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Inflatable Origami: Multimodal Deformation via Multistability

David Melancon, Antonio Elia Forte, Leon M. Kamp, Benjamin Gorissen, 
and Katia Bertoldi*

Inflatable structures have become essential components in the design of soft 
robots and deployable systems as they enable dramatic shape change from a 
single pressure inlet. This simplicity, however, often brings a strict limitation: 
unimodal deformation upon inflation. Here, multistability is embraced to 
design modular, inflatable structures that can switch between distinct defor-
mation modes as a response to a single input signal. This system comprises 
bistable origami modules in which pressure is used to trigger a snap-through 
transition between a state of deformation characterized by simple deployment 
to a state characterized by bending deformation. By assembling different 
modules and tuning their geometry to cause snapping at different pressure 
thresholds, structures capable of complex deformations that can be pre-
programmed and activated using only one pressure source are created. This 
approach puts forward multistability as a paradigm to eliminate a one-to-one 
relation between input signal and deformation mode in inflatable systems.
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increasing unimodal deformation with 
pressure.[8–10] To compensate for this 
deficiency, common strategies include 
sequencing multiple elements[11–17] or 
pressurizing chambers independently.[18,19] 
Alternatively, material inextensibility[20] 
and non-linearities[21,22] have been har-
nessed to achieve bidirectional bending. 
Despite all this, targeting arbitrary defor-
mation modes with a single pressure 
input is beyond the capabilities of current 
inflatable systems.

In the wider domain of adaptive sys-
tems, origami principles have extensively 
been employed to realize transform-
able architectures,[23–28] self-foldable 
machines,[29–31] and waveguides.[32–34] 
Distributed actuation approaches have 
been used to directly control the fold angle 
via pressurized air pockets[35] or stimuli-

responsive materials.[24,36–39] However, these strategies require 
multiple input sources and result in bulky assemblies with 
excessive tethering and/or slow actuation. To overcome these 
limitations, recent efforts have achieved shape control of ori-
gami structures with embedded ferromagnetic elements via 
remote magnetic fields.[40–42]

Additionally, if the origami crease pattern supports a non-
convex energy landscape, multiple stable states manifest,[41,43–50] 
which can expand the functionality of the structures. For 
example, introducing multistability in the classic waterbomb 
origami pattern resulted in the creation of mechanical bits 
and logic elements;[44,51,52] multistable origami sheets based 
on the tiling of the degree-four vertex enabled the design of 
self-locking grippers[53] and energy-absorbing components for 
drones;[54] finally, bistable configurations of the Kresling pat-
tern[45,55] have been exploited to: i) generate locomotion via 
peristaltic motion[56] or differential friction,[57] ii) create flexible 
joints for robotic manipulation,[58] and iii) store mechanical 
memory.[41,59]

Here, we employ the Kresling pattern as a building block to 
realize inflatable cylindrical structures capable of supporting 
multiple deformation modes, while being globally actuated using 
a single pressure input. We start with a monostable Kresling pat-
tern and modify it by introducing two additional valley creases in 
one of its panels (see Figure 1). This makes the panel bistable, so 
that during inflation it unfolds and snaps outward, breaking the 
rotational symmetry of the module. Importantly, upon vacuum 
such asymmetry gives rise to bending, which persists until a 
critical negative pressure is reached at which the panel snaps 
back. Next, we show that these modules can be geometrically 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202201891.

1. Introduction

When safe human–machine interaction is paramount, the 
design of smart devices and robotic systems often relies on 
inflatables and cylindrical structures as they support a variety 
of possible deformations.[1–7] However, a vast majority of these 
suffer from an intrinsic one-to-one relationship between input 
pressure and output deformation. In other words, they exhibit 
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programmed to snap at different pressure thresholds and assem-
bled in various order and orientation to form structures capable 
of multimodal deformation. Distinct deformation modes can be 
first activated by snapping a selected set of modules and then 
triggered by applying vacuum. Such modes can be inverse-
designed by optimizing the arrangement and orientation of the 
building blocks. Importantly, the same structure can shape-shift 
to multiple target deformation modes using only one pressure 
input. Our approach paves the way for new opportunities in the 
design of reconfigurable structures with embedded actuation.

2. Our Building Blocks Based on 
the Kresling Pattern
To realize multimodal origami structures, we use building 
blocks that consist of one layer of the classic Kresling pattern 
(also known as nejiri-ori).[55] More specifically, in its initial, 

undeformed state, the single module is capped by two hexa-
gonal facets with edges of length l = 30 mm, separated by a dis-
tance h = 24 mm, and rotated by an angle α = 30° with respect 
to each other (see Figure  1a). The hexagons are connected at 
each side by a panel comprising a pair of triangular facets 
coupled by alternating mountain (i.e., edges A′B and AB′)  
and valley (i.e., edge BB′) folds. Since the Kresling pattern is 
not rigid foldable,[45] any change in its internal volume will 
lead to an incompatible configuration. To accommodate the 
resulting geometrical frustration, we 3D-print 1-mm thick 
triangular facets out of a compliant material (TPU95A from 
Ultimaker with Young’s modulus E = 26 MPa) and reduce the 
thickness locally to 0.4 mm to create the hinges (see prototype 
in Figure  1a). Further, to facilitate coupling between different 
modules, we 3D-print the hexagonal caps out of a stiffer mate-
rial (PLA from Ultimaker with Young’s modulus E = 2.3 GPa). 
Additionally, we coat the origami unit with a thin layer of 
polydimethylsiloxane (PDMS) to form an inflatable cavity (see 

Figure 1. Bistable origami modules as building blocks for multi-output, single-input inflatable structures. a) Schematics of a monostable module 
based on the hexagonal-base Kresling origami pattern, along with a 3D-printed prototype. The panels of the monostable modules remain always folded 
inward. We refer to this state of deformation as state s0. b) State diagram of the pressurized origami modules. c) Bistable module with a modified 
panel (highlighted in orange) made of four triangular facets A′ B O′, A O′ B′, A O′ B, and A′ B′ O′ and characterized by a depth Δ from vertex O to 
O′, along with a 3D-printed prototype displayed in its two stable states: state s0 for which all panels (including the modified panel) are folded inward; 
and state s1 for which the modified panel is popped outward (while all other panels are still folded inward). d) Norm of the vector connecting the two 
caps’ centroids, dd|| || , and bending angle, θxz, versus pressure, p, for the monostable (solid gray curves) and bistable with Δ = 3 mm (dashed orange 
curves) origami modules during inflation and deflation. e) Experimental positive and negative pressure thresholds, p∆

+  and p∆
− , as a function of the 

modified panel’s depth, Δ.
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Section  S1, Supporting Information, for fabrication details). 
Note that the chosen values of the parameters (h, l, α) yield a 
monostable origami module (i.e., the Kresling pattern is only 
stable in its initial, undeformed state).

