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The mineralized skeletal system of the hexactinellid sponge, 
Euplectella aspergillum, commonly known as the Venus’ 
flower basket, has received considerable attention from the 

engineering and materials science communities for its remarkable 
hierarchical architecture and mechanical robustness across mul-
tiple length scales. Its constituent glassy skeletal elements (spicules) 
consist of a central proteinaceous core surrounded by alternat-
ing concentric layers of consolidated silica nanoparticles and thin 
organic interlayers1–3. These spicules are further organized to form 
a highly regular square grid, reinforced by two intersecting sets of 
paired diagonal struts, creating a chequerboard-like pattern of alter-
nating open and closed cells (Fig.  1). Although the effects of the 
spicules’ laminated architecture in retarding crack propagation4 and 
increasing buckling strength5 have been demonstrated previously, 
the potential mechanical benefits of the double-diagonal square lat-
tice created from the assembly of these constituent spicules remain 
largely unexplored.

Grid-like open-cell lattices, such as those found in the skeletal 
system of E. aspergillum, are commonly employed in engineering 
contexts owing to their reduced weight6,7, high energy absorp-
tion8 and ability to control the propagation of acoustic9 and ther-
mal waves10–12. Generally, the properties and functionality of such 
geometries are dictated by their node connectivity. For example, a 
minimum node connectivity of six is required for two-dimensional 
lattices to be stretching-dominated, and thereby achieve a higher 
strength-to-weight ratio for structural applications13. In contrast, 
lattices with simple square geometries (with a node connectivity of 
four), are unstable when the loading vector has a transverse com-
ponent (they are bending-dominated, and the only shear resistance 
arises from the joints)14, and typically require diagonal bracing for 
stabilization15.

Here we use the skeletal anatomy of E. aspergillum as inspiration 
for the design of mechanically robust square lattice architectures 
(more information on the skeletal structure of the sponge can be 
found in Supplementary Section 1 and Supplementary Fig. 1). First, 
we use a combination of experimental and numerical analyses to 

investigate the mechanical properties of the sponge’s skeletal lattice. 
We then employ an optimization algorithm to identify the beam 
configuration in a diagonally reinforced square lattice that achieves 
the highest critical load, revealing—unexpectedly—that the skeletal 
system of E. aspergillum is very close to this design optimum. These 
results demonstrate that an integrated work flow, combining biolog-
ical, computational and mechanical testing approaches, can guide 
the design of lattice architectures that are structurally more robust 
than those now employed in modern infrastructure and devices.

To understand the mechanical benefits of the sponge’s skeletal 
architecture, we compared the performance of its geometry to that 
of three other 2D square-base lattices, all with the same total vol-
ume (that is, the same total amount of material) to ensure a fair 
comparison14. In each of these structures, the base square architec-
ture was comprised of elements with lengths L, and with rectangu-
lar cross-sections characterized by a depth H that is large enough 
to avoid out-of-plane deformation. More specifically, we consid-
ered Design A, which was inspired by the sponge and comprised 
horizontal and vertical (non-diagonal) elements with thickness 
TA,nd = 0.1L and two sets of parallel double diagonals with thickness 
TA,d = 0.05L located at a distance S ¼ L=ð

ffiffiffi
2

p
þ 2Þ

I
 from the nodes 

(Fig. 2a); Design B, which was similar to the sponge-inspired design 
with TB,nd = 0.1L, but only contained a single diagonal with thick-
ness TB,d = 0.1L crossing each of the closed cells (Fig. 2b); Design C, 
which was inspired by the bracings found in modern engineering 
applications with TC,nd = 0.1L and contained a crossed set of diagonal 
beams with thickness TC,nd = 0.05L in every cell (Fig. 2c); and Design 
D, with no diagonal reinforcement and horizontal and vertical ele-
ments with thickness TD;nd ¼ 0:1Lð1þ 1=

ffiffiffi
2

p
Þ

I
 (Fig. 2d). Note that 

in an effort to further provide a fair comparison, the volume ratio 
of diagonal to non-diagonal struts was also identical for Designs A, 
B and C (see Supplementary Section 2 and Supplementary Figs. 2–5 
for details and assumptions).

