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that buckling can trigger large bending deformation, we exploit 
mechanical instabilities to design a new class of 2D architected 
materials with effective negative swelling ratio. In our proposed 
system, the constituent building block consists of a plate sand-
wiched between two thin layers (see Figure 1a), all fabricated 
out of common soft materials that swell when immersed in a 
solvent, but with different stiffness and swelling characteristics. 
While an homogeneous plate that imbibes a solvent expands in 
all directions, such a heterogeneous layered plate buckles and 
adopts a wavy shape because of the constraint provided by the 
thin exterior layers, which are stiffer and swell less. Remark-
ably, we find that if the layered plate is designed to trigger 
the first buckling mode (i.e., a half sinusoid), it significantly 
shortens when swollen beyond the instability point. We then 
demonstrate both numerically and experimentally that such a 
heterogeneous layered plate can be used as building block to 
form architected materials with effective negative swelling 
ratios (see Figure 1b), providing a new mechanism to control 
the volume of soft structures.

To illustrate the concept, we focused on plates fabricated 
from two elastomers with significantly different stiffness and 
swelling characteristics. In particular, for the middle layer we 
considered a urethane-based rubber (Vytaflex 10 from Smooth-
On, Inc) with initial Young modulus Eb = 0.15 MPa, while 
for the two thin external layers we chose a urethane adhe-
sive (Urebond II from Smooth-On, Inc) with Ea = 10.8 MPa, 
so that Ea/Eb = 72 (see Supporting Information for details). 
We also characterized the swellability of the two materials by 
immersing blocks made of the individual elastomers into an 
organic solvent (toluene) and monitoring the evolution of their 
length. Both materials were found to expand, but the strains 
induced by swelling, εsw = (l −L)/L (l and L denoting the length 
of the sample in the swollen and dry state, respectively) were 
significantly different, with / 0.116sw sw

a bε ε =  (see Supporting 
Information for details).

We began by investigating the deformation mechanism 
of an individual layered plate. Assuming that each layer may 
be described as a thin plate of length L, height hγ (γ = a, b), and 
 thickness t made of an elastic material with Young’s modulus Eγ, 
Poisson’s ratio νγ, and bending stiffness D E t /[12(1 )]3 2ν= −γ γ γ , 
its buckling behavior can be described by 
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where wγ denotes the out-of-plane deflection of the γ-th layer 
and gγ is a function that characterizes the difference in swelling 
strain between adjacent layers (see Supporting Information). 
When we consider the plate to be simply supported at the two 
vertical edges (i.e., wγ = 0 and (∂2wγ/∂x2) + νγ(∂2wγ/∂y2) = 0 at x = 0  

Inspired by the need to develop materials capable of targeted 
and extreme volume changes during operation, we combine 
numerical simulations and experiments to design a new class 
of soft architected materials that effectively exhibit a negative 
swelling behavior. The proposed system consists of an array of 
identical layered plates composed of common soft materials 
that swell when imbibing a solvent. Our results reveal that, by 
designing the individual plates so that they buckle into a half 
sinusoid during the swelling process, a net reduction of pro-
jected surface area coverage is achieved. The proposed concept 
expands the abilities of existing soft materials and structures 
and demonstrates a robust route to further control their volume 
in a highly tunable manner.

Soft materials such as elastomers and gels can swell up to 
1000-fold when immersed in a solvent,[1–4] thus enabling the 
design of soft switches[5,6] and actuators.[7–11] Moreover, soft 
materials whose swelling is affected by changes in tempera-
ture,[12] pH,[13] ionic concentration,[14] and electricity[15] have 
been incorporated into a wide range of enviromentally respon-
sive devices, including microfluidic valves,[16–18] sensors,[19–24] 
and artificial muscles.[25–28] However, despite intensive efforts 
to control and tune their swellability, this behavior has pri-
marily been used as a means to increase the volume of a mate-
rial or device of interest. In contrast, negative swelling (i.e., the 
ability to achieve volumes smaller than that of the dry state) is 
a comparatively rare phenomenon[29] and no strategy has been 
reported to achieve negative volume changes in composite 
structures made of common swellable soft materials.

Here, inspired by the fact that effective negative thermal 
expansion can be achieved in structures where the overall expan-
sion is compensated by internal bending deformation[30–32] and 
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Figure 1. Mechanism to achieve negative swelling. a) A thin plate made of a single material simply expands and preserves its shape when immersed 
into a solvent. Differently, a layered plate made of two materials with different mechanical properties may buckle and bend out of plane. As a result, 
its the end-to-end distance that may decrease. The dashed rectangles indicate the initial size of the plate. b) An architected material formed by such 
layered plates shrinks when imbibing solvent.