To investigate the response of a single module, we posi-
tion it on a flat surface and slowly inflate it with air at a 
rate of 10 mL min−1 using a syringe pump (Pump 33DS, 
Harvard Apparatus). We monitor the pressure using a sensor 
(Honeywell ASDXRRX015PDAA5) and capture the module’s 
deformation via two digital cameras (SONY RX100 V) positioned 
in front and above it (see Section S2, Supporting Information, 

for details). As expected,[45] the Kresling unit deploys and folds 
upon inflation and deflation and returns to its undeformed con-
figuration as soon as the pressure is removed (Figure 1b). This 
state of deformation, in which all panels are folded inward, 
is referred to as s0. To better characterize the response of the 
module, we monitor the position of its top cap and record the 
vector connecting the two caps’ centroids, dd. In Figure  1d, 
we report the norm of dd , dd|| ||, and the angle between the 
projection of dd  on the xz-plane and the positive z-axis, θxz, as a 
function of the internal pressure, p. We find that dd|| || increases 
from 30 to 36 mm during inflation and then decreases to 4 mm 

Figure 2. Multimodal deformation via multistability. We create multi-unit structures by combining n modules. Each kth module is defined by three geo-
metrical parameters: a) the modified panel depth, Δk, b) the chirality of the Kresling pattern, ck, and c) the location of the modified panel, f k. Note that, 
for simplicity, for the modified panel of the bottom unit we choose f 1 = 1, since it always faces the negative x-axis. d) State diagram for any multi-unit 
structure with Δ ∈ {2, 4} mm. e) Schematic of a 2-unit structure defined by [Δ1c1f 1; Δ2c2f 2] = [2\\1; 4//1] along with experimental snapshots of its dif-
ferent deformation modes under vacuum. f) Schematic of a 2-unit structure defined by [Δ1c1f 1; Δ2c2f 2] = [2\\1; 4\\4] along with experimental snapshots 
of its different deformation modes under vacuum. g) Polar plots showing the angles in the xz-plane, θxz, and the xy-plane, θxy, associated to each state 
in the three different complex deformation modes for the two 2-unit structures. The radial distance of the markers represents the norm of the vector 
connecting the two caps’ centroids, dd|| ||. Both experimental measurements (filled markers) and numerical predictions (empty markers) are shown.
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during deflation. Differently, θxz remains close to zero during 
the entire test (see gray curves in Figure 1d), indicating that the 
module purely deploys upon inflation and folds upon deflation, 
deforming exclusively along its central axis.

Aiming at unlocking different deformation modes with one 
single pressure input, we then take inspiration from bistability 
in degree-four vertices[47,52,60] and modify one of the original 
Kresling panels by introducing two additional valley creases 
(i.e., AO and A′O with O being the midpoint of crease BB′, see 
Figure 1c). While this effectively creates a degree-four vertex, it 
results in a monostable origami unit, as no snap-through insta-
bility is recorded upon inflation (see Section  S2, Supporting 
Information). To increase the geometric incompatibility during 
deployment and achieve bistability in the unit, we then move 
the degree-four vertex inward by Δ (see Figure 1c where Δ is the 
norm of vector OO′  perpendicular to vectors AA′ and BB′ ).

Choosing Δ = 3 mm, for example, we can fabricate an origami 
unit that can easily transition between two stable states: state 
s0 for which all panels are folded inward, and state s1 for which 
the modified panel is popped outward (while all other panels 
are still folded inward—Figure  1c). Similar to the unit based 
on the classic Kresling pattern, upon inflation this modified 
module deploys with all panels bent inward if p < 26.1 ± 0.9 kPa. 
However, at p = ±+ 26.1 0.93  kPa (where the subscript refers to 
Δ = 3 mm and the superscript refers to positive pressure), the 
unit snaps from state s0 to state s1, which is characterized by 
the modified panel popped outward (Figure  1b)—a transition 
that results in a sudden small drop of dd|| ||  and slight increase 
of θxz (see zoom-in in Figure  1d, left hand side). Finally, a fur-
ther increase in pressure causes the unit to elongate until the 
maximum structural limit is reached. Afterward, when the input 
pressure is removed, the modified panel remains popped out-
ward because of bistability. As such, when we apply negative 
pressure, the unit not only folds, but also bends (see Figure 1b), 
exhibiting a behavior that radically differs from that of the 
monostable Kresling module. In fact, we find that the vector dd 
decreases in length and rotates in space. To characterize such 
rotation, we position the module with the modified panel facing 
the negative x-direction and monitor the angle θxz. We find that 
θxz monotonically increases until the two hexagonal caps come 
into physical contact, effectively clipping the available range of 
bending deformation to xz

�θ = ±21.7 0.3max  (see Figure  1d). As 
previously mentioned, this bending deformation is activated 
by the snapping of the modified panel, which remains in the 
popped outward configuration (while the other panels fold 
under increasing negative pressure) and breaks the radial sym-
metry. Note that, as the Kresling twists when deflating, d also 
rotates in the xy-plane. Specifically, at p−

3  the angle between 
the projection of dd  on the xy-plane and the positive x-axis is 
θxy  = 10.6 ± 0.6 ° (see Section  S2, Supporting Information, for 
details). Finally, when the negative pressure passes the threshold 
p = − ±− 21.2 0.73  kPa (where the superscript refers to negative 

pressure), the modified panel snaps back to the inward posi-
tion (see Figure  1b). At this point θxz suddenly decreases (see 
Figure 1d) and the bending deformation mode gets deactivated. 
If one continues to apply negative pressure to the module, the 
unit folds (almost) flat with dd = ±|| || 3.8 0.8  mm, θxz = 6.9 ± 0.9° 
and θxy = 22 ± 0.5° at p = −30 kPa (see Figure 1d and Section S2, 
Supporting Information).

Next, we investigate the effect of the depth Δ of our degree-
four vertex panel on the positive and negative pressure thresh-
olds, p∆

+  and p∆
−, as well as the deformed configurations reached 

upon snapping. The experimental results reported in Figure 1e 
for Δ = 2, 3, and 4 mm indicate that the absolute value of the 
pressure thresholds increases with Δ within the considered 
range. By contrast, when the units are in state s1, we find that 
for all considered Δ, the angles reach xz

�θ ≈ 20max  and xy
�θ ≈ 10max  

upon vacuum—a value determined by the contact between the 
caps and the geometry of the Kresling pattern, respectively 
(see Section  S2, Supporting Information for details). Finally, 
we note that for Δ < 2 mm the modules are found to be mon-
ostable. This means that negligible bending is recorded upon 
application of negative pressure, since the degree-four vertex 
panel snaps back immediately. Differently, for Δ ≥ 4 mm, the 
positive pressure required to snap the modified panel outward 
is so high that the module fails (see Figure  S4, Supporting 
Information).

3. Multimodal Deformation via Multistability

After demonstrating that our bistable module can transition 
between two stable states (i.e., states s0 and s1) with distinct 
deformation modes (i.e., deployment/folding and bending), 
we next combine these units to form multimodal tubular 
structures whose deformation is controlled by a single pres-
sure input. By connecting n modules, we can construct 
(3 × 2 × 6 + 1 × 2)n = 38n different structures. This is because for 
each module k we can select: i) either a regular Kresling pattern 
or a unit comprising a modified, degree-four vertex panel with 
depth Δk ∈ {2, 3, 4} mm (Figure 2a); ii) the chirality of the ori-
gami pattern (i.e., the rotation direction of the upper cap with 
respect to the bottom one), ck ∈ {//, \\} (Figure 2b); and iii) the 
side on which the modified panel is located, f k ∈ {1, …, 6} (note 
that for the modified panel of the bottom unit we choose f1 = 1, 
since it always faces the negative x-axis—Figure 2c).