We began our analysis by comparing the mechanical response 
under uniaxial compression along the vertical elements of the four 
lattices described above. Samples comprising 6 × 6 tessellations of 
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square cells with L = 1.5 cm and H = 4 cm were fabricated with a 
Connex500 multi-material 3D printer (Stratasys) from a Shore A 
95 durometer material (digital elastomer FLX9795-DM) and com-
pressed uniaxially using a single axis Instron (Model 5969) with a 
50 kN load cell (Fig. 2e). Two key features emerged from the stress–
strain curves reported in Fig. 2f. First, we found that all designs with 
diagonal reinforcement (that is, Designs A–C) were characterized 
by a nearly identical initial elastic response, demonstrating that the 
different diagonal reinforcement designs did not impact the struc-
ture’s initial overall stiffness. Design D, as expected, exhibited a 
higher initial stiffness because of its thicker vertical and horizontal 
elements. Second, all curves showed a clear maximum load-bearing 
capacity, with Design A (the sponge-inspired design) accommodat-
ing the highest load. As each maximum load corresponded to the 
onset of buckling, we inferred that Design A displayed the high-
est critical buckling stress of the considered designs. Furthermore, 
we found that in all three designs with diagonals, the post-buckling 
behaviour resulted in a homogeneous pattern transformation 
throughout the sample (Fig. 2e). In contrast, for Design D, the criti-
cal mode resulted in a much larger wavelength than the size of a 
square unit cell, leading to a post-buckled shape qualitatively simi-
lar to that of a compressed buckled beam (more information on the 
experimental methods can be found in Supplementary Section  3 
and Supplementary Table 1).

In an effort to understand how the sponge-inspired lattice design 
resulted in substantially improved mechanical performance, we 
conducted finite element simulations using ABAQUS/Standard 
(Dassault Systémes SE). For these analyses, the geometries were 
constructed using Timoshenko beam elements (ABAQUS ele-
ment type B22) and the material’s response was captured using 
an incompressible Neo-Hookean material model with a shear 
modulus μ = 14.5 MPa. Our simulations consisted of three steps: 
(1) a buckling analysis (*BUCKLE step in ABAQUS) was con-
ducted to obtain the buckling modes for each of the structures, (2) 
a perturbation in the form of the lowest buckling mode was then 
applied to the nodes of the mesh, and (3) a static nonlinear analysis 
(*STATIC step in ABAQUS) was performed to evaluate the non-
linear, large-deformation responses. To verify the validity of our 
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Fig. 1 | Representative skeletal system of the hexactinellid sponge 
Euplectella aspergillum. a–c, Progressively magnified views of the sponge’s 
skeletal system, showing the entire skeletal tube (a), a magnified view of its 
highly regular lattice-like organization (b), and its alternating arrangemnet 
of open and closed cells (c). Scale bars, 4 cm (a); 2 cm (b); 2.5 mm (c). 
d, Composite overlay of an idealized truss model (green lines designate 
the vertical and horizonal truss elements, and the blue lines designate the 
diagonal truss elements) on the sponge’s underlying skeletal structure. e, 
Schematic of Design A, comprising non-diagonal elements with length L 
and thickness TA,nd and diagonal elements with thickness TA,d located at a 
distance S from the nodes. 
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Fig. 2 | Experimental and numerical results. a–d, Schematics of designs A–D, respectively. e, Mechanical deformation snapshots of the different 
3D-printed models at 0% applied strain (top) and 6% applied strain (bottom). Scale bar, 3 cm. f, Simulated and normalized experimental stress–strain 
curves for n = 3 independently tested samples of each design. Curves in this plot are colour coded according to a–d. All designs are characterized by the 
same total volume and mass ratio allocation between non-diagonal and diagonal elements.
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analyses, we investigated the responses of models identical to those 
specimens tested in our Instron compression studies. As shown in 
Fig. 2f, we found close agreement between the numerical and exper-
imental results up to the onset of buckling, confirming the accuracy 
of our simulations in capturing the linear regime and critical load. 
Next, we extended our finite element model to explore the effects 
of loading direction. To reduce computational cost and eliminate 
edge effects, we capitalized on the periodicity of the structures and 
investigated the response of representative volume elements (RVEs) 
with suitable periodic boundary conditions16,17 (see Supplementary 
Section 4 and Supplementary Figs. 6–24 for details and additional 
numerical analysis). Figure 3a shows the evolution of the structures’ 