Figure 2. Buckling and postbuckling behavior of a single layered plate. a) Critical swelling strain, sw,cr
bε , for a layered plate with t/L = 0.05 as a function 

of h/L and ha/hb. b) Critical mode, ncr, for a layered plate with t/L = 0.05 as a function of h/L and ha/hb. Regions characterized by different critical modes 
are identified using different colors. Note that ncr denotes the number of half-sinusoids in the buckled configuration. c) Evolution of the normalized 
maximum deflection of the stiff outer layers, /maxw La  (blue, left) and normalized end-to-end distance, l/L (red, right) during the swelling process. Three 
different configurations are considered: plate #1 (solid lines), plate #2 (dashed lines), and plate #3 (dotted lines). Snapshots at 0.2sw

bε =  and 0.4sw
bε =  

are shown on the right.
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and x = L), the solution of Equation (1) has the form wγ = fγ(y)
sin (nπx/L), n being an integer (see Supporting Information 
for details). Imposing continuity conditions at the interfaces 
between the three layers, the critical swelling strain, a

sw,crε ,  
and the corresponding mode number, ncr, can then be solved 
as a function of the aspect ratio h/L (h = ha + 2hb) and height 
ratio ha/hb, as shown in Figure 2a,b for a plate characterized by 
t/L = 0.05, Ea/Eb = 72, and / 0.116sw sw

a bε ε = . The plots reveal that 
both h/L and ha/hb significantly affect not only the the critical 
swelling strain (see Figure 2a), but also the critical mode (see 
Figure 2b). A buckling pattern with half sinusoidal wavelength 
(i.e., n = 1) is found for plates that are either very elongated (i.e., 
for small values of h/L) or characterized by thin external layers 
(i.e., for small values of ha/hb). In addition, higher order modes 
comprising multiple half-sinusoids are expected to emerge for 
relatively large values of h/L and ha/hb.

Next, we investigated the large deformation behavior of 
individual layered plates through numerical simulations con-
ducted within the nonlinear finite element (FE) code ABAQUS/
Standard, focusing on how buckling affects the evolution of their 
end-to-end distance. In all our numerical analysis the mechan-
ical response of the elastomers used to fabricate the structure 
was modeled using a nearly incompressible Neo-Hookean 
model[33] with initial shear modulus μγ = Eγ/3 (γ = a, b) and 
extremely high bulk modulus Kγ = 1000μγ, while their swelling 
was captured using a thermal analogy (i.e., assuming εsw = αΔT, 
where α and ΔT denote the thermal expansion coefficient 
and temperature increase, respectively). 3D models of the lay-
ered plates were constructed using 20-node quadratic brick 
continuum elements (ABAQUS element type C3D20R) and 
an imperfection in the form of the critical eigenmode was 
introduced into the mesh to capture their postbuckling behavior 
(see Supporting Information for details).

In Figure 2c, we report the evolution of both the normalized 
end-to-end distance, l/L, and the normalized maximum deflec-
tion of the stiff outer layers, w La /max , for three three different 
individual plates (highlighted by markers in Figure 2b): plate 
#1 characterized by (ha/hb, h/L) = (0.033, 0.43), plate #2 charac-
terized by (ha/hb, h/L) = (0.13, 0.78), and plate #3 characterized 
by (ha/hb, h/L) = (0.18, 0.59). Initially, all three plates are found 
to expand and increase their length (see Figure 2c). However, 
when swollen beyond their critical strain, the response of the 
three plates is distinctly different. For plate #1, which buckles 
into the first mode, the amplitude of the sinusoidal pattern is 
found to significantly increase as swelling proceeds, inducing 
significant bending (see Figure 2c,d). Importantly, such defor-
mation results in a decrease of the end-to-end distance l, which 
becomes even smaller than that of the undeformed configu-
ration (i.e., l/L = 0.75 at b 0.4sw =ε ). By contrast, when higher 
modes are triggered during swelling, as for plates #2 and #3, 
the amplitude of the buckling mode is observed to slightly 
increase and does not significantly impact l, which keeps 
increasing although at a slower pace.

Having demonstrated that a layered plate designed to buckle 
into the first mode shortens as it imbibes more solvent, we now 
show that this fact can be exploited to design 2D architected 
materials with effective negative swelling ratio. We started 
by investigating both numerically and experimentally the 
response of a square array of plates. On the numerical side, we 

conducted nonlinear FE simulations on representative volume 
elements (see Figure 3b,c) with suitable periodic boundary con-
ditions[34,35] (see Supporting Information for details) and calcu-
late the effective swelling strain for the lattice swε  directly from 
the the macroscopic strains xxε  and yyε  as 

xx yy(1 )(1 ) 1.swε ε ε= + + −
 

(2)

Furthermore, we experimentally tested the response of 
square lattices characterized by L = 30 mm, which were fabri-
cated using a molding approach (see Supporting Information 
for details). In all our experiments, the samples were immersed 
in toluene and the position of the vertices in their central part 
(highlighted by the red dashed square in Figure 3b,c) was 
recorded using a high-resolution digital camera and then ana-
lyzed by digital image processing (Matlab). Local values of the 
deformed area A[i, j] for the [ith, jth] square within the area 
of interest were calculated from the positions of the vertices, 
(x(i, j), y(i, j)) (see Figure 3b), as 
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(4)

The swelling strain for the [i-th, j-th] square was then 
obtained as 

A

L
i j

i j

1,sw
[ , ]

[ , ]

2ε = −
 

(5)

from which the ensemble average for the central area under 
consideration was computed, i j

sw sw
[ , ]ε ε= 〈 〉.