For simplicity, we start by considering structures with 
Δ  ∈ {2, 4} mm. In Figure  2d, we show the state diagram of 
such structures. This is characterized by four pressure thresh-
olds. The positive pressure thresholds p+

2  and p+
4  corresponds 

to the pressures at which the modified panels of all units with 
Δ  = 2 mm and Δ  = 4 snap outward, respectively. Equally, the 
negative thresholds p−

2  and p−
4  correspond to the pressures at 

which the panels snap inward. These thresholds lead to four 
distinct stable states, sij with i, j ∈ {0, 1}, where the subscripts 
i and j refer to the state of the modified panels with Δ = 2 and 
4 mm, respectively. The state diagram also establishes the 
pressure history one has to apply in order to reach each stable 
state. It shows that the stable states s10 and s11 can be readily 
obtained by simply increasing pressure, whereas a more com-
plex pressure path is required to achieve state s01, as one has to 
i) increase pressure above p+

4  and then ii) decrease it below p−
2 .

While the state diagram in Figure  2d applies to all tubular 
structures assembled using modules with Δ = 2 and 4 mm, the 
deformation modes associated to each stable state upon vacuum 
depend on the arrangement of the modules. To illustrate this, we 
consider two structures comprising one module with Δ = 2 mm 
and another one with Δ = 4 mm connected via 3D-printed screws 
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(see Figure S2, Supporting Information, for details). In the first 
structure, the two modules have opposite chirality and the modi-
fied panels facing the negative x-axis (i.e., [Δ1c1f 1; Δ2c2f 2] = [2\\1; 
4//1] – note that we assume the first unit to be the one at the 
bottom), whereas in the second one the two modules have the 
same chirality and modified panels located on the opposite sides 
of the structure (i.e.,  [Δ1c1f 1; Δ2c2f 2] = [2\\1; 4\\4]). The experi-
mental snapshots reported in Figure 2e,f (on the right hand side) 
show that under vacuum both structures simply fold in state s00, 
but support more complex deformations in states s10, s11, and 
s01. To better characterize these complex deformations, we once 
again track the vector connecting the bottom and top cap’s cen-
troids, dd , at the lowest pressure point of bending deformation 
associated to each state (see inset in Figure 2g). We find that for 
the first structure the deformations associated to states s10, s11, 
and s01 are all bending-dominated and characterized by θxz ≈ 20° 
and θxy  ∈ [−7.34°, 20.4°] (filled square markers in Figure  2g). 
Differently, in the second structure, in addition to two off-axis 
bending modes with θxz ≈ 20° and θxy = −9.40 and 23.9°, vacuum 
unlocks a distinct, twisting-dominated deformation mode char-
acterized by θxz = −3.64° and θxy = 108° (filled triangular markers 
in Figure 2g).

The results of Figure  2 show that the arrangement of the 
modules within the tubular structure has a profound effect on 
the deformation modes associated with each stable state. To 
systematically explore such effect, we develop a simple algo-
rithm that predicts the geometry of deformation under each 
mode. First, we extract key geometric features from the experi-
ments conducted on single units, that is,  dd|| || , θxz and θxy 
each deformation modes (see Figures  S4 and S5, Supporting 
Information). When assuming pressure continuity, these 
data allow the prediction of the geometry of deformation of 
any n-unit structure (see Section S3, Supporting Information, 
for details on the algorithm). Note that we also assume per-
fect coupling between units, so that the pressure thresholds, 
p /

∆
+ −, found in the experimental characterization of Figure  1e, 

remain unchanged and identical for units with the same geo-
metrical parameters. In Figure  2g, we compare the results 
from our simple geometrical model (empty markers) with our 
experimental results (filled markers). Although experiments 
and model results are qualitatively similar, the error becomes 
large when the number of units in the structure increases. 
This error comes from the assumptions in the model, which 
does not take into account gravity, manufacturing imperfec-
tions as well as non-rigid coupling between the units (see 
Table S1, Supporting Information and Section  6 for the full 
quantification of the error between numerical predictions and 
experimental results).

Next, we use our numerical model to systematically inves-
tigate the deformation states that can be activated upon appli-
cation of vacuum in our tubular structures. In Figure  3a, we 
use black dots to show the location of the top cap’s centroid at 
the lowest pressure for all complex deformation states (i.e., sij 
with i + j > 0) of any structure with n = 2 modules. For refer-
ence, we also depict the structure’s bottom and top hexagonal 
plates under atmospheric pressure. When setting f 1 = 1, we find  
that most datapoints are clustered in a very narrow region that 
is contained within the top unit of the structure (see zoom-in in 
Figure  3a). To further characterize the supported deformation 

states, we plot the angles θxz (Figure 3b) and θxy (Figure 3c) as 
a function of ||d||/h for all datapoints. We find that the defor-
mation modes for structures built out of only two modules are 
limited to the narrow range of θxz ∈ [−17.6°, 38.8°], whereas θxy 
spans the entire 360° range. Additionally, since our goal is to 
realize structures capable of switching between distinct defor-
mation modes harnessing a single pressure source, we select 
the structure that maximizes

dd dd
nmodes

∑Φ = −
α β

α β
=

1

2
·|| ||

, 1

2  (1)

where nmodes
n2 1= −∆  is the number of supported complex 

deformation modes ( n∆  denoting the number of different Δ 
used in the structure). We find that for n = 2 the most distinct 
deformation modes are achieved in a structure comprising two 
modules with the same chirality and modified panels located 
on opposite sides, that is, [Δ1c1f 1; Δ2c2f 2] = [3\\1; 4\\5]. For this 
structure, states s10, s01, and s11 are characterized by θxz = 25.9°, 
−17.2°, and 13.1° and θxy = −8.51°, 172°, and −21.5°, respectively 
(see colored markers in Figure  3a–c). As shown by the front 
and top views reported in Figure  3d, the structure is able to 
bend in three different directions.

The complexity and number of deformation modes sup-
ported by the structures can be expanded by increasing the 
number of modules. In Figures 3e–h and 3i–l, we report results 
for structures comprising n  = 4 and n  = 12 modules, respec-
tively. Note that, since 38n possible designs exist for a structure 
with n modules, while we can simulate all possible designs 
for n = 4, the number of designs for n = 12 is too large to per-
form an exhaustive search. Instead, we select 500 000 random 
structure geometries. As expected, by increasing the number 
of modules in the structure, we extend the space attainable by 
the top cap’s centroid (see Figure 3e,i for n = 4 and 12, respec-
tively). Specifically, in addition to θxy spanning the entire 
360° range, we find that hdd ∈|| || / [2.10,3.40]  and [3.46,10.1]  
and θxz  ∈ [−44.5°, 63.3°] and full 360° range, respectively for 
n  = 4 and 12 (see Figure  3f,g,j,k) Finally, the numerical snap-
shots of the 4 and 12-unit structures that maximize Φ reported 
in Figure 3h,l show that by controlling the input pressure these 
structures can be made to bend in a variety of directions as well 
as simply contract and twist under vacuum.

