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monolithic design significantly facilitates the fabrication pro-
cess.[32–34] However, to form band gaps these structures need 
to have large values of porosity,[22,23] a requirement that severely 
limits their applications, especially in those situations where 
specific porosities must be targeted. It is a common belief that 
the formation of band gaps in architected materials with low 
values of porosity is not feasible.

In this study, we demonstrate both numerically and experi-
mentally that 2D periodic structures with extremely low porosi-
ties are capable of forming large band gaps. In fact, our results 
indicate that by altering the shape of the pores, we can manipu-
late the wave propagation in these systems and form band gaps 
even for porosities as low as 0.01. We first demonstrate the con-
cept for a 2D structure characterized by a square array of mutu-
ally orthogonal elliptical pores and then show that the proposed 
mechanism is robust and can be extended to pores with dif-
ferent profiles, orientations, and arrangements. Importantly, we 
find that the presence and size of the band gaps are controlled 
by the smallest geometric feature in the system (which can be 
easily controlled by tuning the aspect ratio of the pores), pro-
viding an important guideline for the design of systems with 
the desired response.

We start by focusing on 2D periodic structures comprising 
alternating orthogonal elliptical pores arranged on a square 
array (see sketches in Figure 1 at right) and investigate the 
effect of the pore aspect ratio on their dynamic response using 
the commercial finite element (FE) package ABAQUS/Standard 
(see Methods and the Supporting Information for details of the 
numerical calculations). In Figure 1, we report the band dia-
gram for three structures characterized by the same value of 
porosity, ψ = πa b/L2 = 0.05 (L being the center-to–center dis-
tance between adjacent pores and a and b denoting the major 
and minor semiaxes of each elliptical pore, respectively), 
but different aspect ratios, a/b. For the conventional design 
with circular holes (i.e., a/b = 1), no band gap is observed 
(see Figure 1a), so waves with all frequencies can propagate 
through the structure. This is expected, since it is well-known 
that, for circular holes arranged on a square array, no band 
gap appears for ψ < 0.43.[23,35] However, as the aspect ratio of 
the elliptical holes increases, we find that band gaps appear 
for normalized frequencies ω ω π= <L cT/( ) 2 (see Figure 1b  
and c). In particular, for a/b = 27 the material is character-
ized by a band gap for ω≤ ≤1.3 1.34  (between the 12th and 
13th band—see Figure 1b), while for a/b = 53 it has two gaps, 
one for ω≤ ≤0.55 0.64 (between the 8th and 9th and another 
for ω≤ ≤0.78 1.31 (between the 12th and 13th band—see 
Figure 1c).

We then systematically study the effect of the aspect ratio 
of the elliptical pores, a/b, on the band gaps in extremely 

Periodic porous structures provide unique opportunities to 
manipulate the propagation of vibrations through band gaps—
frequency ranges of strong elastic wave attenuation. Yet, the 
gap formation requires large values of porosity and this limits 
the application of such structures in places where porosity is 
constrained by other important engineering considerations. 
Here, we show that such restriction can be largely relaxed by 
introducing a novel design, in which a single-material plate is 
patterned with an array of alternating crack-like pores separated 
by small ligaments. Our numerical and experimental results 
indicate that the dynamic behavior of such material architec-
ture is fully controlled by the size of the minimum ligaments, 
and band gaps can exist even for very low pore volume fractions 
(as low as 1%).

Architected materials engineered to control and manipulate 
the propagation of elastic waves are attracting a growing interest 
because of their broad range of applications including fre-
quency modulation,[1] wave guiding,[2–8] acoustic cloaking,[9,10] 
wave filtering,[11–13] and thermal management.[14–18] The ability 
of these heterogeneous systems to tailor the propagation of 
waves originates from the existence of band gaps—frequency 
ranges of strong wave attenuation—which are typically induced 
by Bragg scattering. Bragg-type band gaps are the result of 
multiple scattering of waves at the interface of materials with 
different acoustic properties, highly depend on the periodicity 
and symmetry of the microstructure, and typically occur at 
the wavelengths of the order of the structure’s unit cell size.[19] 
Therefore, the formation of such gaps require a periodic struc-
ture with a high volume fraction of scatters[20–24] with density 
and elastic properties significantly different from those of the 
matrix material.[25,26]

