that all deformation is localized

at the hinges and that the square domains are rigid.

Initial in-plane linear elastic response. The stress-strain curves shown in Fig. 2a of

the main text show that the response of all samples is initially linear. Here, we derive an

analytical relation for the effective Young’s modulus of the perforated sheets, Ē, in terms of

the geometrical parameters l and δ, and the Young’s modulus of the sheet E.

We focus on a unit cell comprising four square domains [Fig. S1(a)] and deform it

uniaxially along one set of cuts (i.e. γ = 0◦) by applying a macroscopic stress σx = f/(2lt),

where f is the force applied to the hinges on the vertical boundaries and 2lt denotes its cross

sectional area [Fig. S1(b)]. It is important to note that using standard axis transformation

techniques it has been shown that the planar response of such perforated sheets is not

affected by the loading direction γ [2, 3]. Therefore, although here for the sake of simplicity

we consider γ = 0◦, we expect Ē to be identical for any loading direction (i.e. for any value

of γ).

The applied uniaxial stress generates identical bending moments M at all hinges, which

in turn induce the rotation of all square domains by an angle θi and the opening of the all

(a) (b) (c)

FIG. S1: (a) Schematic of the system in the undeformed configuration: an elastic sheet of thickness

t perforated with a square array of mutually orthogonal cuts. (b) Schematic of the system in the

planarly deformed configuration (c) Free body diagram of a square domain.
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cuts by an angle 2θi [Fig. S1(b)]. Focusing on a single square domain [Fig. S1(c)], it is easy

to see that:

M =
1

4
× fl

2
=

1

4
σxl

2t. (S1)

Moreover, since M must be balanced by the couple induced by the internal loads, we have:

M =
EIi
ρi
, (S2)

where Ii = δ3t/12 is the second moment of area of each hinge about the z-axis and ρi denotes

the curvature of each bent hinge. Assuming that the length of the bent region of the hinge

is approximately equal to the hinge width δ, we obtain:

ρi '
δ

2θi
(S3)

Substitution of Eqs. (S1) and (S3) into Eq. (S2) yields:

σx =
2

3
E

(
δ

l

)2

θi (S4)

Moreover, since the strain in the loading direction is given by:

εx = cos θi + sin θi − 1, (S5)

in the small deformation regime (i.e. θi → 0) we have:

εx ' θi, (S6)

so that

σx =
2

3
E

(
δ

l

)2

εx (S7)

It follows that the effective Young’s modulus of perforated sheet, Ē, is:

Ē =
σx
εx

=
2

3
E

(
δ

l

)2

. (S8)

Finally, we note that considering each hinge as a beam of thickness δ and width t, its

strain energy density under in-plane deformation can be calculated as:

Uhinge =
1

2V

∫ δ

0

EIi
ρ2i

ds =
1

16
Ēε2x (S9)

where V = 4l2t is the volume of the unit cell. The in-plane strain energy density of a unit

cell comprising eight hinges is then given by:

Ui = 8× Uhinge =
1

2
Ēε2x (S10)
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Transition from in-plane to out-of-plane response. The stress-strain curves

reported in Fig. 1a of the main text also show that the thin samples (i.e. t/δ � 1) are

characterized by a sudden departure from linearity to a plateau stress. This sudden departure

from linearity is the result of out-of-plane buckling of the ligaments and occurs when the

out-of-plane deformation of the hinges becomes energetically less costly than their in-plane

deformation. While the strain energy density of a perforated sheet that has deformed in-

plane is given by Eq. (S10), the strain energy density of a perforated sheet that has deformed

alignment of hinges 

along the loading direction 

in
-p

la
ne d

efo
rm

a�on

out-of-plane deforma�on

in-plane deforma�on

out-of-plane deforma�on

(b)

(c)

(d)

(a)

(e)
A

B

FIG. S2: (a) Schematic of the stress-strain relationship for a perforated sheet that deform in-plane

(red line) and out-of-plane (red line). (b) Schematic of the evolution of the strain energy versu the

applied strain for a perforated sheet that deform in-plane (red line) and out-of-plane (red line). (c)

Schematic of a unit cell deforming in-plane. (d) Schematic of a unit cell deforming out-of-plane.