In Figure 3b,c we report numerical and experimental snap-
shots taken during the swelling process for lattices formed 
by plates #1 and #3, while in Figure 3d,e we show the evo-
lution of their macroscopic swelling strain, swε . Importantly, 
the snapshots reveal that in both architected materials each 
plate deforms as when swollen individually. As a result, the 
area of the lattice made of plate #1 first increase (i.e., swε  > 0)  
and then, once buckling is triggered, decreases and becomes 
smaller than that of the original configuration (i.e., swε  < 0). 
Differently, the lattice made of plate #3 monotonically expands 
during the swelling process, as the amplitude of the buckled 
pattern remains small and the individual plates do not 
shorten. Finally, we note the excellent qualitative and quanti-
tative agreement between experimental and FE results, indi-
cating that numerical simulations can be efficiently used to 
design architected materials with effective negative swelling 
ratio.

While in Figure 3 we focused on a square lattice, the pro-
posed mechanism to achieve effective negative swelling is 
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Figure 3. Square lattice. a) Schematic diagrams highlighting the central region with four squares that is used to calculate crε . The vectors aa1
[ , ]i j , aa2

[ , ]i j ,  
bb1

[ , ]i j  and bb2
[ , ]i j  are indicated on the schematic of the deformed configuration. b) Numerical (left) and experimental (right) snapshots during the swelling 

process for a square lattice made of plate #1. The dashed red square indicates the cells that are used to calculate swε . c) Numerical (left) and experi-
mental (right) snapshots during the swelling process for a square lattice made of plate #3. The dashed red square indicates the cells that are used to 
calculate swε . d) Evolution of swε  during the swelling process for a square lattice made of plate #1. Both numerical (dashed line) and experimental 
(continuous line) are reported. e) Evolution of swε  during the swelling process for a square lattice made of plate #3. Both numerical (dashed line) and 
experimental (continuous line) are reported.
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plate-based and thus not restricted to this specific geometry. In 
fact, any architected material in which all plates can simulta-
neously buckle into a half sinusoid is expected to exhibit iden-
tical behavior and shrink when immersed into a solvent. Such 
buckled pattern can be supported by unfrustrated lattices with 
cells formed by an even number of plates (such as the square 
and the hexagonal lattices). Differently, since in geometri-
cally frustrated lattices comprising cells with an odd number 
of edges (such as the triangular lattice) not all plates can 
buckle into a half sinusoid,[36] we expect such configurations 
not to shrink as much during swelling. To demonstrate this, 
in Figure 4 we report numerical results for an unfrustrated 

hexagonal lattice and a frustrated triangular lattice, both made 
out of plate #1. The snapshots shown in Figure 4a for the hex-
agonal geometry indicate that each plate buckle into the first 
mode (a half sinusoid), resulting in the formation of a three-
sided stars pattern. Differently, in the triangular configura-
tion some of the plates buckle into the first mode and some 
into the second one, forming a chiral pattern similar to that 
observed previously in equibiaxially compressed beam lat-
tices[36] (Figure 4b). Importantly, we also find that the evolution 
of swε  during the swelling process for the hexagonal lattice is 
exactly the same as that observed for the square lattice, while 
for the triangular configuration shrinkage is significantly com-
promised (see Figure 4c), since the plates that buckle into the 
second mode do not shorten during swelling.

In summary, we have proposed a new mechanism based on 
buckling to induce effective negative swelling in architected 
materials. Remarkably, this mechanism is scale free and can 
be applied to structures with various length scales. While in 
Figure 3 we have shown results for a square lattice at the cen-
timeter length-scale, identical behavior can be also observed at 
smaller scale, as shown in Figure S9 (Supporting Information) 
for a square and hexagonal lattice with L = 2 mm fabricated 
using projection microstereolithography[37] (see Supporting 
Information for more details). Furthermore, although here we 
have focused on swelling, the same design principles can be 
extended to different materials and stimuli (e.g., temperature, 
pH, and light), so that they can be used to systematically alter 
the changes in area and volume experienced by a broad class of 
material systems. For example, although several designs have 
been reported to achieve negative thermal expansion,[30–32,38–45] 
our simple design may yield a more efficient fabrication pro-
cess of materials that shrink when subjected to a temperature 
increase and also enables tunability of the response. Finally, the 
proposed mechanism works for a large number of geometries 
(i.e., for all unfrustrated lattices) and our multilayer design is 
simple and modular, as the changes in area of the material 
can be tuned by controlling geometric parameters guided by a 
“phase diagram.” Hence, our findings open new opportunities 
for the design of materials and structures capable of achieving 
targeted and extreme area/volume changes, as required for a 
number of aerospace,[46,47] optical,[48,49] energy,[50,51] and micro-
electronic[52,53] applications.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Figure 4. Hexagonal and triangular lattices. a) Numerical snapshots 
during the swelling process for an hexagonal lattice made of plate #1. 
The dashed red square indicates the cells that are used to calculate swε .  
b) Numerical snapshots during the swelling process for a triangular lat-
tice made of plate #1. c) Evolution of swε  during the swelling process for 
an hexagonal (red) and triangular (blue) lattice made of plate #1.
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FABRICATION

We first describe the molding approach used to fabricate most of our structures, followed by a brief description
of the manufacture of smaller structures using projection micro-stereolithography.