Although Bragg-type band gaps have been also demonstrated 
in architected materials made of multiple elastic phases,[25–29] 
single-material systems comprising a periodic distribution of 
pores have attracted most of the attention[24,30,31] since their 
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 low-porosity periodic materials. As shown in Figure 2a, when 
the porosity is fixed to be ψ = 0.01, a gap opens at a/b = 128 and 
widens monotonically by increasing a/b. Moreover, for a/b > 190  
an additional gap opens at a lower frequency range. Similar 
evolutions of the band gaps with respect to the pores aspect 

ratio, a/b, are observed for different values of porosity, ψ = 0.05  
and 0.10 (see Figure 2a). However, depending on porosity, the 
gaps are formed at different ranges of aspect ratios (i.e., at a/b = 24  
and 36 for ψ = 0.05 and at a/b = 11 and 17 for ψ = 0.10). 
Remarkably, as shown in Figure 2b, the frequency ranges of 
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Figure 1. Band structures of periodic materials with the same porosity, ψ = 0.05, but different pore aspect ratios. a) Circular pores (a/b = 1). b) Elliptical 
pores characterized by a/b = 26.8. c) Elliptical pores characterized by a/b = 52.7. The gray-shaded regions indicate the band gaps. Note that because 
of the rotational symmetries observed in one quarter of the unit cell, the bands in the GY and YM directions are identical to those in the GX and XM 
directions.
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gaps for different porosities collapse onto each other when 
plotted versus the minimum thickness of the ligaments sepa-
rating neighboring holes (see inset in Figure 2b) 
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This reveals that the minimum ligament thickness, Lmin, is the 
essential parameter that controls the dynamic response of these 
structures and that can be used to effectively design low porosity 
systems with the desired frequency band gaps. To explain the 

crucial role played by Lmin, we note that the proposed archi-
tected material can be idealized as a 2D array of alternating 
small (corresponding to the thin ligaments of width Lmin) and 
large (corresponding to the square regions surrounded by the 
elongated holes) masses coupled by springs. This is a system 
typically studied in solid-state physics[36,37] and it is known to 
result in a band gap that arises from the existence of modes of 
oscillation with widely different frequencies. Traveling phonon 
modes where the large masses are predominantly excited are 
split in frequency from those where the small masses are 
predominantly excited. Importantly, the frequency band gap 
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Figure 2. Evolution of band gaps with respect to geometric parameters. a) The band gaps are plotted as a function of the pores aspect ratio, a/b, for 
three different values of porosity (ψ = 0.01, 0.05, and 0.10). b) The band gaps are plotted as a function of the minimum ligament thickness, Lmin, for 
the same values of porosity (ψ = 0.01, 0.05, and 0.10). Remarkably, all data collapse onto each other in (b), indicating that the ligament thickness is 
the critical parameter that determines the dynamic response of these materials. The dark-shaded region indicates the collapsing gaps.

Figure 3. Experimental results. a) Experimental setup showing the sample (suspended from top), the shaker and the input/output accelerometers. 
b) Numerical dispersion relation from unit cell calculation. c) Experimentally measured transmittance curve for elastic waves propagating along the 
GX direction. d) Numerically calculated transmittance curve for elastic waves propagating along the GX direction. Two different finite-size models are 
considered: (i) a numerical model with the same size as the fabricated sample (blue line) and (ii) a larger model consisting of a single row of 20 unit 
cells and periodic boundary conditions on the lateral faces (green line).
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between low and high frequency vibrations is controlled by the 
ratio between the small and large masses and thus by Lmin in 
our architected material (see Supporting Information for more 
details).