(e) Paper model of the unit cell deformed out-of-plane. The model clearly shows that the hinges

are aligned along the loading direction.
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out-of plane can be expressed as:

Ubuckled(εx) = Ui(εc) + Uo(εx) (S11)

where εc is the critical strain at which buckling occurs and Uo is energy contribution due to

the out-of-plane deformation.

Since σx = dUbuckled/dεx and the stress immediately after instability is almost constant

[Fig. S2(b)], it follows that Uo(εx) is approximately linear in εx [Fig. S2(a)] and can be

identified as the tangent of Ui(εx) at εc:

Uo(εx) = Ēεc(εx − εc) (S12)

Moreover, as all hinges bend out-of-plane, Uo(εx) can also be expressed as:

Uo(εx) = 4× 1

2V

∫ δ

0

EIo
ρ2o1

ds+ 4× 1

2V

∫ δ

0

EIo
ρ2o2

ds =
1

6
E

(
t

l

)2

(θ2o1 + θ2o2) (S13)

where Io = δt3/12 is the second moment of area with respect to x-axis (y-axis) for hinges

along y-axis (x-axis), ρoj = δ/(2θoj) is the out-of-plane curvature of the deformed hinges and

2θoj is the opening angle of an hinge after out-of-plane buckling. Note that, in general, after

buckling the opening angles of the hinges within the perforate sheet can take two values,

2θo1 and 2θo2 (i.e. not all hinges open equally after buckling).

While Eq. (S13) is valid for any loading direction, for γ = 45o (i.e. loading along the

square diagonals) θo1 = θo2 = θo, so that Eq. (S13) simplifies to:

Uo(εx) = 8× 1

2V

∫ δ

0

EIo
ρ2o

ds =
1

3
E

(
t

l

)2

θ2o. (S14)

The critical strain εc can then be determined by equation Eqs. (S12) and (S14) after having

expressed θo as a function of εx. To this end, we first note that for γ = 45o [Fig. S2(d)]

cos 2θo = cosα sin 2β (S15)

where α ∈ [0, π/2] determines the orientation of the square domains with respect to xy-plane

and

β = arccos
1 + εx√

2
. (S16)

is the angle between the edge of the square domain placed on the xy-plane and the x-axis.
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Moreover, since the experiments indicate that for γ = 45◦ the hinges are approximately

aligned along the loading direction [see paper illustration in Fig. S2(e)], the distance between

points A and B shown in Fig. S2(d) remains constant (i.e. |AB| =
√

5l) and

cosα = tan β. (S17)

While Eq. (S17) is exact well into the postbuckling regime, it does not correctly capture

the response of the system at the onset of instability, as it predicts α 6= 0 for εc (i.e. it

predicts that the square are already rotated out of the xy-plane when the instability is

triggered). To correct for this, we modify Eq. (S17) as

cosα ' tan(β + θc), for εx ≥ εc. (S18)

where θc = π/4−βc denotes the opening angle associated to εc. Note that, according to Eq.

(S18), α = 0 at εc Substitution of Eqs. (S16) and (S18) into Eq. (S15) yields:

θo(εx) =
1

2
arccos

[
sin

(
2 arccos

1 + εx√
2

)
tan

(
π

4
+ arccos

1 + εx√
2
− arccos

1 + εc√
2

)]
(S19)

Although Eq. (S19) provides a highly non-linear relation between θo and εx, close to the

instability point θ2o(εx) can be approximated as

θ2o(εx) ' εx − εc (S20)

and can be then inserted into Eq. (S11) to express Uo in terms of εx. Finally, the critical

strain εc can be determined by substituting Eq. (S20) into Eq. (S14) and then equating it

to Eq. (S12):

εc '
1

2

(
t

δ

)2

(S21)

This relation shows that the critical strain scales quadratically with t/δ and despite

several simplifications made, it compares very well with both experimental [Fig. 2(c)] and

numerical [Fig. S8] results.

II. EXPERIMENTS

Fabrication Specimens are fabricated by laser cutting an array of 3 × 8 mutually

perpendicular cuts into plastic sheets (Artus Corporation, NJ). Total number of 10 samples
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FIG. S3: Stress-strain curves of the plastic sheets obtained by stretching them uniaxially. The

sheets with t = 50.8, 76.2 and 127µm are made of polyester, while the one with t = 508µm is made

of PETG.