effective stiffness, �E, as a function of the loading angle θ. We found 
that the stiffness of all structures containing diagonal reinforcement 
was virtually identical for any loading angle, further confirming that 
the structural stiffness was predominantly governed by the amount 
of material allocated along the loading direction. As a result, Design 
D, in which all of the material was allocated to the non-diagonal 
elements, exhibited the highest stiffness for θ = 0°, but had almost 
negligible load-bearing capacity for θ = 45°, where the only contri-
bution to its stiffness came from the minimal bending resistance of 
the joints (see Supplementary Fig. 21 for a detailed analysis of the 
effect of joint stiffness).

Next, we investigated the effect of θ on the buckling behaviour 
of Designs A–D. We found that the effective critical buckling stress 
(�σcr
I

) of Design A was higher than the other diagonally reinforced 
designs (Design B and Design C) for all values of θ (Fig. 3b). Design 
D surpassed Design A for 27° < θ < 63° when considering an infinite 
structure. However, given the global nature of the buckling mode 
for Design D, such performance was largely affected by boundary 
effects and the critical buckling stress was substantially reduced 
when considering a finite size structure comprising 10 × 10 RVEs 
(Fig. 3d; see also Supplementary Fig. 20). Furthermore, the geom-
etry of Design A maintained its robustness even after modifications 
to the lattice through the introduction of various levels of disorder, 
an observation consistent with the features observed in the native 
sponge skeleton (see Supplementary Figs. 23 and 24).

Having demonstrated the benefits of the sponge-inspired design 
(Design A) compared with Designs B–D, we wondered whether 
a different diagonally reinforced square lattice design with even 
higher critical buckling stress exists. To address this question, we 
formulated an optimization problem to identify the number of 
diagonals, N, their distance from the nodes of the square lattice Si 
(where i = 1,  2,  .  .  ,  N), as well as the ratio between diagonal and 
non-diagonal elements λ = Vnd/Vd (Vnd and Vd being the volume of 
the non-diagonal and diagonal elements, respectively) that resulted 
in the highest buckling stress. Specifically, we considered finite 
size structures composed of 3 × 3 RVEs and focused on uniaxial 
compression parallel to the non-diagonal elements (that is, θ = 0°), 
while constraining the total volume of the RVE to match that of 
the designs considered in Fig. 2. We maximized the objective func-
tion Z ¼ �σcr

I
 using finite element simulations coupled to a Python 

implementation of the Covariance Matrix Adaptation Evolution 
Strategy algorithm (CMA-ES)18 (more information on the imple-
mentation see Supplementary Section 5, Supplementary Figs. 25–27 
and Supplementary Tables 2 and 3). For each set of inputs identified 
by CMA-ES, a finite element buckling analysis was conducted to 
obtain �σcr

I
, which was subsequently used to evaluate the objective 

function Z
I
. We conducted seven separate optimizations, each con-

sidering a fixed integer number of diagonal elements N ranging from 
one to seven (N ¼ Z 2 ½1; 7

I
). Given the high strength of lattices 

reinforced by diagonals aligned at a 45° angle19, we assumed in all of 
the runs that all of the diagonals were oriented at 45° with respect 
to the non-diagonal members and that Vd and Vnd were distributed 
equally among the diagonal and non-diagonal elements, respec-
tively. Furthermore, to ensure symmetry, we assumed that S2i−1 = S2i 
(i = 1, 2, . . . , N/2) if N is an even number and S1 = 0 and S2i−1 = S2i 
(i = 2, 3, . . . , (N − 1)/2) for odd values of N. In Fig. 4a, we report the 
highest �σcr

I
 identified by CMA-ES for all considered values of N. We 

found that the highest �σcr
I

 was only 9.55% higher than that of Design 
A and occurred in a design similar to the sponge-inspired one (with 
two diagonals located at a distance S = 0.1800L from the nodes, and 
volume distributed so that λ = 0.6778). As such, this numerical pre-
diction, which was validated by experimental results (Fig. 4b), dem-
onstrated that the sponge-inspired design was extremely close to the 
design that exhibited the highest critical stress.