Next, to confirm the numerical predictions, we experimen-
tally test the dynamic response of a periodic material with 
ψ = 0.048 and a/b = 52.9 arranged on a 6 × 2 square lattice 
(see Figure 3a) (see the Methods for details of the experiments). 
The comparisons between numerical results and experimental 
measurements are shown in Figure 3b–d, where we report the 
dispersion relation from unit cell calculation (Figure 3b) and 
the transmittance (defined as the ratio between the output and 
the input acceleration signals, ||Aout(ω)/Ain(ω)||) obtained from 
both experiments (Figure 3c) and finite-size FE simulations 

(Figure 3d) (see Supporting Information for details of the finite-
size FE simulations).

Focusing on the experimental results (Figure 3c), we find 
that the transmittance measured along the GX direction drops 
∼40 dB in three frequency ranges, f = 0.3 −1.2 kHz, 3.25 
−4.4 kHz, and 5−9 kHz (corresponding to ω≤ ≤0.04 0.18,  

ω≤ ≤0.44 0.6, and ω≤ ≤0.69 1.2). While the higher two atten-
uated frequency ranges clearly correspond to the numerically 
predicted band gaps, no signature of the lowest one is found 
in the dispersion relation (see Figure 3b). To understand 
this discrepancy, we numerically investigate the effect of the 
sample size by calculating the steady-state dynamic responses 
of different finite-size models (see Supporting Information 
for more details). While for the model with the same size 
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Figure 4. Effect of pores’ profile, orientation, and arrangement on the band structure of low porosity periodic structures: a–c) square array of mutually 
orthogonal elongated rectangular pores; d–f) square array of elongated elliptical pores aligned in horizontal direction; and g–i) Kagome-like lattice of 
elongated elliptical pores. For all the three geometries, we report a typical dispersion relation (a,d,g), the evolution of the band gaps as function of 
the pores’ aspect ratio, a/b (b,e,h), and the evolution of the band gaps as function of the minimum ligament thickness, Lmin (c,f,i). The dark-shaded 
regions in c,f,i sections indicate the collapsing gaps.
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as in experiment we observe all three drops in transmit-
tance (see blue curve in Figure 3d), the lowest one is found 
to disappear when we consider larger model sizes (see green 
curve in Figure 3d). This clearly indicates that such attenu-
ation is caused by finite-size effects, such as the reflected 
waves from the boundaries. Importantly, by comparing the 
results obtained from models of different sizes we can dis-
tinguish boundary effects from bulk properties. In addition, 
we should note that, although numerical results and experi-
mental measurements are generally in agreement for the 
higher two drops, these attenuation ranges are slightly shifted 
toward lower frequencies in experiment. This is mainly due 
to manufacturing inaccuracies in the laser cutting process. In 
fact, because of the divergence of the laser beam, the size of 
the pores increases through the thickness of the acrylic sheet, 
resulting in a smaller ligament size and, therefore, lower gap 
frequencies.

While the results reported so far are obtained for periodic 
materials with a square array of mutually orthogonal elliptical 
pores, we now demonstrate that the proposed mechanism is 
robust and can be also extended to elongated pores with dif-
ferent profiles, orientations, and arrangements. To this end, in 
Figure 4a–c, we present results for a material made of a square 
array of mutually orthogonal pores with rectangular profiles 
(see inset in Figure 4c). The dispersion plot (Figure 4a) shows 
that this structure is also characterized by two complete band 
gaps for low values of porosity (ψ = 0.05) if the rectangular 
holes have a large enough length over width ratio (a/b > 47). 
Moreover, we find that, while the band gaps appear at different 
values of a/b for structures with different porosities (Figure 4b), 
they collapse on each other if plotted versus the minimum 
 ligament thickness (see Figure 4 c and Figure S6 in Supporting 
Information), confirming the crucial role played by Lmin. Next, 
to investigate the effect of the pore orientation, we numerically 
study the dynamic response of a square array of elliptical holes 
all arranged horizontally (see Figure 4d–f). Since the wide hor-
izontal strips of elastic material act as pathways which easily 
let the waves propagate in GX direction, only directional band 
gaps in GY direction are observed. However, we find that such 
directional gaps are also retained for low values of porosity, 
ψ, and that the gaps sizes are controlled by Lmin (Figure 4e,f). 
Finally, we consider elongated elliptical pores arranged on a 
hexagonal array to form a kagome-like pattern (see Figure 4g–i) 
and observe that, even in this case, at low values of porosity the 
system is characterized by full band gaps, whose sizes are con-
trolled by the minimum ligament thickness (see Supporting 
Information for additional results).