εp 0 0.002 0.004 0.006 0.008 0.018 0.028

σ (MPa) 66.4 75.78 80.52 82.75 84.45 88.09 89.06

TABLE S1: Plastic strain (εp) versus stress (σ) for the three polyester sheets.

are fabricated with a combination of different sheet thickness (t = 50.8µm, 76.2µm, 127µm

and 508µm) and three normalized hinge widths (δ/l = 0.06, 0.1, 0.14). Note that in all

our samples l = 10mm. The material properties of the plastic sheets used in this study

are characterized by performing uniaxial tensile tests (ASTM D882) with a uniaxial testing

machine (Instron 5566) equipped with a 100N load cell. Strips with a width of 10 mm and

gauge length of 120 mm are fully clamped at both ends using a pneumatic gripper and

stretched with a displacement rate of 0.1 mm/s up to ε = 0.8 [Fig. S3]. The stress-strain

curves reported in Fig. S3 indicate that the polyester sheets with thickness t = 50.8µm

(red line), 76.2µm (green line), 127µm (blue line) are characterized by a Young’s modulus

E = 4.33 GPa. Moreover, their 0.2% offset yield strength is measured as σy = 66.4 MPa

and their plastic strain εp versus σ is reported in the Table S1 up to fully plastic region.

Differently, for the thick PETG sheet (t = 508µm, yellow line) we measure a Young’s

modulus E = 1.75 GPa. Finally, we note that for all the plastic sheets a typical Poisson’s

ratio ν = 0.4 is assumed.
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FIG. S4: (a) Experiment setup and (b) closeup view of the perforated sheet.

Testing. The quasi-static uniaxial tensile response of the perforated sheets comprised

of 3× 8 unit cells was probed by using a uniaxial testing machine (Instron 5566) equipped

with a 10N load cell. All test were conducted under displacement rate of u̇x = 0.1 mm/s

[Fig. S4].

III. FINITE ELEMENT SIMULATIONS

In this Section, we provide details about the Finite Element (FE) simulations conducted

for this study using the commercial package Abaqus\Standard 6.12 (Dassault Systèmes). In

all simulations, the models are discretized with 3D shell elements (S4R) and the cuts in flat

sheets are modeled as seam cracks with duplicate overlapping nodes along the cuts.

Finite size simulations. To validate the FE simulations, we first performed finite size

simulations on perforated sheets similar to those used in experiments comprising an array of

3× 8 cells. The lower boundary of the sample is fixed and a vertical displacement is applied

to the upper boundary while the lateral boundaries are assumed to be traction free. The

material behavior of the plastic sheet is captured using an elasto-plastic model (material

models *ELASTIC and *PLASTIC in Abaqus) with the experimentally characterized

properties (see Fig. S3 and Table S1). The response of the sheets is then simulated

conducting dynamic implicit simulations (*DYNAMIC module in Abaqus). To facilitate

convergence, we introduce some artificial, numerical damping (by setting the parameters

α = −0.41421, β = 0.5 and γ = 0.91421 in the Hilber-Hughes-Taylor time integration
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FIG. S5: Comparison between experimental and numerical force displacement curves for (a)

δ/l = 0.06, (b) δ/l = 0.1 and (c) δ/l = 0.14 and different thickness t where l = 10mm. (d)

Snapshots of experimental and numerical results at εx = 0.125.

algorithm). Moreover, quasi-static conditions are ensured by monitoring the kinetic energy

and finally, to trigger the instability an imperfection is introduced by applying two opposing

small bias forces normal to the sheet plane at two ends of each cut during the initial phase

of each simulation.