4. Inverse Design to Reach Multiple Targets

Building on the established platform, we now aim at demon-
strating how one can design structures that can reach multiple 
targets in space, despite being actuated through a single pres-
sure source. However, since the use of n modules leads to 
38n possible structure designs, it is crucial to use a robust 
algorithm to efficiently identify configurations leading to the 
targets. To this end, given the discrete nature of our design vari-
ables, we use a greedy algorithm based on the best-first search 
method[61,62]—a progressive local search algorithm that, at each 
iteration, minimizes the cost function by looking at a set of 
available solutions. Although there exists many algorithms to 
solve this type of discrete optimization problems,[63,64] we find 
that the greedy algorithm provides the best trade-off between 
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accuracy and computational cost (see Section  S4, Supporting 
Information, for details and comparison of the different algo-
rithms). Specifically, our greedy algorithm identifies tubular 
structures built out of ns super-cells each with nu modules (so 
that n = nu · ns), whose tip can reach a desired set of targets arbi-
trarily positioned in the surrounding space. Note that the max-
imum number of targets a structure can reach is n n2targets = ∆ . At 
the first iteration, the algorithm starts by selecting the structure 
super-cell design that minimizes

dd TT
n h m

n

m∑ψ = −
=

1

·
min || ||

targets 1

targets

 (2)

where mTT  is the vector connecting the mth target with the 
origin. Once the first super-cell is chosen, the algorithm stores 
it in memory and starts a second iteration. This comes to an 
end when the algorithm identifies a second super-cell that, 
connected to the first one, minimizes Equation  (2). The first 
two super-cells are then stored in memory and the algorithm 

Figure 3. Exploration of the design space. We use our numerical model to characterize the deformation modes of structures made of n = 2, 4, and 
12 units. Location of the top cap’s centroid (black dots) associated to each complex deformation modes of any structure made of n = 2 (a) and n = 4 
(e) units as well as 500 000 random structures with n = 12 (i) units. Note that we show 1.296, 1.78 × 106, and 4 × 106 different top cap’s locations (black 
dots) for n = 2, 4, and 12, respectively. Polar plots showing the angles in the xz-plane, θxz, and the xy-plane, θxy, associated to each state in the complex 
deformation modes for any structure made of 2 (b,c), 4 (f,g), and 12 (j,k) units. In all plots, the radial distance of the markers represents the norm of 
the vector connecting the two caps’ centroids, dd|| ||. Numerical snapshots of the deformation modes of the structures with n = 2 (d), n = 4 (h), and 
n = 12 (l) units that maximizes Φ.
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advances to the next one. Note that in this study, to balance 
the number of available designs and computational cost, we 
set the greedy algorithm to consider super-cells made out of 
three units (i.e.,  nu  = 3, see Figures  S9 and S12, Supporting 
Information, for a comparison across super-cells made with 
different nu). Additionally, in order to avoid fabricating exces-
sively long structures whose response could be affected by 
gravity, we impose that the algorithm should end after stacking 
five super-cells.

To demonstrate our approach, we select a set of targets 
within the reachable space (see red circular markers in 
Figure  4a; Figures  S14 and S15, Supporting Information, 
for additional targets). In Figure  4b we show the minimum 
value of the objective function Ψ identified by our algorithm 
at each iteration for the selected set of targets. Further, in 
Figure  4c we report the deformed modes that most closely 
approach the three targets for the corresponding structures. 
We find that for this set of targets the minimum error is 
reached for a structure with ns = 4 (note that the convex shape 

of Ψ in Figure 4b is due to a correlation between the optimal 
number of units and the average distance of the targets from 
the origin—see Figure  S15, Supporting Information). This 
design comprises the classic Kresling module as well as 
bistable units with Δ  = 2, 3, and 4 mm (see Figure  4d). As 
such, the optimal structure has eight stable states, 14 snap-
ping transitions, and a more complex state diagram in which 
not all targets are reached consecutively by continuously 
decreasing pressure (Figure  4e). More specifically, to move 
from T1 to T2, this structure has to be reset by decreasing 
the pressure below p−

3  before increasing above p+
4  and then 

lowering it to p−
3 . As such, in this case the centroid of the 

top plate of the structure passes through the straight con-
figuration O when moving from T1 to T2 and its trajectory 
comprises two disconnected loops, O − T1 and O − T2 − T3 
(Figure  4f ). Note that we can add additional constraints to 
our greedy algorithm to make sure the targets fall within 
the same closed loop on the state diagram. This leads to 
a different design and may increase the targets error, Ψ 

Figure 4. Inverse design to reach multiple targets. We employ a greedy algorithm to inverse design structures able to reach a set of targets with a single 
pressure source. a) Selected set of three targets (red dots), top and 3D view. b) Targets error, Ψ, as a function of total number of units. c) The three 
deformation modes that most closely match the three targets for the structures that minimize the target error Ψ. d) The optimal structure produced 
by the algorithm along with the respective parameters for each module. e) State diagram for the 12-unit, optimal structure (*) with targets T1, T2, and 
T3 highlighted. f) Top and 3D view of the model and the experimental prototype for the 12-unit optimal structure.
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(see Figure  S13, Supporting Information, for details). How-
ever, the ability to follow sequentially a discretized trajectory 
along a closed pressure loop makes the platform compelling 
for robotic applications (see Section S5, Supporting Informa-
tion, for an example of a single-input robot capable of loco-
motion through multimodal deformation).

5. Conclusion 

To summarize, in this work we have presented a platform 
to design tubular structures that can switch between distinct 
deformation modes using only one pressure input. The key 
component of our platform is an origami building block 
with a degree-four vertex panel, which can be geometrically 
programmed to snap at a certain input threshold, unlocking 
complex deformation modes upon vacuum. This, together 
with the position of the modified panel in the origami module 
and their direction of rotation, constitute the parameters of a 
rich design space that we can efficiently scan with a custom 
greedy algorithm. While in this study we have used a simple 
geometric model to identify optimal designs, a fully mechan-
ical model[65,66] that accounts for the effect of gravity, the pres-
sure drop during the snap-through transition as well as the 
non-rigid coupling between the units would reduce the error 
between numerical predictions and experimental results. In 
addition, the current design space could be further expanded 
through investigating the effect of other geometrical param-
eters (e.g., l, h, and α) on the resulting deformation of the 
modules, as well as expanding the range of the considered 
values of Δ. While this could lead to more complex deforma-
tion modes and enhanced functionality, a drawback is a more 
complex state diagram. This means that a given structure 
might have to go through a longer loading history to reach 
some prescribed targets, increasing the operational time-span. 
A potential solution to this is to measure the volume at which 
the module snaps inward and outward, assume constant 
flow rate, and derive the time associated to each snapping 
transition. This time span could then be included as vari-
able in the optimization algorithm, in order to find a design 
that reaches the target in the shortest possible time. Fur-
ther, although in this study we have used a specific platform 
based on 3D-printed origami modules to realize multimodal 
deformation, the findings are not restricted to these specific 
structures and could be used in the design of other functional 
systems. However, we hereby only claim the successful imple-
mentation of our method by fabricating the modules with 
specific equipment, materials, and geometrical parameters. If 
other equipment/materials/systems are employed, the reader 
should take care to verify that our findings are still valid. This 
is due to the fact that a chosen manufacturing technique might 
not be accurate enough to yield distinct input thresholds (i.e., 
internal pressures in our case) and to give rise to the distinct 
stable states. To conclude, given the recent advancement in 
origami fabrication across scales,[25,35,67,68] we envisage that 
our concept hereby presented could be employed in future 
applications where space is limited and simplified controls 
are required, such as space exploration, surgical devices, and 
rescue missions.