In this study, we introduced a new class of periodic mate-
rials comprising a periodic array of elongated crack-like pores 
embedded in an elastic matrix and found that this design 
results in the formation of Bragg-type band gaps even for ultra-
low values of porosity. Interestingly, our results indicate that 
the frequency ranges of the band gaps are not affected by the 
porosity, but are fully controlled by the minimum ligament 
thickness between adjacent pores. Finally, we demonstrated that 
the proposed mechanism works universally for a wide range 
of pores’ profiles, orientations, and arrangements, providing 
an important guideline for the design of smart systems with 
targeted dynamic behavior.

Methods
Numerical Analysis: Dynamic response of the structures are 

numerically evaluated using the commercial FE package ABAQUS/
Standard. In particular, we construct 2D models of the unit cells with 
triangular plain strain quadratic elements (Abaqus element type CPE6) 
and model the material as linear elastic with Young’s modulus of  
E = 1750 MPa and Poisson’s ratio of ν = 0.35 (so that the elastic wave 
speeds are cT = 743~m s−1 and cL = 1546~m s−1 for shear and pressure 
waves, respectively). We then apply Bloch-type boundary conditions to 
the edges of the unit cell[35,38–40] and calculate the dispersion relation 
ω ω= k( ) using the frequency domain perturbation technique (see 
Supporting Information for details on the wave propagation analysis).

Experiments: To confirm the numerical results, the dynamic response 
of a periodic material with ψ = 0.048 comprising 48 mutually orthogonal 
elliptical pores with a/b = 52.9 arranged on a 6 × 2 square lattice is 
experimentally evaluated. The specimen consists of an acrylic plate (Height 
× Width × Thickness = 200 × 600 × 18.2 mm) perforated by elliptical pores 
with major and minor semiaxes of a = 45.0 mm and b = 0.85 mm (see 
Figure 3a) using a commercial laser cutter (KT150, Kern Laser Systems). 
During the dynamic tests the sample is suspended in air and is vibrated 
by an electrodynamic shaker (K2025E013, Modal Shop), which provides 
a white noise input signal over a broadband frequency range. Two 
miniature accelerometers (352C22, PCB Piezotronics) are attached to 
both ends of the sample (one exactly above the shaker tip and the other 
one at the opposite end of the specimen—see Figure 3a) to measure the 
transmittance of the sample versus the frequency of the incident wave.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
This work has been funded by Siemens ADGT. The authors also 
acknowledge support by the Materials Research Science and 
Engineering Center under National Science Foundation (NSF) Award 
No. DMR-1420570, NSF CMMI-1149456-CAREER award, and the 
support of the Kavli Institute at Harvard University. The authors 
thank Prof. David R. Clarke, Stan Cotreau, Sahab Babaee, Sijie Sun 
and Vincent Tourant for inspirational discussions and their help in 
performing the experiments. The authors declare that they have no 
competing financial interests.

Received: January 5, 2016
Revised: March 7, 2016

Published online: 

[1] W. Cheng, J. J. Wang, U. Jonas, G. Fytas, N. Stefanou, Nat. Mater. 
2006, 5, 830.

[2] M. Kafesaki, M. M. Sigalas, N. Garcia, Phys. Rev. Lett. 2000, 85, 
4044.

[3] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, V. Laude, 
Appl. Phys. Lett. 2004, 84, 4400.

[4] D. Elser, U. L. Anderson, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, 
G. Leuchs, Phys. Rev. Lett. 2006, 97, 133901.