First, we numerically investigate the response of finite size samples stretched along the

square diagonals (i.e. γ = 45◦) and find excellent agreement with the experimental results

(Fig. S5 and Movie 2). This validates the numerical analyses and indicates that they can

be effectively used to explore the response of the system. Moreover, the simulations provide

additional insights, since they allow us to easily monitor the stress distribution within the

sheets and, therefore, to understand how plastic deformation evolves. In Fig. S6 we show
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FIG. S6: Von Mises stress distribution σv at the hinges located in the middle of a finite size sample

characterized by t/δ = 0.06 (l = 10mm and t = 50.8µm) for γ = 45◦. Snapshots at different strain

levels are shown. Note the von Mises stress reaches the yield strength of the material (σy = 66.4

MPa) when εx = 0.032. Gray contours show the regions where σv is larger than the yield strength

σy (i.e. plastic zones).

a close-up view of the distribution of von Mises stress, σv, at the hinges located in the

middle of a finite size sample characterized by t/δ = 0.06 (l = 10mm and t = 50.8µm) for

γ = 45◦. Since for the material considered in this study plastic deformation develops when

σv = σy = 66.4 MPa (see Fig. S3 and Table S1), the snapshots indicate that yielding at

the hinges initiate at εx ' 0.032. Note that, although this is a very small value of strain,

it is well beyond the onset of buckling (for this sample εc ' 0.0036). We then find that the

plastic zone at the hinges gradually increase with the applied strain and fully cover them

when the sample is fully stretched and the deformation mechanism of the hinges changes

from bending-dominated to stretching-dominated.

Second, we use FE to explore the effect of different loading conditions. More specifically,

while in the main text we focus exclusively on perforated sheets subjected to uniaxial tension,

here we investigate the response of a perforated sheet characterized by t/δ = 0.127 and

δ/l = 0.04 and under biaxial deformation applied at γ = 45◦. We perform simulations on a

finite size sample comprising 3 × 3 unit cells and consider three load cases: (i) equibiaxial

tension (i.e. εx = εy > 0), (ii) equibiaxial compression (i.e. εx = εy < 0) and (iii) biaxial

tension/compression (i.e. εx = −εy > 0). For all cases appropriate displacements in the

x-y plane are applied to all nodes on the edges of the models, while constraining their

displacements in z-direction (note that all rotations are left unset).

Our simulations indicate that under equibiaxial tension the structure remains roughly

flat and no out-of-plane pattern emerges [see Fig. S7(a)]. This is because, as indicated by

the Poisson’s ratio results reported in Fig. 4(b) of the main text, the formation of the out-
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FIG. S7: Numerical snapshots of perforated sheets under biaxial loading: (a) equibiaxial tension at

εx = εy = 0.1, (b) equibiaxial compression at εx = εy = −0.1 and (c) biaxial tension/compression

at εx = 0.1 and εy = −0.1.

of-plane pattern is accompanied by lateral contraction and under equibiaxial tension such

contraction is prevented by the tensile stretch applied in the transverse direction. Moreover,

as shown in Fig. S7(b), we find that under equibiaxial compression the periodic pattern of

cuts does not significantly affect the response of the system. Our perforated sheet behaves

similarly to a continuous thin sheet and buckles out of plane to form a dome-like shape.

Finally, for the case of biaxial tension/compression our simulations show that the response of

the perforated sheets is very similar to that observed under uniaxial tension [see Fig. S7(c)].

This is because, differently from the case of equibiaxial tension, for this loading condition

the compressive stretch applied in lateral direction favors the formation of the out-of-plane

pattern. However, it is important to note that in the case of biaxial tension/compression the

response of the sheets is highly affected by their size. For sheets with larger number of unit

cell aligned in the direction of the applied compressive force we find that the sheet buckles

globally to form a wavy pattern. Therefore, this set of simulations indicate that uniaxial

tension is the ideal loading condition to trigger the formation of well-organized out-of-plane

patterns in our perforated sheets.

Unit cell simulations. To reduce the computational costs and make sure the response

of the system is not dominated by boundary effects, we investigate the response of infinite
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FIG. S8: Comparison of the critical strain εc as predicted by FE simulations (markers) and theory

[dashed line - Eq. (S21)] for γ = 45◦.

perforated sheets under periodic boundary conditions. Since here we are mostly interested

in the response of the perforated sheet immediately after buckling (i.e. before the plastic

deformation takes place), for this set of simulations we use a linear elastic material model

(with E = 4.33 GPa and ν = 0.4). All simulations consist of two steps: (i) we first use a

linear perturbation analysis (*BUCKLE module in Abaqus) to identify the critical buckling

mode; (ii) we then introduce a small imperfection (' 0.001l) in the form of the critical

mode into the mesh to guide the post-buckling analysis. As for the finite size simulations,

for this step we conduct dynamic implicit simulations (*DYNAMIC module in Abaqus) and

to facilitate convergence, we introduce some artificial, numerical damping.