Molding approach

To manufacture centimeter-scale structures exhibiting negative negative swelling a molding approach is used.
First, a negative mold was fabricated using a 3D printer (Connex 500 available from Objet, Ltd.) with VeroBlue
(product number: RGD840, Objet) material. Then, the structures were cast using silicone rubbers (Urebond II
from Smooth-On for the outer, stiff layers and Vytaflex 10 from Smooth-On for the central, soft layers). Before
replication, a releasing agent (Easy Release 200 available from Smooth-On, Inc.) was sprayed on to the molds
for easy separation. To fabricate the three layered structure, the outer layers were first casted using a shorter
mold and cured. Afterwards, one of the cured outer layers was inserted into the bottom of a larger mold and the
central layer was casted, and then covered by the other cured outer layer. The full sample was again cured before
it was taken out. In the resulting structure, each plate has length L = 30 mm and thickness t = 1.5 mm.

Mechanical properties of Urebond II and Vytaflex 10. Dogbone samples made of Urebond II and Vytaflex
10 were tested in the dry state under uniaxial tension using a single-axis Instron. The tests show that the
materials exhibits a behavior typical for elastomers: large strain elastic behavior with negligible rate dependence
and negligible hysteresis during a loading-unloading cycle. The material behavior at a strain rate of 0.0003 s−1

is reported in Fig. S1 (note that to quantify the applied stretch, dark markers were placed on the samples whose
position was digitally tracked during the tests). The observed constitutive behavior is modeled as hyperelastic.
In particular, their stress-strain response is captured using an incompressible Neo-Hookean model, whose strain
energy is given by

W =
µ

2
(I1 − 3), (S1)

where µ is the initial shear modulus. Moreover, I1 = trFTF , where F = ∂x/∂X denotes the deformation gradient
—a linear transformation which maps a material point from its reference position X to its current location x.
Under uniaxial tension the axial nominal stress, s11, is given by

s11 = µ

(
λ− 1

λ2

)
, (S2)

where λ is applied stretch, defined as the deformed length over the initial length.
From the uniaxial tension data shown in Fig. S1, the initial shear modulus was measured to be µ = 3.6 MPa

for Urebond II and µ = 0.05 MPa for Vytaflex 10. Fig. S1 shows that the Neo-Hookean model captures the
behavior very well up to a strain of about 1.4 for Vytaflex 10 and 1.05 for Urebond II, which cover the majority
of the strain levels studied. Finally, we note that for an incompressible materials the Poisson’s ratio is one half
(ν = 0.5), so that the Young’s moduli of Urebond II and Vytaflex 10 are given by Ea = 2(1 + νa)µa = 10.8 MPa
and Eb = 2(1 + νb)µb = 0.15 MPa, respectively.
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FIG. S1: Stress-strain curves for (a) Vytaflex 10 and (b) Urebond II as measured experimentally (red markers) and
predicted by the Neo-Hookean model (blue lines).

FIG. S2: Experimentally measured swelling strain as a function of time for both Vytaflex 10 (red line) and Urebond II
(blue line).

Swellability of Urebond II and Vytaflex 10. To quantify the swellability of Urebond II and Vytaflex 10,
rectangular control samples of W(width) × H(height) × D(thickness) = 30 × 12 × 1.5 mm were fabricated out
of the two materials. The samples (one rigid and one soft) were then immersed into the organic solvent toluene
and their swelling recorded using a high resolution digital SLR camera (Nikon D90) positioned above them. The
swelling strains of the samples was measured by tracking their lengths.

Fig. S2 shows the swelling strain curves obtained for the two materials. The data clearly indicate that Vytaflex
10 swells significantly more than Urebond II.

Projection micro-stereolithography

We used projection micro-stereolithography (PµSL) to fabricate millimiter-scale samples. PµSL is a digital
freeform microfabrication technology capable of fabricating complex shaped 3D micro architectures by using a
dynamic mask generator and an UV light source coupled to a projection lens system to convert liquid monomer
to solid polymer in an additive, layer-by-layer fashion. Fig. S3 shows a schematic of the custom-built PµSL
apparatus. Note that the typical size of the structures fabricated for this study is 14.4 mm(W) × 14.4 mm(L) ×
1.4 mm(H) with a layer thickness of 120 µm.

The prepolymer solution used to make the structures consists of 33.5 wt. % poly (ethylene glycol) diacrylate
(PEGDA 585, from Sigma-Aldrich), 65.78 wt. % poly (ethylene glycol) (PEG 200, from Sigma-Aldrich), 0.67 wt.
% photoinitiator (BAPO, from Sigma-Aldrich) and 0.05 wt. % photoabsorber (Sudan-I, from Sigma-Aldrich).
Note that PEG is added to increase the swelling ratio of the material, since it does not polymerize during photo-
polymerization and occupies intermolecular space between PEGDA, lowering the cross linking density. After
fabrication is completed, PEG is then removed from the structure by immersing the samples into acetone for 2
hours. Following this procedure a swelling ratio of approximately εsw = l/L ' 1.5 is obtained (differently, if PEG
is not removed from the samples εsw = l/L ' 1.1).
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FIG. S3: Schematic of the PµSL apparatus