[5] J. O. Vasseur et al. J. Appl. Phys. 2007, 101, 114904.
[6] Y. Pennec et al. Phys. Rev. B 2009, 80, 144302.
[7] A. Cebrecos et al. J. Phys. D: Appl. Phys. 2015, 48, 025501.
[8] J. Sun, T. Wu, Phys. Rev. B 2007, 76, 104304.
[9] S. A. Cummer, D. Schurig, New J. Phys. 2007, 9, 45.

[10] H. Chen, C. T. Chan, Appl. Phys. Lett. 2007, 91, 183518.



6 wileyonlinelibrary.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

C
O

M
M

U
N

IC
A
TI

O
N

Adv. Mater. 2016,  
DOI: 10.1002/adma.201600052

www.advmat.de
www.MaterialsViews.com

[11] T. Elnady et al. Appl. Phys. Lett. 2009, 94, 134104.
[12] M. M. Sigalas, J. Appl. Phys. 1998, 84, 3026.
[13] Z. J. Yao, G. L. Yu, Y. S. Wang, Z. F. Shi, Int. J. Solids Struct. 2009, 

46, 2571.
[14] S. Narayana, Y. Sato, Phys. Rev. Lett. 2012, 108, 214303.
[15] R. Schittny, M. Kadic, S. Guenneau, M. Wegener, Phys. Rev. Lett. 

2013, 110, 195901.
[16] M. Maldovan, Phys. Rev. Lett. 2013, 110, 025902.
[17] B. L. Davis, M. I. Hussein, Phys. Rev. Lett. 2014, 112, 055505.
[18] L. Yang, N. Yang, B. Li, Nano Letters 2014, 14, 1734.
[19] M. Maldovan, Nature 2013, 503, 209.
[20] M. Kushwaha, B. Djafari-Rouhani, J. Sound Vibrat. 1998, 218, 697.
[21] X. Zhang, Z. Liu, Y. Liu, F. Wu, Phys. Lett. A 2003, 313, 455.
[22] Y. Liu, J.-Y. Su, L. Gao, Phys. Lett. A 2008, 372, 6784.
[23] M. Maldovan, E. Thomas, Appl. Phys. B 2006, 83, 595.
[24] J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, 

A.-C. Hladky-Hennion, Phys. Rev. B 2008, 77, 085415.
[25] Z. Liu, C. T. Chan, P. Sheng, Phys. Rev. B 2002, 65, 165116.
[26] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski,  

B. Djafari-Rouhani, Phys. Rev. B 1994, 49, 2313.
[27] M. Sigalas, E. Economou, Solid State Commun. 1993, 86, 141.

[28] M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. 
Rev. Lett. 1993, 71, 2022.

[29] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude,  
Phys. Rev. E 2006, 74, 046610.

[30] Y. Tanaka, Y. Tomoyasu, S.-I. Tamura, Phys. Rev. B 2000, 62, 7387.
[31] T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, E. L. Thomas, Phys. 

Rev. Lett. 2005, 94, 115501.
[32] J. Jang et al. Adv. Funct. Mater. 2007, 17, 3027.
[33] R. H. Olsson III, I. El-Kady, Meas. Sci. Technol. 2009, 20, 012002.
[34] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter, 

Nature 2009, 462, 78.
[35] M. Maldovan, E. Thomas, Periodic Materials and Interference 

Lithography: For Photonics, Phononics and Mechanics, Wiley-VCH,  
Weinheim, Germany 2009.

[36] C. Kittel, Introduction to Solid State Physics, 6th ed., John Wiley,  
New York, 1986.

[37] A. H. Safavi-Naeini, O. Painter, Opt. Express 2010, 18, 14926.
[38] F. Bloch, Z. Phys. 1929, 52, 555.
[39] L. Brillouin, Wave Propagation in Periodic Structure, McGraw-Hill, 

New York 1946.
[40] P. Wang, J. Shim, K. Bertoldi, Phys. Rev. B 2013, 88, 014304.