6. Experimental Section
Details of the design, materials, and fabrication methods are 
summarized in Section  S1, Supporting Information. The experimental 
procedure to measure the pressure–volume curve is described in 
Section S2, Supporting Information, along with additional experimental 
data. Details on the numerical model are provided in Section  S3, 
Supporting Information. The optimization algorithms used in this study 
are described in detail in Section S4, Supporting Information. An example 
of a single-input robot capable of locomotion through multimodal 
deformation is reported in Section S5, Supporting Information. Finally, 
additional results are described in Section S6, Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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S1. Fabrication

The structures tested in this study are constructed by connecting 3D-printed origami modules. This section gives details on
the design and fabrication of the 3D-printed modules as well as their assembly to create multi-unit structures.

Design of the 3D-printed origami units. Each origami module is 3D-printed using a commercially available multi-material printer
(Ultimaker 3). To account for geometric incompatibility during inflation, we print the 1-mm thick triangular facets out of
compliant thermoplastic polyurethane (Ultimaker TPU 95A with tensile modulus E = 26 MPa). The thickness decreases to
0.4 mm at the junction of the triangular facets (hinges), to allow more compliance. This value is the lowest possible thickness
our printer is able to print with a 0.4 mm print core. Further, to enable rigid connection of different units and increase
bistability, we print the end caps as well as the four triangular facets of the bistable cell out of stiff polyactic acid (Ultimaker
PLA with tensile modulus E = 2.3 GPa). As shown in Fig S1, the single module consists of two hexagonal caps with edges of
length l = 30 mm, separated by a distance h = 24 mm, and rotated by an angle α = 30◦ with respect to each other. To enable
coupling of different units, we print a screw and a threaded hole on the top and bottom surfaces with length w = 6 mm an
thread size dT = 24 mm.

PLA

TPU 95A

x

z
y

y
z

x
y

l

h

α

dT

w

Fig. S1. 3D-printed origami modules. Isometric and projected views of the origami module.

Assembly of an inflatable multi-unit structure. Below are the eight steps needed to fabricate and assemble an inflatable origami
structure sample made of multiple modules (see Fig. S2 and Movie S1):

• Step 1: we 3D-print (Ultimaker 3) each origami unit out of polyactic acid (Ultimaker PLA) and thermoplastic
polyurethane (Ultimaker TPU 95A), using 0.4 mm print cores with the fine default setting.

• Step 2: we cut the 3D-printed adhesion skirt with scissors.

• Step 3: we remove the 3D-printed support material inside of the origami unit with pliers.

• Step 4: we insert a toric joint on the connection screw to make the unit airtight (see Steps 5-8).

• Step 5: we assemble multiple units together through the connection screws ensuring a tight assembly through the toric
joints inserted in Step 4.

• Step 6: we coat the sample with a 0.5 mm layer of polydimethylsiloxane (PDMS) and let it cure for 24 hours.

• Step 7: we fit end caps, making sure to have a tight assembly through the toric joints inserted in Step 4, to create an
airtight cavity. Note that one of the end caps has an inlet for actuation.

• Step 8: we test the origami structure by connecting it to a air supply.
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step 2

step 8

step 6

step 7

step 5

step 4step 3

step 1

Fig. S2. Multi-unit structure fabrication and assembly. Snapshots of the eight steps required to fabricate and assemble inflatable multi-unit origami structures.
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S2. Testing

To characterize the experimental response of the fabricated origami building blocks, we inflate them with air and measure
their internal pressure while tracking their height and bending angle. As shown in Fig. S3, we use a syringe pump (Pump
33DS, Harvard Apparatus) to displace air into the origami unit at 10 mL/min, measure the pressure using a pressure sensor
(ASDXRRX015PDAA5 with a measurement range of ±15 psi by Honeywell), and track the upper cap using two digital cameras
(front and top view with two SONY RX100 V).

1

2

3

4

5

Fig. S3. Experimental setup for the inflation test. Schematic of the test setup used to characterize the bending angle vs. pressure and height vs. pressure curves of the
origami units with (1) syringe pump, (2) pressure sensor, (3) tank, (4) origami unit, and (5) digital cameras.

We summarize all experimental results in Figs. S4-S6 and plot the pressure, p, the displacement along the z-direction of the top
cap’s centroid, uz = ||d|| cos θxz − h, and the bending angle, θxz of each design tested in this study as a function of normalized
time, T , for both the inflation and deflation regime. To validate repeatability, we test three specimens for each design and
report the mean (solid lines) and standard deviation (shaded region). We find that the classic Kresling module as well as the
modified-panel module with ∆ = 0 mm do not show any snap-through instability. Modules with ∆ = 1 mm show a snapping
transition during inflation, but bend marginally when later deflated. Modules with ∆ = 2, 3, 4 mm are bistable as they
exhibit discontinuity in their p − T , uz − T , and θxz − T curves, and show substantial bending when deflated from the snapped
configuration. Modules with ∆ = 5 mm break during the inflation before the panel snaps outward.
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Fig. S4. Experimental pressure of our origami modules. Experimentally measured pressure of each design tested in this study as a function of normalized time, T = t/tend

(where t is real time and tend the duration of the test), for both (a) inflation and (b) deflation. To validate repeatability, we test for each design three specimens and report the
mean (solid lines) and standard deviation (shaded region). We find that the classic Kresling module as well as the modified-panel module with ∆ = 0 mm do not show any
snap-through instability. Modules with ∆ = 1 mm show a snapping transition during inflation, but bend marginally when later deflated. Modules with ∆ = 1, 2, 3, 4 mm are
bistable as they exhibit discontinuity in their p − T curves. Modules with ∆ = 5 mm break during the inflation before the panel snaps outward.
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Fig. S5. Experimental displacement of our origami modules. Experimentally measured displacement of each design tested in this study as a function of normalized time,
T = t/tend (where t is real time and tend the duration of the test), for both (a) inflation and (b) deflation. To validate repeatability, we test for each design three specimens
and report the mean (solid lines) and standard deviation (shaded region). Modules with ∆ = 5 mm break during the inflation before the panel snaps outward.
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Fig. S6. Experimental bending angle of our origami modules. Experimentally measured bending angle of each design tested in this study as a function of normalized time,
T = t/tend (where t is real time and tend the duration of the test), for both (a) inflation and (b) deflation. To validate repeatability, we test for each design three specimens
and report the mean (solid lines) and standard deviation (shaded region). We find that the classic Kresling module as well as the modified-panel modules with ∆ = 0 and 1
mm do not exhibit bending when deflated from the snapped configuration. Modules with ∆ = 5 mm break during the inflation before the panel snaps outward.
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From the experimental curves in Fig. S7, we can extract the pressure thresholds at which the modified panel snaps outward
during inflation, p+