Finally, the top and bottom surfaces of the samples are treated with UV light [133mW/cm2] for 30 minutes
to increase their polymerization and reduce their swelling ratio to εsw = l/L ' 1.1. Following this process the
Young’s modulus of the outer layers is increased to E = 12.5 MPa, while for the central (not UV cured) part
of the samples E = 2.5 MPa. Note that the penetration depth of UV light is controlled by covering the sample
with the photoabsorber and tuning its concentration. Here, the penetration depth of UV light is chosen so that
all plates buckle into the first more (a half sinusoidal).
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BUCKLING-INDUCED NEGATIVE SWELLING IN MILLI-SCALE SAMPLES

The response of the samples fabricated using PµSL under swelling was tested by placing them on a dry glass
slide and dropping solvent (acetone) on them. The swelling was recorded by a digital SLR camera (Nikon D90)
placed underneath the glass slide. Each frame of the recorded video was then extracted and processed in Matlab
as described in the main text.

In Fig. S4 we show two snapshots of a square and hexagonal lattices designed to achieve effective negative
swelling (for these samples ha = 0.2 mm, hb = 0.8 mm, L = 2 mm, t = 0.1 mm), showing a deformation very
similar to that reported in the main text for larger scale structures.

FIG. S4: Experimental snapshots during the swelling process for a square (left) and an hexagonal lattice fabricated using
PµSL.
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BUCKLING OF A SINGLE LAYERED PLATE: ANALYTICAL SOLUTION

In this Section we investigate analytically the buckling behavior of an individual layered plate subjected to
isotropic swelling. The plate has length L and comprises two outer layers of height ha and a central layer of
height hb (see Fig. S5). Moreover, the plate is considered to be thin, namely t � L, ha, hb. Finally, we assume
that each layer is made of an elastic material with Young’s modulus Eγ , Poisson’s ratio νγ and bending stiffness
Dγ = Eγt

3/[12(1− ν2γ)], with γ = a, b.

FIG. S5: Schematic of the layered plate.

Plate equation. Under such assumptions, the buckling behavior of each layer can be investigated by solving
the plate equation [1] (note that in the following, for the sake of simplicity, the subscript γ has been omitted)

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=

1

D

(
p+Nxx

∂2w

∂x2
+Nyy

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y

)
, (S3)

where w denotes the out-of-plane deflection of the layer and p is the applied pressure, which in this case is zero.
Moreover, Nxx, Nyy and Nxy are the in-plane stress resultants, which are given by

Nxx =

∫ t/2

−t/2
σxx dz, Nyy =

∫ t/2

−t/2
σyy dz, Nxy =

∫ t/2

−t/2
σxy dz. (S4)

The stress components σxx, σxy and σyy are determined assuming the material to be linear elastic and capturing
its swelling using a thermal analogy (i.e. assuming εsw = α∆T , where α and ∆T denote the thermal expansion
coefficient and temperature increase, respectively), so that

σxx =
E

(1 + ν)(1− 2ν)
[εxx(1− ν) + ν(εyy + εzz)]−

Eα∆T

1− 2ν
,

σyy =
E

(1 + ν)(1− 2ν)
[εyy(1− ν) + ν(εxx + εzz)]−

Eα∆T

1− 2ν
, (S5)

σzz =
E

(1 + ν)(1− 2ν)
[εzz(1− ν) + ν(εxx + εyy)]− Eα∆T

1− 2ν
.

Moreover, since the shear stress is zero during swelling,

σxy = 0. (S6)

Finally, since for a thin plate σzz = 0, Eq. (S5)3 reduces to

E

(1 + ν)(1− 2ν)
εzz =

Eα∆T

(1− 2ν)(1− ν)
− Eν(εxx + εyy)

(1 + ν)(1− ν)(1− 2ν)
, (S7)

which is substituted into Eqs. (S5)1,2 to yield

σxx =
Eεxx

1− ν2
+
νEεyy
1− ν2

− Eα∆T

1− ν
,

σyy =
Eεyy

1− ν2
+
νEεxx
1− ν2

− Eα∆T

1− ν
. (S8)
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Boundary conditions. In a 2D cellular structure subjected to isotropic swelling, the top and bottom edges of
each plate are traction free (i.e. the shear force and moment on these two edges are zero), so that at y = −ha−hb/2
and y = ha + hb/2

∂2w

∂y2
+ ν

∂2w

∂x2
= 0, (S9)

and

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= 0. (S10)

Moreover, since the plates are free to rotate at the junctions while expanding, we assume that the left edge is
simply supported (i.e. displacements are fixed while rotation is allowed), while the right edge is free to rotate and
to uniformly move in x-direction. Since all three layers are free to swell in x-direction, the total in-plan stress
resultant Nxx is zero ∫ ha+hb/2

−ha−hb/2

Nxx dy = 0, (S11)

yielding

σaxx · 2ha + σbxx · hb = 0. (S12)

Moreover, since each layer can also freely expand along the y-direction, we expect σyy to be zero. It follows from
Eq. (S8)2 that

εyy = −νεxx + α∆T (1 + ν). (S13)

Substitution of Eq. (S13) into Eq. (S8)1 yields

σxx = E(εxx − α∆T ), (S14)

which together with Eq. (S12) leads to

εxx =
2Eahaαa + Ebhbαb

2Eaha + Ebhb
∆T. (S15)

Substituting Eqs. (S15), (S6) and (S8) into Eq. (S4), the in-plane stress resultants are obtained as

Na
xx = σaxx · t =

EaEbt∆T

2Eaha + Ebhb
hb(αb − αa),

N b
xx = σbxx · t =

EaEbt∆T

2Eaha + Ebhb
2ha(αa − αb), (S16)

Na
yy = N b

yy = Na
xy = N b

xy = 0.