Copyright WILEY‐VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. 

 
 
 
 
 

 
 
 
 

Supporting Information 
 
 

for Adv. Mater., DOI: 10.1002/adma.201600052 

 
Architected Materials with Ultra-Low Porosity for Vibration 
Control 
 
Farhad Javid, Pai Wang, Ali Shanian, and Katia Bertoldi* 



Supplementary Information for
Architectured Materials with Ultra-low Porosity for Vibra-
tion Control

Farhad Javid,1 Pai Wang,1 Ali Shanian,2 and Katia Bertoldi1,3∗

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, 02138, USA.

2Siemens ADGT, 9545 Cote de Liesse, Dorval, Québec, H9P 1A5, Canada.
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S1 Wave propagation analysis

Bloch wave analysis for infinitely large periodic structures: The propagation of mechanical

waves within infinitely large porous materials is investigated numerically by considering 2D peri-

odic unit cells spanned by the lattice vectors a1 = [2L, 0] and a2 = [0, 2L], as shown in Fig. S1a.

The reciprocal lattice is identified by the reciprocal lattice vectors

b1 = 2π
a2 × z

‖z‖2
, b2 = 2π

z× a1

‖z‖2
(S1)

satisfying ai.bj = 2δij , where δij is the Kronecker delta and z = a1 × a2.

In order to obtain the dispersion relation of the propagating waves in the porous system,

frequency domain wave propagation analyses are performed on the unit cell. Bloch-type boundary

1



Figure S1: (a) The 2D periodic structure spanned by the lattice vectors a1 = [2L, 0] and a2 =

[0, 2L]. A unit cell of this structure is highlighted in yellow. (b) Corresponding reciprocal lattice

(black dots) and first Brillioun zone (yellow area) in the reciprocal space.

conditions 1 of the form

u(x+ r) = u(x) exp(ik · r), (S2)

are applied to the edges of the unit cell, where u and x denote, respectively, the displacement and

position vector of a point. Moreover, r is the distance between each pair of nodes periodically

located on the boundaries and k is Bloch-wave vector. Since most commercial finite element

packages do not support the complex-valued displacements introduced by Eq. (S2), following

Aberg and Gudmundson 2, we split any complex-valued spatial function φ(x) into a real and an

imaginary part

φ(x) = φ(x)re + iφ(x)im. (S3)

The problem is then solved using two identical finite element meshes for the unit cell, one for the

2



real part and the other for the imaginary part, coupled by

ure(x+ r) = ure(x) cos(k · r)− uim(x) sin(k · r), (S4)

and

uim(x+ r) = ure(x) sin(k · r) + uim(x) cos(k · r). (S5)

Note that Eqs. (S4) and (S5) are implemented into Abaqus/Standard via multi-point constraints 3.

Focusing on the propagation of small amplitude waves, we calculate the dispersion relation

ω = ω(k) using the frequency domain perturbation method. In particular, the dispersion band

diagrams reported in this work (e.g., see Figs. 1 and 3b) is obtained by choosing k on the perimeter

of the irreducible Brillioun zone 3–5 (yellow triangle in Fig. S1b) and considering 32 uniformly-

spaced points along each edge.

Steady-state dynamic analysis for finite-size structures: The dynamic response of finite-sized

structures in the main text is investigated numerically by calculating their steady-state dynamic

response to harmonic excitations. As shown in Fig. S2, two finite size 2D models, one consisting

of 6 × 2 unit cells and the other consisting of 20 × 1 unit cells with periodic boundary conditions

on the horizontal edges, are constructed using Abaqus triangular plain strain quadratic elements

(Abaqus element type CPE6). The first model is identical to the experimental sample, while the

second one is used to study how boundary effects affect the dynamic response of the structure.