∆ and inward during deflation, p−
∆ (see Fig. 1 of the main text). Finally, in Fig. S7, we report the deployment

and angles at the lowest pressure point in the snapped (i.e. ||d||max, θmax
xz , and θmax

xy in state s1) and unsnapped (i.e. ||d||flat,
θflat

xz , and θflat
xy in state s0) configurations.

||d||max [mm] ||d||flat [mm]θxz
max [°] θxy

max [°] θxz
flat [°] θxy

flat [°]

Δ = 2 mm
Δ = 3 mm
Δ = 4 mm

Deflation
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0

25

Fig. S7. Deployment and angles at lowest pressure point. Bar chart of the experimentally measured end caps deployment and angles at the lowest pressure point in the
snapped (i.e. ||d||max, θmax

xz , and θmax
xy in state s1) and unsnapped (i.e. ||d||flat, θflat

xz , and θflat
xy in state s0) configuration. The values for ||d||max, θmax

xz , ||d||flat,

θflat
xz are extracted from Figs. S4-S6. The values for θmax

xy and θflat
xy were obtained at the lowest pressure point in each stable configuration during the experiments.
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S3. Model

Origami module. We start by using the geometric quantities that we track in our experiments (shown in Fig. S7) to reconstruct
the configuration of the origami module at the lowest pressure point in each stable state (i.e. s0 and s1—see Fig. S8).
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Fig. S8. Modeling the lowest pressure point of our origami modules in each stable state. (a) State diagram for an origami module with a modified panel of depth ∆. The
unit can transition between two stable states: state s0 when the modified panel is folded inward, and state s1 when the panel is popped outward and stays in that position even
when the input pressure is removed. Reconstructed geometry of the origami module at the lowest pressure point in state s0 (a) and s1 (b).

Structure comprising n modules. We can create structure made of n units by simply combining the different stable states and
snapping transitions found for the single unit model described in Fig. S8. Note that we impose that any n-unit structure forms
a closed, inflatable cavity (i.e. they are all subjected to the same internal pressure). By combining n modules, we can construct
(3 × 2 × 6 + 1 × 2)n different structures since for each module k we can select (i) either a regular Kresling module or a unit
comprising a modified panel with depth ∆k ∈ {2, 3, 4} mm; (ii) the upper cap to be rotated clockwise or anticlockwise with
respect to the bottom one, ck ∈ {//, \\}, and (iii) the side on which the modified panel is located, fk ∈ {1, . . . , 6} (see Fig. 2
of the main text). For a structure made of n units, the number of stable states is equal to 2n∆ , where n∆ is the number of
unique modified panel depths ∆. Note that we assume all units with the same ∆ snap synchronously at the pressure thresholds,
p+

∆ and p−
∆. Since in this study, we consider only the discrete set ∆ ∈ {2, 3, 4} mm, all our structures have either n∆ = 0, 1, 2,

or 3. For each different n∆, we report the corresponding state diagram in Fig. S9.
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modified panel’s depth, i.e. n∆ = 1, 2, and 3, respectively.
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S4. Optimization

To identify structures capable of achieving target deformation modes, we solve the following discrete optimization problem

min
∆k,ck,fk

Ψ
(
∆k, ck, fk; n

)
s.t. ∆k ∈ {2, 3, 4}mm

ck ∈ {//, \\}

fk ∈ {1, 2, 3, 4, 5, 6}
k ∈ {1, 2, . . . , n}

n ∈ Z+,

[1]

where Ψ is the cost function, n is the number of units making the structure and ∆k, ck, and fk are are the modified panel
depth, the orientation of the upper cap with respect to the bottom one, and the side on which the modified panel is located for
the k-unit in the array. Note that all design variables (i.e. ∆k, ck, and fk) are constrained to be integer value and, for the sake
of simplicity, we solve the optimization problem multiple times for fixed number of units n ∈ [1, 15].

In the main text we use the optimization algorithm to identify structures whose tip can approach a desired set of tar-
get points and therefore define the cost function as

Ψ = 1
ntargets · h

ntargets∑
m=1

min ||d − Tm||, [2]

where ntargets is the number of targets, Tm is the vector connecting the m-th target with the origin, and h is the height of the
undeformed module .

Optimization algorithms. There are many algorithms able to solve an optimization problem with integer constraints such as the
one presented in Eq. [1]. In this study, we used three classic algorithms: (i) the genetic algorithm with integer constraints; (ii)
the integer optimization via a surrogate model; and (iii) the greedy algorithm based on best-first search. Note that given the
high-dimensionality and complexity of this optimization problem, there is no guarantee that these algorithms will lead to a
unique global minimum.

Genetic algorithm with integer constraints. We started by using the genetic algorithm with integer constraints, which attempts
to minimize a penalty function that depends on the fitness (value of the cost function Ψ) and feasibility (design variables
are integer) of an individual. For this study, we used the Matlab implementation of the algorithm (Matlab function ga) and
imposed the constraint that all design variables, i.e. ∆k, ck, and fk must have integer values with upper and lower bounds
reported in Eq. [1]. We ran the function ga multiple times, each time considering a fixed value of n ∈ [1, 15], using a population
size of 200, a max stall generations (i.e. the consecutive number of generations with no change to the cost function value) of
500 and a maximum number of generations of 1000.

Integer optimization via a surrogate model. Next, we used the surrogate model optimization, which is a derivative-free method
that replaces the complex and non-smooth objective function by a surrogate (i.e. an approximation of that function), which
is created by sampling the objective function. For this study we used the Matlab implementation of the algorithm (Matlab
function surrogateopt) and imposed the constraint that all design variables, i.e. ∆k, ck, and fk, must have integer values with
upper and lower bounds reported in Eq. [1]. We ran the algorithm for fixed values of n with a maximum number of function
evaluations of 20, 000.

Greedy algorithm based on best-first search. For the greedy algorithm, we developed and in-house Matlab code based on the
best-first search method that creates a structure with n units out of ns super-cells, each super-cell made of nu modules (so
that n = nu · ns). At the first iteration, the algorithm selects the super-cell design that minimizes Ψ and stores it in memory.
Then, in the second iteration, we identify a second super-cell that, when connected to the first one, minimizes Ψ. The first two
super-cells are then stored in memory and the algorithm advances to the next iteration (see Fig. S10 and Algorithm 1 below).
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Fig. S10. Greedy algorithm. Schematic of the greedy algorithm with nu = 3. At each iteration, the algorithm selects the structure super-cell design that minimizes Ψ.

Algorithm 1 Greedy algorithm based on best-first search
Set nmax;
Set nu;
Set ns = 0;
While ns · nu ≤ nmax

ns = ns + 1;
if ns = 1 then

· Calculate Ψ for each structure design with (∆k, ck, fk), k = 1 : ns · nu;
· Find the structure that minimizes Ψ and set its design variables to (∆k∗

, ck∗
, fk∗ )

else
· Calculate Ψ for each structure design with (∆k, ck, fk), where the set of variables from k = 1 : (ns − 1) · nu are coming
from the previous iteration of (∆k∗

, ck∗
, fk∗ ) and k = (ns − 1) · nu + 1 : ns · nu are free.