Thus far, we demonstrated that the skeletal organization pat-
tern found in E. aspergillum could be adapted to realize lattice 
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Fig. 3 | Numerical results describing structural response to varying 
loading angle. a, Evolution of the normalized structural stiffness for infinite 
size periodic lattice designs as a function of θ. b, Normalized critical 
buckling modes for Designs A−D at θ = 0°. c, Evolution of the effective 
buckling stress for the different lattice designs as a function of θ. Results 
are obtained by simulating a supercell with 10 × 10 RVEs and periodic 
boundary conditions. d, Evolution of the normalized effective buckling stress 
as a function of θ for finite (non-periodic) lattice structures comprising 
10 × 10 RVEs. In each plot, the line colour corresponds to the designs in 
b. All designs are characterized by the same total volume and mass ratio 
allocation between non-diagonal and diagonal elements.
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structures with high buckling resistance under uniaxial compres-
sion. However, it should be noted that the superior mechanical per-
formance of the sponge-inspired lattice (Design A) is not limited to 
this loading condition. To demonstrate this important point, Fig. 5 
shows results for a slender tessellation of 11 × 2 square cells loaded 
in three-point bending. In this scenario, using an Instron, the slen-
der geometry was mounted in a three-point bending configuration 

and a displacement δappl was applied at the top centre of the geom-
etry. As the displacement was applied, the reaction force was mea-
sured and plotted in Fig. 5b for the various geometries. Both our 
experiments and finite element simulations demonstrated that the 
sponge-inspired design was stiffer and could withstand 15% higher 
loads over a larger range of applied displacements, illustrating the 
potential benefit of incorporating such a design into suspended 
structures. We further used finite element simulations to evaluate 
the performance of Designs A–D in five other loading regimes. For 
all of the loading cases considered (see Supplementary Figs. 9–12), 
we found that Design A was able to withstand considerably higher 
loads than any of the other structures—making it the best candi-
date to realize load-bearing structures for a variety of applications. 
Although we focused on lattices at the centimetre scale in this study, 
we want to emphasize that our approach can be extended to design 
structures over a wide range of length scales as long as they lie 
within the continuum limit. However, in our analysis, we did not 
account for the effect of gravity, which could become a important 
source of loading for large-scale structures.

In summary, through analysis of the skeletal organization of E. 
aspergillum, we discovered that its non-trivial, double-diagonal, 
chequerboard-like square lattice design provides enhanced 
mechanical performance compared to existing structures. We 
compared the sponge-inspired lattice (Design A) to other com-
mon diagonally reinforced square lattices (Designs B and C) and 
a non-diagonally reinforced lattice (Design D), all with the same 
total mass, and found that the sponge-inspired design provides a 
superior mechanism for withstanding loads before the onset of 
buckling for a wide range of loading conditions. By using optimi-
zation tools to survey a broad multidimensional design space, we 
also found that the architecture of the sponge skeleton is nearly 
identical to the lattice design that provides the highest critical 
stress under uniaxial compression.

The results presented here therefore demonstrate that, by intel-
ligently allocating material within a square lattice, it is possible to 
produce structures with optimal buckling resistance without the 
need to add more material to the system. The mechanical properties 
of the sponge-inspired lattice described here thus have implications 
for improving the performance of a wide range of truss systems, 
with applications ranging from large-scale infrastructure such as 
bridges and buildings to small-scale medical implants.