The material is modeled as linear elastic with Young’s modulus of E = 1750 MPa (as for the

acrylic sheet used in experiments) and Poisson’s ratio of ν = 0.35. A linear perturbation steady-

3



Figure S2: Finite-sized 2D models used for the steady-state dynamic analysis: (a) model comprising 6× 2

unit cells; (b) model comprising 20×1 unit cells. Periodic boundary conditions are applied to the horizontal

edges.

state dynamics analysis is performed on each model for the frequency range of ω = 0 − 12000

Hz. To this end, an excitation is applied to one end of the models and the output is measured at the

other end (see Fig. S2).

4



S2 The role of the minimum ligament thickness

The results presented in the main text reveal that the minimum ligament thickness, Lmin, is the

essential parameter that controls the dynamic response of the proposed structures. To explain the

crucial role played by Lmin, we note that the proposed architected material can be idealized as a

2D array of alternating small (corresponding to the thin ligaments of width Lmin) and large (cor-

responding to the square regions surrounded by the elongated holes) masses coupled by springs.

As shown in Fig. S3, when Lmin decreases (by increasing the aspect ratio of the elliptical holes

while keeping the porosity constant), the mass m2 associated to the thin ligaments monotonically

decreases, while the mass m1 associated to the square regions slightly increases. As a result, the

mass ratio m1/m2 monotonically increases and this is known to lead to a band gap that arises from

the existence of modes of oscillation with widely different frequencies 6, 7. For the sake of sim-

plicity, here we consider a simple 1D system composed of two concentrated masses, m1 and m2

connected by springs of stiffness k0. For such system, the two branches of the dispersion relation

are given by

ω2
1,2 = ω2

0 ±

√
ω4
0 −

4k20
m1m2

sin2 kL, where ω2
0 = k0

(
1

m1

+
1

m2

)
(S6)

where k is the reduced wave vector (note that for this 1D system the wave vector is a scalar). In

Fig. S3b we plot the dispersion relation for a diatomic chain with m1/m2 = 1, 2 and 10. We see

that large band gaps exist in this structure as m1/m2 is increased, just as in the porous material

considered in this study.
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Figure S3: a) In the porous structures the mass ratio m1/m2 increases as the minimum ligament thickness,

Lmin, decreases. This leads to the opening and widening of a band gap. b) A similar behavior is observed in

a 1D mass-spring system.
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S3 Additional Numerical Results

Effect of Porosity in Periodic Materials with Circular Pores In Fig. S4, we plot the dispersion

relation for a square array of circular pores in a 2D elastic material for three different values of

porosity (ψ = 0.7, 0.55, and 0.4). As expected, the results indicate that, as the porosity is reduced,

the width of the band gap progressively decreases. In particular, we find that for ψ = 0.4 no band

gap for low ranges of frequency (ω = ωL/(πcT ) < 2) is formed. These results fully agree with

previous calculations indicating that in 2D structures perforated with a square array of circular

pores bandgaps are suppressed for ψ < 0.438, 9.

Effect of Pores’ Profile and Orientation To further demonstrate the robustness of the proposed

concept, here we present additional results for periodoic materials with different pores’ profile

and orientations. In particular, in Fig. S5a-c we focus on a square array of mutually orthogonal

elongated rectangular pores with rounded tips (see inset in Fig. S5c). The dispersion plot shows

that, if the pores have a large enough aspect ratio, this structure is also characterized by two band

gaps for ψ = 0.05. Moreover, similar to the cases reported in Fig. 4, the band gaps of structures

with different porosities appear in different aspect ratio ranges (see Fig. S5b) but they collapse on

a single curve if plotted versus the minimum ligament thickness (see Fig. S5c).

Next, in Figs. S5d-f and g-i we study the effect of pores orientation and consider structures

with elongated elliptical pores oriented to form a ”X” pattern (see inset in Fig. S5f) and a zig-zag

pattern (see inset in Fig. S5i). Again, for the ”X”-pattern structure we find band gaps even for low

values of porosity (Figs. S5d) which are appeared in different pores’ aspect ratio ranges (Figs. S5e)
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Figure S4: Dispersion relation for a square array of circular pores in a 2D elastic sheet: a) ψ = 0.7, b)

ψ = 0.55, and c) ψ = 0.4.
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but they all collapse on each other when plotted versus Lmin (Fig. S5f). For the structure with

the zig-zag pattern only directional band gaps are observed since the minimum ligament thickness

only affects the wave propagation in vertical directions (Fig. S5i). However, similar to the previous

cases, the minimum ligament thickness is found to be the governing parameter that controls the

band gaps behavior in this structure.