Finally, continuity of tractions and displacements has to be enforced at the interfaces between the three layers,
yielding

w|
y=

hb
2

+ = w|
y=

hb
2

− ,

∂w

∂y

∣∣∣∣
y=

hb
2

+
=

∂w

∂y

∣∣∣∣
y=

hb
2

−
,

D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)∣∣∣∣
y=

hb
2

+
= D(

∂2w

∂y2
+ ν

∂2w

∂x2
)

∣∣∣∣
y=

hb
2

−
,

D

(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)∣∣∣∣
y=

hb
2

+
= D

(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)∣∣∣∣
y=

hb
2

−
, (S17)
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and

w|
y=−hb

2

+ = w|
y=−hb

2

− ,

∂w

∂y

∣∣∣∣
y=−hb

2

+
=

∂w

∂y

∣∣∣∣
y=−hb

2

−
,

D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)∣∣∣∣
y=−hb

2

+
= D(

∂2w

∂y2
+ ν

∂2w

∂x2
)

∣∣∣∣
y=−hb

2

−
,

D

(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)∣∣∣∣
y=−hb

2

+
= D

(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)∣∣∣∣
y=−hb

2

−
. (S18)

Buckling. Following the general buckling analysis procedure, we assume the out-of-plane deflection w is of
the form w = f(y) sin(nπx/L) (n being an integer) and substitute it into Eq. (S3) to obtain

f ′′′′ − 2n2π2

L2
f ′′ +

n4π4

L4
f = − 1

D
Nxx

n2π2

L2
f. (S19)

Eq. (S19) is a homogeneous linear ordinary differential equation with constant coefficients, whose solution has
the form

f =
∑
i=14

Qi exp(ziy), (S20)

where Qi are constant coefficients and zi are the roots of its characteristic equation(
z2 − n2π2

L2

)2

= −n
2π2

L2
· Nxx
D

. (S21)

Moreover, substitution of the solution, wγ = fγ(y) sin(nπx/L), into the boundary and continuity conditions
[Eqs. (S9),(S10),(S17) and (S18)] yields

at y = ha +
hb
2

: f ′′a+ − νa
n2π2

L2
fa+ = 0,

f ′′′a+ − (2− νa)
n2π2

L2
f ′a+ = 0,

at y = −ha −
hb
2

: f ′′a− − νa
n2π2

L2
fa− = 0,

f ′′′a− − (2− νa)
n2π2

L2
f ′a− = 0,

at y =
hb
2

: fa+ = fb,

f ′a+ = f ′b,

Da

(
f ′′a+ − νa

n2π2

L2
fa+

)
= Db

(
f ′′b − νb

n2π2

L2
fb

)
,

Da

(
f ′′′a+ − (2− νa)

n2π2

L2
f ′a+

)
= Db

(
f ′′′b − (2− νb)

n2π2

L2
f ′b

)
,

at y = −hb
2

: fa− = fb,

f ′a− = f ′b,

Da

(
f ′′a− − νa

n2π2

L2
fa−

)
= Db

(
f ′′b − νb

n2π2

L2
fb

)
,

Da

(
f ′′′a− − (2− νa)

n2π2

L2
f ′a−

)
= Db

(
f ′′′b − (2− νb)

n2π2

L2
f ′b

)
,

(S22)

where fa+ , fb and fa− denote the solution for the top, middle and bottom layer, respectively.
Finally, we note that the form of the solution in the three layers will be different, depending on whether the

roots of Eq. (S21) are real or complex. In particular,

1. if
n2π2

L2
< −N

b
xx

Db
and (αb > αa,∆T > 0) or (αb < αa,∆T < 0), so that Na

xx > 0 and N b
xx < 0, the roots of

Eq. (S21) for the top and bottom layers are

z = ±M cos(θ/2)± iM sin(θ/2), (S23)
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where M =

√√√√nπ

L

√
n2π2

L2
+

1

Da
Na
xx, and θ = arctan

√
Na
xxL

Dan2π2
. It follows that the solution for the top and

bottom layers is given by:

fa+ = A1 exp(γay) sin(βay) +A2 exp(γay) cos(βay) +

A3 exp(−γay) sin(βay) +A4 exp(−γay) cos(βay),

fa− = C1 exp(γay) sin(βay) + C2 exp(γay) cos(βay) +

C3 exp(−γay) sin(βay) + C4 exp(−γay) cos(βay). (S24)

where γa = M cos(θ/2) and βa = M sin(θ/2).

Moreover, for the middle layer the roots of Eq. (S21) are

z = ±

√√√√n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
, z = ±

√√√√−n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
i. (S25)

It follows that the solution for the middle layer takes the form

fb = B1 exp(γby) +B2 exp(−γby) +B3 sin(βby) +B4 cos(βby), (S26)

where γb =

√√√√n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
and βb =

√√√√−n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
.