Although not the primary focus of this study, the results pre-
sented here may also shed light on functional aspects of the skeletal 
organization in E. aspergillum. It is important to note that skeletal 
maturation in this and related species progresses through two dis-
tinct phases (a flexible phase and a rigid phase), ultimately result-
ing in the terminal growth form shown in Fig. 1 (refs. 1,20,21). In the 
early, flexible stage of growth, the vertical, horizontal and diagonal 
skeletal struts are not fused to one another, and can thus accom-
modate radial expansion of the skeletal cylinder. At this point, the 
mechanical behaviour of the sponge skeleton is dominated by the 
properties of the individual spicules, which have been reported to 
support large bending deformation and fail at strains greater than 
those found for buckling in our lattices—namely at strains greater 
than ϵ ≈ 0.04 (refs. 22,23). Once the maximum length and width of the 
cylindrical lattice is achieved, the skeleton goes through a series of 
rigidification steps, resulting in a progressive stiffening of the skele-
tal system through nodal fusion of the vertical, horizontal and diag-
onal struts via the deposition of a lower-modulus laminated silica 
cement24, followed by the addition of the spiralling external ridges 
and further densification of the skeleton. Therefore, although the 
results presented here are thus unlikely to be biologically relevant 
with regards to the fully mature skeleton shown in Fig. 1, they may 
very well be relevant during the early stages of skeletal consolida-
tion in this and related species where the buckling strains exceed the 
laminate yield strains22–24.
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Fig. 5 | Numerical and experimental results of slender structures 
undergoing 3-point bending tests. a, Experimental snapshots of the four 
lattices comprising 11 × 2 square cells when loaded in three-point bending at 
δappl/L = 0.45. Scale bar, 3 cm. The photographs have been false-coloured to 
more clearly reflect the corresponding plots in b for each design.  
b, Evolution of the normalized reaction forces for n = 3 experimentally 
obtained samples (solid lines) and simulations (dashed lines) of the four 
designs as a function of the applied displacement. Normalization involved 
dividing the resulting reaction forces by the material shear modulus, 
specimen cell length L, and specimen depth H.
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Methods
Parameter derivation and an explanation of each geometry can be found in 
Supplementary Section 2. Details of the fabrication of the samples and the protocol 
for testing can be found in Supplementary Section 3. The numerical set-up 
and explanation for the finite element analysis can be found in Supplementary 
Section 4. Additional numerical analysis, including parameter exploration 
and considerations for different cross-sectional geometries, is presented in 
Supplementary Section 4.1. A detailed description of the optimization algorithm 
can be found in Supplementary Section 5.

Data availability
Raw data for the plots are available on GitHub at http://fer.me/sponge-structure. 
Additional data that support the findings of this study are available from the 
corresponding authors on request.

Code availability
All codes necessary to reproduce results in main paper are available on GitHub at 
http://fer.me/sponge-structure.
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S1: STRUCTURE OF THE HEXACTINELLID SPONGE EUPLECTELLA ASPERGILLUM

The periodic structures investigated in this study are inspired by the skeleton of the hexactinellid sponge Euplectella

aspergillum, which throughout its lifespan (Supplementary Fig. 1) progresses from a easily deformable skeletal lattice

(flexible phase), consisting of loosely associated individual skeletal elements, through various stages of skeletal consoli-

dation, ultimately resulting in the mature form (rigid phase), shown in Main Text Fig. 1 [S1–S3]. In this section, we provide

a detailed description of the sponge’s geometry and measured dimensions.

Main Text Fig 1. shows a photograph of the entire skeleton of a representative specimen of E. aspergillum, and

its intricate, cylindrical cage-like structure (20 to 25 cm long, 2 to 4 cm in diameter) [S4]. The surface of the cylinder

incorporates a regular square lattice composed of a series of cemented vertical and horizontal struts, consisting of bundles

of individual spicules, each with a circular cross-section. The cell spacing between horizontal and vertical struts is L ≈ 2.5

mm [S5], while the diameter is Dnd ≈ 0.25 mm [S5]. In addition to the horizontal and vertical struts, there is an additional

set of diagonal elements, intersecting in a manner that creates a series of alternating open and closed cells, reminiscent

of a checkerboard pattern [S5]. Although these diagonal elements are not as ordered as the horizontal and vertical ones,

they can be approximated as two diagonal struts that are offset from the nodes (vertex joints between non-diagonal

elements) and form roughly octagonal openings (Supplementary Fig. 2). To estimate the volume ratio between diagonal

and non-diagonal elements, we acquired digital photographs of the sponge skeleton and performed image segmentation

to segregate the projected area of the vertical/horizontal and diagonal spicules. For these measurements, and to minimize

shadowing artifacts during image thresholding, sponge skeleton regions were selected that did not contain surface ridges.