Effect of Pores’ Sharpness Finally, in Fig. S6 we plot the frequency ranges of gaps versus the

minimum thickness of the ligaments separating neighboring holes for periodic materials with a

square array of mutually orthogonal rectangular, oval, elliptical and rhombic pores, all character-

ized by the same porosity (ψ = 0.05). Importantly, we find that the band gaps of all the four

structures collapse on each other, proving that the effect of the pores profile is minimal.

Effect of Sample Thickness While all numerical analysis presented in this study were conducted

under plane strain assumptions, to study the effect of the sample thickness we also considered the

extreme case of a very thin model constructed using shell elements. As shown in Fig. S7, the

band gaps of the thin 6×2 model are very similar to those of the corresponding plane strain one,

indicating that the dynamic response of the architected material is not significantly affected by the

thickness of the structure.

Effect of Boundaries The choice of origin for ”cutting out” a finite sample is always arbitrary,

and any boundary effect will be largely determined by this choice. However, we expect the bulk

properties of the architected material not to be affected by this. To demonstrate this point, in Fig.

S8 we show results obtained from two 6 × 2 structures with original and half-length (0.5L) edge
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Figure S5: Effect of the pores’ profile and orientation on the band structure of the periodic materials: (a-c)

Square array of mutually orthogonal elongated rectangular pores with rounded tips; (d-f) square array of

elongated elliptical pores oriented to form a ”X” pattern; and (g-i) square array of elongated elliptical pores

oriented to form a zig-zag pattern. For all three geometries, we report a typical dispersion relation (a, d, and

g), the evolution of the band gaps as function of the pores aspect ratio, a/b (b, e, and h) and the evolution of

the band gaps as a function of the minimum ligament thickness, Lmin (c, f, and i).
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Figure S6: Effect of the pores profile on the band gaps in a square array of mutually orthogonal elongated

pores with ψ = 0.05. The band gaps obtained for different pores profiles collapse on each other, confirming

that the effect of the pores profile is minimal.
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Figure S7: Transmittance of the proposed periodic structure made of the plane strain and shell elements.
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Figure S8: a) Finite-size models with different boundary cuts. b) Transmittance curves for the two models.

cuts (see Fig. S8a). Importantly, the transmittance curves shown in Fig. S8b indicate that the size

and the location of the band gap remains almost unchanged in structures with different edge cuts.

Displacement and stress fields In Fig. S9 and S10, we show the displacement field and the von

Mises stress distribution in the 6× 2 structure at four different frequencies. The results reported in

sections a, c, and d of Figs. S9 and S10, are for frequencies within the first, second, and the third

bandgaps, respectively. As a result, the elastic energy in these cases is completely localized near

the excitation site and no vibrations are transmitted to the opposite end of the sample. Differently,

in section b of these two figures, we show the displacement and stress fields for a frequency out of

the band gaps, so that the elastic waves are found to propagate through the structure.
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Figure S9: Displacement field distribution in finite-size structures comprising 6 × 2 unit cells at different

frequencies: (a) f = 595 Hz (within the first band gap of the structure), (b) f = 2496 Hz (outside the band

gaps), (c) f = 3993 Hz (within the second band gap of the structure), and (d) f = 8006 Hz (within the third

band gap of the structure).
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Figure S10: von Mises stress distribution in finite-size structures comprising 6 × 2 unit cells at different

frequencies: (a) f = 595 Hz (within the first band gap of the structure), (b) f = 2496 Hz (outside the band

gaps), (c) f = 3993 Hz (within the second band gap of the structure), and (d) f = 8006 Hz (within the third

band gap of the structure).
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