2. if
n2π2

L2
= −N

b
xx

Db
and (αb > αa,∆T > 0) or (αb < αa,∆T < 0), so that Na

xx > 0, N b
xx < 0, the solution for

the top and bottom layers is still given by Eq. (S24). Differently, the roots of Eq. (S21) for middle layer are

z =

√
2nπ

L
, z = 0. (S27)

It follows that the solution for the middle layer takes the form

fb = B1 exp(γby) +B2 exp(−γby) +B3 +B4y, (S28)

where γb =

√
2nπ

L
.

3. if
n2π2

L2
> −N

b
xx

Db
and (αb > αa,∆T > 0) or (αb < αa,∆T < 0), so that Na

xx > 0, N b
xx < 0, the solution for

the top and bottom layers is still given by Eq. (S24). Differently, the roots of Eq. (S21) for middle layer are

z = ±

√√√√n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
, z = ±

√√√√n2π2

L2
−

√
n2π2

L2

−N b
xx

Db
. (S29)

It follows that the solution for the middle layer takes the form

fb = B1 exp(γby) +B2 exp(−γby) +B3 exp(βby) +B4 exp(−βby), (S30)

where γb =

√√√√n2π2

L2
+

√
n2π2

L2

−N b
xx

Db
and βb =

√√√√n2π2

L2
−

√
n2π2

L2

−N b
xx

Db
.

4. if αb = αa, the roots of Eq. (S21) are

z = ±nπ
L
, z = 0, (S31)
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for all the layers. It follows that the solution for the three layers takes the form

fa+ = A1 exp(γay) +A2 exp(−γay) +A3y exp(γay) +A4y exp(−γay),

fa− = C1 exp(γay) + C2 exp(−γay) + C3y exp(γay) + C4y exp(−γay), (S32)

fb = B1 exp(γby) +B2 exp(−γby) +B3y exp(γby) +B4y exp(−γby).

where γa = γb =
nπ

L
.

5. if
n2π2

L2
< −N

a
xx

Da
and (αb < αa,∆T > 0) or (αb > αa,∆T < 0), so that Na

xx < 0, N b
xx > 0, the roots of

Eq. (S21) for the top and bottom layers are given by

z = ±

√√√√n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
, z = ±

√√√√−n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
i. (S33)

It follows that the solution for the top and bottom layers takes the form

fa+ = A1 exp(γay) +A2 exp(−γay) +A3 sin(βay) +A4 cos(βay),

fa− = C1 exp(γay) + C2 exp(−γay) + C3 sin(βay) + C4 cos(βay), (S34)

where γa =

√√√√n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
and βa =

√√√√−n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
.

Moreover, for the middle layer, the roots of Eq. (S21) are

z = ±M cos(θ/2)±M sin(θ/2)i, (S35)

where M =

√√√√nπ

L

√
n2π2

L2
+

1

Db
N b
xx, and θ = arctan

√
N b
xxL

Dbn2π2
. Thus the solution for the middle layer is:

fb = B1 exp(γby) sin(βby) +B2 exp(γby) cos(βby) +

B3 exp(−γby) sin(βby) +B4 exp(−γby) cos(βby), (S36)

where γb = M cos(θ/2), βb = M sin(θ/2).

6. if
n2π2

L2
= −N

a
xx

Da
and (αb < αa,∆T > 0) or (αb > αa,∆T < 0), so that Na

xx < 0, N b
xx > 0, the solution for

the middle layer is still given by Eq. (S36).

Differently, the roots of Eq. (S21) for the top and bottom layers are

z = ±
√

2nπ

L
, z = 0. (S37)

It follows that the solution for the top and bottom layers has the form:

f1 = A1 exp(γay) +A2 exp(−γay) +A3 +A4y,

f3 = C1 exp(γay) + C2 exp(−γay) + C3 + C4y, (S38)

where γa =

√
2nπ

L
.

7. if
n2π2

L2
> −N

a
xx

Da
and (αb < αa,∆T > 0) or (αb > αa,∆T < 0), so that Na

xx < 0, N b
xx > 0, the solution for

the middle layer is still given by Eq. (S36).

Differently, the roots of Eq. (S21) for the top and bottom layers are

z = ±

√√√√n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
, z = ±

√√√√n2π2

L2
−

√
n2π2

L2

−Na
xx

Da
(S39)
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It follows that the solution for the top and bottom layers will have the form:

f1 = A1 exp(γay) +A2 exp(−γay) +A3 exp(βay) +A4 exp(−βay),

f3 = C1 exp(γay) + C2 exp(−γay) + C3 exp(βay) + C4 exp(−βay), (S40)

where γa =

√√√√n2π2

L2
+

√
n2π2

L2

−Na
xx

Da
and βa =

√√√√n2π2

L2
−

√
n2π2

L2

−Na
xx

Da
.

Having determined the form of the solution f(y) in the three layers, the coefficients Ai, Bi and Ci appearing
there are determined by imposing the boundary and continuity conditions (Eqs. (S22)). More specifically, we find
that the boundary and continuity conditions are satisfied if

Ku = 0, (S41)

where u = [A1, · · · , A4, B1, · · · , B4, C1, · · · , C4]T and K is the 12×12 coefficient matrix. The critical value of
swelling strain, εsw,cr = α∆Tcr , is determined by equating to zero the determinant of K.
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FINITE ELEMENT SIMULATIONS

In this Section, we provide details about the Finite Element (FE) simulations conducted for this study using
the commercial package Abaqus/Standard.