In Fig. S8 we compare the analytical expression for the critical strain [Eq. (S21)] with

the numerical predictions of 54 unit cell simulations characterized by δ/l ∈ [0.05, 0.1] and

t/δ ∈ [0.04, 0.24] and γ = 45◦. We find an excellent agreement between numerical (markers)

and analytical (dashed line) results.

Finally, in Fig. S9 we show the von Mises stress distribution in a unit cell characterized by

δ/l = 0.04 and t/δ = 0.127 for different values of γ at εx = 0.02. As expected, we find that

the von Mises stress, σv, is maximum at the hinges. Assuming the sheets are made of the

same material used to fabricate our sample (i.e. with E = 4.33 GPa and ν = 0.4), we also

find that in all unit cells max(σv) ∼ 66 MPa. This is the stress at which we expect plastic

deformation to initiate for the considered material (see Fig. S3 and Table S1). Therefore,
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FIG. S9: Numerical snapshots showing the distribution of the von Mises stress, σv, in periodic

unit cells loaded along different orientations γ at εx = 0.02. we note that at this level of applied

deformation the von Mises stress at the tips of the cuts reach the yield strength of the sheet material

(σy = 66.4 MPa).

we can conclude that the yielding of the hinges begins approximately at εx ' 0.02. Since,

this strain is more than twice the critical strain (i.e. εc ' 0.008), these simulations confirm

that no plastic deformation takes place before buckling.
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IV. MOVIE CAPTIONS

Movie 1 Buckling-induced 3D kirigami in thin perforated sheets.

In sufficiently thin sheets perforated with a square array of mutually orthogonal cuts

mechanical instabilities are triggered under uniaxial tension and can be exploited to create

complex 3D patterns. If the sheet is loaded along the square diagonals (i.e. γ = 45◦), a 3D

pattern reminiscent of a misaligned Miura-ori emerges, while loading along one set of the

cuts (i.e. γ = 0◦) results in a 3D cubic pattern.

Movie 2 Uniaxial loading: Experiment vs FE simulation.

The deformation of perforated sheets subjected to uniaxial tensile loading along the

square diagonals (γ = 45◦) can be accurately captured by FE simulations in Abaqus.

Movie 3 Buckling-induced Miura kirigami .

Although we start with a flat elastic sheet with an embedded array of cuts, by largely

stretching it we end up with a system that comprises a periodic arrangement of both cuts

and folds. As a result, after being fully stretched our sheets possess several deformation

characteristics of the Miura-ori, including flat-foldability, negative Gaussian curvature

under non-planar bending and twisting under anti-symmetric out-of-plane deformation.

Miura kirigami also exhibits an enhanced bending rigidity compared to a flat perforated

sheet.

Movie 4 In-plane Poisson’s ratio of buckling-induced kirigami.

In contrast to Miura-ori and misaligned Miura-ori, the in-plane Poissons ratio of our

perforated sheets after buckling is positive.

Movie 5 Buckling-induced cubic kirigami.

The kirigami structure obtained by fully stretching the perforated sheet along one set

of the cuts (i.e. γ = 0◦) is (i) flat foldable, (ii) exhibits a zero Gaussian curvature under

non-planar bending and (iii) has relatively higher torsional rigidity compared to that of

the structure obtained by loading the sheet along the diagonals of the squares (i.e. γ = 45◦).
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Movie 6 Comparing the behavior of kirigami sheets.

Permanent folds with direction controlled by γ can be introduced by largely stretching the

perforated sheets. As such, by controlling the loading direction a variety of kirigami sheets

can be formed. While all of them are laterally flat-foldable, we find that by increasing γ

from 0◦ to 45◦ the resulting kirigami sheets have higher bending rigidity and their Gaussian

curvature varies from zero (for γ = 0◦) to large negative values (for γ = 45◦). Furthermore,

by increasing γ, the resulting kirigami sheets become more compliant under torsion.
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