· Find the structure that minimizes Ψ and set its design variables to (∆k∗
, ck∗

, fk∗ )

Results. In the following we first compare the performance of the three algorithms and then present additional results obtained
using the greedy algorithm.

Comparison between the three algorithms. To test and compare the three algorithms, we considered the set of three targets (T1,
T2, T3) shown in Fig. 3 of the main article and minimized the cost function given in Eq. [2]. In Fig. S11, we report the cost
function value with respect to the number of generations/function evaluations as obtained using the three algorithms. We find
that for all considered values of n both the genetic algorithm with integer constraints and the surrogate model stall quickly,
with a minimum value of the cost function of 1.04 and 1.12 reached for n = 15, respectively. Further, we find that the greedy
algorithm with nu = 3 outperforms the genetic algorithm and the surrogate model optimization as it identifies a structure
design that leads to Ψ = 0.729 for n = 12. Note that, for nu = 3, the greedy algorithm requires about 2.75 × 105 evaluations of
Ψ to identify the optimal design, whereas the surrogate model takes about 1 × 105 evaluations of Ψ (the genetic algorithms
requires about 8 × 105 evaluations of Ψ with a population size of 200). However, the greedy algorithm does not require any
other operation apart from a simple computation of Ψ during each iteration. Differently, the surrogate algorithm has to update
the underlying model. The simplicity of the greedy algorithm leads to a CPU time of 850 s (parallelized on 24 cores) to solve
the algorithm compared to 2, 500 s and 4, 000 s for the genetic algorithm and the surrogate model, respectively. We also
investigated the influence of hyper-parameters on the three different optimization algorithms (see Table S2). We find that
the greedy algorithm still outperforms the genetic algorithm and surrogate model. We therefore use the greedy algorithm to
identify optimal configurations for our structures.
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Fig. S11. Comparison between optimization algorithms with integer constraints. Comparison of the (a) generic algorithm, (b) surrogate model, and (c) greedy algorithm
based on best-first search to solve the integer optimization problem of minimizing the targets error Ψ.

Additional results generated by the greedy algorithm. In Fig. S12, we consider a set of three targets (T 1, T 2, T 3) different from that
included in the main text and present the results for the optimal design identified by the greedy algorithm. Next, in Fig. S13
we show the inverse design of a structure reaching the same set of three targets considered in Fig. 3 of the manuscript, but
with the additional constraint that the targets much be reached successively by decreasing pressure. Finally, in Fig. S14 we
show how the minimum value of Ψ found by the greedy algorithm varies with the number of targets, ntargets, and the units
forming a super-cell, nu, and in Fig. S15 how the target radius (i.e. the radius of the sphere fitted with the targets) influences
the optimal number of units of the structure.
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Fig. S12. A 6-unit structure reaching three targets. For a specific set of three targets, we use the greedy algorithm to find the structure design that minimizes Ψ, i.e the error
between the targets and the top cap’s centroid. Note that we fix nu = 3 and consider ns ∈ {1, 2, 3, 4, 5}. (a) Targets error Ψ as a function of total number of units: the
optimal structure produced by the greedy algorithm for the three targets is reported as (*), along with the respective parameters for each module. The considered set of targets
is shown in the inset. (b) State diagram for the 6-unit structure (*) with targets T 1, T 2, and T 3 highlighted. (c) Top and 3D view of the model and the experimental prototype
for the 6-unit structure reaching the targets.
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Fig. S13. The 12-unit structure with additional constraint. We focus on the same set of three targets considered in Fig. 3 of the manuscript and further impose that each
targets much be reached successively by decreasing pressure. (a) Targets error Ψ as a function of total number of units: the optimal structure produced by the greedy algorithm
for the three targets is reported as (*), along with the respective parameters for each module. (b) State diagram for the optimal 12-unit structure (*) with targets T 1, T 2, and T 3
highlighted. (c) Top and 3D view of the model for the 12-unit structure reaching the targets.

0

2

4

1 2 3 4

Ta
rg

et
 e

rr
or

 Ψ
 [

-]

Number of targets ntargets [-]

nu = 1
nu = 2
nu = 33

1

Fig. S14. Random targets error. For a random set of ntargets, we use the greedy algorithm to find the structure design that minimizes the target error Ψ. Note that each
target is bounded by a cubic domain centered with the structure and norm equal to 1/2(nu · ns) to ensure that it is within reach. We report the average error based 1000
simulations with ntargets ∈ {1, 2, 3, 4} and nu ∈ {1, 2, 3}. Note that for each set of targets, we fix nu and choose the ns (with the constraint that n = nu · ns ≤ 15)
that minimizes the error.

David Melancon*, Antonio Elia Forte*, Leon M. Kamp, Benjamin Gorissen, and Katia Bertoldi 13 of 19



Optimal number of units n [-]

 R
ta

rg
et

s/h
 [

-]

9 12 154

6

8

10

Fig. S15. Optimal number of units as a function of the target radius. For 100 random sets of ntargets = 3, we measure the target radius, Rtargets, i.e. the radius of
the sphere fitted with the targets, and we use the greedy algorithm to find the number of units that minimizes the error between the target and the top cap’s centroid. We report
here the target radius normalized by the module height, Rtargets/h, as a function of the optimal number of units n found by the greedy algorithm. We find that the average
target radius increases with the number of units to minimize the error Ψ.
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S5. Robotic application

To show the potential of using multimodal origami structures for robotic applications, we first take inspiration from the closed
trajectory of a rowing stroke and inverse design a structure able to reach consecutively two targets along a closed triangular
loop (Fig. S16). Next, we combine this structure along with its symmetric counterpart to form the arms of a robot connected
through a single fluidic line and mounted on a wheeled chassis (see Fig. S17). Further, to harnesses the cyclic motion of the
structure and generate positive mechanical work with the ground, we connect two rigid rods to the outer caps that serve as
stroke amplifiers and attach silicon patches at their ends to increase friction with the ground.
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the 3-units structure (*) with targets T 1 and T 2 highlighted. (d) Top and 3D view of the model and the experimental prototype for the 3-units structure reaching the two targets.
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Fig. S17. Single pressure input origami robot. (a) The two identical structures forming the arms of the robot. (b) Schematics of the origami robot. (c) Components of the
origami robot. (d) Assembled origami robot.