In all our numerical analysis, the material behavior of both elastomers is captured using a nearly incompressible
hyperelastic Neo-Hookean model with initial shear moduli of µa = 3.6 MPa and µb = 0.05 MPa and extremely
high bulk moduli, Ka = 1000µa and Kb = 1000µb. This choice of µ and K results in a Poisson’s ratio of 0.4995
for both materials, so that their initial Young’s moduli are Ea = 10.8 MPa and Eb = 0.15 MPa. Moreover, to
capture the swelling process we make a thermal analogy and assume that εsw = α∆T , where α and ∆T denote the
thermal expansion coefficient and temperature increase, respectively. In particular, we assume isotropic thermal
expansion and choose αa = 0.065/K and αb = 0.56/K, so that αa/αb = 0.116 as measured in our experiments.
Finally, although during swelling the Young’s modulus of the materials is expected to decrease, for the sake of
simplicity, we assume that Ea/Eb = 72 does not change.

All our simulations consist of two steps: (i) we first use a linear perturbation analysis (*BUCKLE module in
Abaqus) to identify the critical buckling mode; (ii) we then introduce a small imperfection (≈ 0.002L) in the
form of the critical mode into the mesh to guide the post-buckling analysis. It is important to note that in all
our simulations the temperature is increased to simulate the immersion of the materials into a solvent.

Individual plate simulations. 3D models of the individual layered plates are constructed and discretized using
20-node quadratic brick continuum elements (Abaqus element type C3D20R). To allow rotation on the left and
right surfaces, we fix ux and uz on the center line of the left surface and uz on the center line of the right surface,
while leaving ux unset to enable expansion. Moreover, an *Equation constraint is applied to the center line of
the right surface to ensure uniform ux.

Unit cells simulations. To reduce the computational costs and make sure the response of the system is not
dominated by boundary effects, we investigate the response of infinite 2D architected materials ad consider unit
cells with periodic boundary conditions [2, 3]. 3D models of the unit cells shown in Fig. S6 are constructed and
discretized into approximately 3000 elements using 20-node quadratic brick continuum elements (Abaqus element
type C3D20R).

FIG. S6: Unit cells used in our simulations for (a) the square lattice, (b) the hexagonal lattice and (c) the triangular
lattice.

Since upon swelling the infinite architected materials considered here can suddenly change their periodicity due
to mechanical instability, we construct enlarged unit cells of various size and use a linear perturbation procedure
to calculate their critical strains and corresponding modes. The critical strain of the infinite periodic structure is
then defined as the minimum of the critical strains on all possible enlarged unit cells.

In Figs. S7a, S8a and S9a we report the critical strain for super cells consisting of m × n unit cells formed
by plates #1 for the square, hexagonal and triangular lattice, respectively. The results indicate that the 2 × 2,
1× 1 and 3× 3 configurations have the minimum critical strain for the square, hexagonal and triangular lattice,
respectively. Importantly, for both the square and hexagonal lattice the buckling pattern associated to the critical
strain is characterized by all plates buckled into the first mode (an half sinusoidal), as shown in Figs. S7b and
S8b.

Differently for the triangular lattice we find two modes associated to the critical strain (as shown in Fig. S9b):
one “chiral” and one “symmetric”.

Finally, non linear analyses are performed to capture the post-buckling behavior on enlarged unit cells with size
dictated by the new periodicity introduced by buckling. In Fig. S10 we present the snapshots from the unit cell
simulations for both the hexagon and triangle lattices. It’s clear that only mode 1 buckling can be seen in hexagon
lattice while a mixed mode 1 and 2 occurs in triangle lattice, as the ”chiral” mode emerge in the postbuckling
analysis.
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FIG. S7: (a) Critical strain for super cells consisting of m × n unit cells for the square lattice formed by plates #1. (b)
Buckling pattern associated with the critical strain of the 2 × n configuration.

FIG. S8: (a) Critical strain for super cells consisting of m×n unit cells for the hexagonal lattice formed by plates #1. (b)
Buckling pattern associated with the critical strain of the 1 × 1 configuration.

Finite size simulations To validate the unit cell simulations, we also performed finite size simulations on
structures comprising an array of 10×10 cells. For this set of simulations 4 node rectangular reduced integration
shell elements (Abaqus element type S4R) are used to reduce the computational cost. Moreover, all boundaries
are assumed to be traction free.

In Fig. S11, we show several snapshots from the finite size simulation for the case in Fig. 3b. Clearly, the results
support the unit size simulation and a periodic deformed pattern is seen.
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FIG. S9: (a) Critical strain for super cells consisting of m×n unit cells for the triangular lattice formed by plates #1. (b)
Buckling patterns associated with the critical strain of the 3 × 3 configuration.

FIG. S10: Snapshots from the unit cell simulations for the hexagon (top) and triangle lattice (bottom).

FIG. S11: Numerical snapshots during the swelling process for a square lattice made of plates #1.
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