When increasing the pressure above p+
4 and then lowering it to p−

3 the two structures reach T 1. At this point the rigid rods
touch the ground. Then, when we further decrease the pressure, the rigid rods move backward to T 2 creating a forward thrust
and eventually lift off from the ground, completing the stroke. Finally, lowering the pressure below p−

4 resets the locomotion

David Melancon*, Antonio Elia Forte*, Leon M. Kamp, Benjamin Gorissen, and Katia Bertoldi 15 of 19



cycle (see Figs. S18a and b). As shown in the experimental snapshots in Fig. S18c, we can harness this particular trajectory
instructed by the model to create locomotion: the robot advances of about 16 cm in 20 cycles. Note that, differently from
other robotic platforms with similar performance but requiring one or more structures per leg with dedicated pressure sources
(1, 2), our robots operate with a single pressure input, which largely simplifies its control.

a c

Ncycles = 0 Ncycles = 10 Ncycles = 20

1 cmp=0 p>p+
4

b

p=p−
3

p=p−
4

p<p−
4

T1 T2
z

y

Fig. S18. Land rowing robot. (a)-(b) Trajectory followed by the robot’s arms upon inflation and deflation, as predicted by the model (a) and observed in experiments (b). (c)
Experimental snapshots of the robot in the initial configuration and after 10 and 20 cycles.
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S6. Additional results

a
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Alternating chirality: [Δkckfk;Δk+1ck+1fk+1]=[4\\1;4//1]

Same chirality: [Δkckfk]=[4//1]

Random chirality: [Δkckfk]=[4\\∨//1]

Fig. S19. Complex deformation modes. We use our numerical model to investigate the deformation mode upon deflation of structures comprising an array of identical
modules (i.e. n∆ = 1). (a) Initial state s0 (blurred) and snapped state s1 upon deflation for structures for structures comprising n = 2, 4, . . . , 14 modules with alternating
chirality (i.e. [∆kckfk; ∆k+1ck+1fk+1] = [4\\1; 4//1], with k = 1, . . . , n − 1). We find that the radius of curvature is small and remains constant at around 2h with n,
while the bending angle increases. Note that the twisting deformation associated to these deformation modes is negligible. (b) Initial state s0 (blurred) and snapped state s1

upon deflation for structures made of n = 2, 4, . . . , 14 units with the same chirality (i.e. [∆kckfk] = [4\\1], with k = 1, . . . , n). We find that the complex deformation
achieved upon deflation is twisting-dominated. (c) Initial state s0 (blurred) and snapped state s1 upon deflation for structures made of n = 2, 4, . . . , 14 units with random
chirality (i.e. [∆kckfk] = [4\\ ∨ //1], with k = 1, . . . , n). We find that the deformation modes achieved upon deflation are twisting and bending mixed.
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Fig. S20. Experiments on a Kresling module with six modified panels. Experimentally measured pressure, displacement, and bending angle of a Kresling module with six
modified panels of depth ∆ = 3 mm as a function of normalized time, T = t/tend (where t is real time and tend the duration of the test), for both (a) inflation and (b)
deflation. Note the six different discontinuities in the graphs representing the snap-trough instability of each of the six degree-four panels.
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Structure Fig. n-units Params. State ||d||exp [mm] ||d||num [mm] ϵ||d|| [mm] θexp
xy [◦] θnum

xy [◦] ϵθxy
[◦] θexp

xz [◦] θnum
xz [◦] ϵθxz

[◦]
1 2e 2 [2\\1;4//1] s10 27.75 31.09 -3.34 -7.38 -10.63 3.24 22.47 20.86 1.60
1 2e 2 [2\\1;4//1] s11 37.11 40.53 -3.42 9.08 7.23 1.85 27.91 31.29 -3.38
1 2e 2 [2\\1;4//1] s01 36.32 30.36 5.96 20.39 23.83 -3.44 17.31 15.93 1.38
2 2f 2 [2\\1;4\\4] s10 24.15 31.09 -6.94 -9.40 -10.63 1.23 18.72 20.86 -2.14
2 2f 2 [2\\1;4\\4] s11 36.74 40.53 -3.79 23.88 27.02 -3.14 15.30 13.61 1.69
2 2f 2 [2\\1;4\\4] s01 24.44 30.36 -5.93 108.18 112.05 -3.87 -3.64 -6.68 3.04
3 4f 12 see Fig. 4f s110 238.01 152.91 85.10 40.71 60.32 -19.61 54.69 69.03 -14.34
3 4f 12 see Fig. 4f s011 271.21 192.24 78.97 -36.69 -15.31 -21.38 63.14 54.41 8.73
3 4f 12 see Fig. 4f s001 131.38 134.64 -3.25 -123.37 -133.30 9.93 128.72 159.21 -30.49
4 S12c 6 see Fig. S12c s110 100.54 97.15 3.39 73.62 96.14 -22.52 6.48 -5.39 11.87
4 S12c 6 see Fig. S12c s011 95.14 87.08 8.07 -10.33 -0.36 -9.97 37.18 50.83 -13.65
4 S12c 6 see Fig. S12c s001 79.52 78.63 0.89 -46.80 -40.90 -5.90 49.24 40.38 8.86
5 S16d 3 [4//1;3\\5;4//1] s11 76.30 60.88 15.43 2.75 -13.15 15.90 3.48 1.28 2.20
5 S16d 3 [4//1;3\\5;4//1] s01 54.74 50.57 4.17 12.18 10.25 1.93 13.84 17.31 -3.47

Table S1. Experiments vs numerical predictions. Experimental characterization and numerical prediction of the structures’ deployment, ||d||,
and angles, θxy , and θxz reported in this study.

Algorithm Population Size Min Surrogate Points Min Sample Distance n-units in supercell Ψ [-] CPU Time [s]
GA 100 - - - 1.81 561
GA 200 - - - 1.83 606
GA 300 - - - 1.67 1498

Surrogate - 40 1e-3 - 1.49 3195
Surrogate - 72 1e-3 - 1.75 3334
Surrogate - 100 1e-3 - 1.70 3284
Surrogate - 72 1e-2 - 1.92 3383
Surrogate - 72 1e-4 - 1.59 3383
Greedy - - - 1 1.82 11.4
Greedy - - - 2 1.79 187
Greedy - - - 3 0.729 850

Table S2. Quantitative comparison between algorithms with different hyper-parameters. Influence of the hyper-parameters on the target error
Ψ along with CPU Time (parallelized on 24 cores) for the set of three targets (T1, T2, T3) considered in Fig. 3 of the main article. For the
genetic algorithm with integer constraints, we vary the population size and fix the number of units to n = 12. For the integer optimization via a
surrogate model, we change the minimum number of points as well as the minimum sampling distance and fix the number of units to n = 12.
For the greedy algorithm, we consider different super-cells and fix the total number of units to n = 12. We find that the greedy algorithm
outperforms the genetic algorithm and surrogate model both in term of minimizing Ψ and computational time.

Movie S1. Fabrication. In order to create multimodal origami structures, we start by 3D-printing modules using a
combination of TPU and PLA and connect them via screws. To make an airtight cavity we deposit a layer of PDMS on the
structures.

Movie S2. Single-unit structures. We compare the behavior under inflation and deflation of the monostable Kresling and
the bistable modules.

Movie S3. Multi-unit structures. We demonstrate the deformation modes of two different 2-unit structures. Both
structures comprise modified panels with depth ∆ of 2 and 4 mm, respectively. In the first structure, the modules have opposite
chirality and modified panels located at same position. In the second structure, the modules have the same chirality and
opposite position of the modified panels.

Movie S4. 12-unit structure reaching three targets with one input signal. We show that a 12-unit structure, built
following the design produced by our model and greedy algorithm, can reach a set of three predefined targets in space using
only one input signal.
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