In total 4 different sponge skeletons were investigated and 25 different lattice cells from each specimen were analyzed.

Using this approach, the projected area ratio of non-diagonal to diagonal elements was found to be And/Ad ≈ 1.41± 0.16.

Note that here, and in the following, the subscripts d and nd are used to indicate the diagonal and non-diagonal (i.e.

horizontal and vertical) elements, respectively.

Finally, it should also be noted that the sponge is reinforced by external ridges that extend perpendicular to the surface

of the cylinder and spiral the cage at an angle of ∼ 45o. However, in this paper we do not report the effects of these ridges

on its mechanical performance, which will be addressed elsewhere.
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Supplementary Figure 1: Historical illustration (left) and modern photograph (right) illustrating the flexible and rigid growth stages that
occur during skeletal maturation in several hexactinellid sponges in the genus Euplectella. Left image adapted from Schulze [S2].
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S2: OUR FOUR LATTICE DESIGNS

In this study, we focused on four different lattice configurations (Designs A, B, C, and D) constrained to deform in

an in-plane setting only. In an effort to conduct a fair performance comparison between the different geometries, all

four lattices were designed to contain the same total volume of material and a fixed volume ratio between non-diagonal

and diagonal elements (chosen to match the sponge geometry) for Designs A, B, and C. Two different shapes were

considered for the cross-section of the struts: circular and rectangular. For the circular cross-section case, we denoted

the diameters of the non-diagonal (i.e. horizontal and vertical) and diagonal struts in the α-th design as Dα,nd and Dα,d,

respectively, and neglected out-of-plane buckling. For the rectangular cross-sections, we denoted the in-plane thickness

of the non-diagonal (i.e. horizontal and vertical) and diagonal struts in the α-th design as Tα,nd and Tα,d, respectively, and

chose the depth H to avoid out-of-plane deformation (i.e. we chose the depth over thickness ratio sufficiently large to

constrain in-plane deformation). Finally, it is important to note that the slenderness of the non-diagonal members in the

α-th design ∈ [A, B, C] was chosen as
Dα,nd

L
= 0.1, and

Tα,nd

L
= 0.1, (1)

for the case of the circular and rectangular cross-section, since this was the aspect ratio measured for the sponges

(Section S1).

In the subsequent sections, we describe in detail the unit cells for four different designs, and provide the derivations

for the characteristics of each geometry cross-section. To derive these relations, we laid a framework of underlying

assumptions, namely:

• in-plane geometry is uniform and has the same shape (allowing only either thickness or diameter to change

depending on cross-sectional shape) for all elements,

• all diagonal elements have the same in-plane dimension,

• all non-diagonal elements have the same in-plane dimension, and

• area of overlapping beam crossing is negligible and unaccounted for during volume calculations.

http://mcfernandes.com
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Supplementary Figure 2: Unit cell for Design A. Schematics of the unit cell for Design A (the sponge-inspired lattice). On the left, we
indicate the geometric parameters of this design considering a circular cross-section, while on the right, we show the geometric parameters of
this design considering a rectangular cross-section.

S2.1: Design A

Design A was inspired by the sponge’s skeletal architecture and consisted of a square grid reinforced by a double

diagonal support system (Supplementary Fig. 2). Matching what was seen in the natural sponge, the diagonal elements

were assumed to form an octagonal opening on every other cell, such that they intersect the horizontal and vertical struts

at a distance ∆L = L/(
√

2 + 2) from the nodes, where L denotes the length of the vertical and horizontal struts.

S2.1.1: Circular cross-section

Assuming that the cross-section of all struts is circular, the projected area and volume for the non-diagonal (AA,nd and

VA,nd) and diagonal (AA,d and VA,d) members are given by

AA,nd = 8LDA,nd, (2)

VA,nd = 8L

(
π

D2
A,nd

4

)
= 2LπD2

A,nd (3)

AA,d = 8
√

2LDA,d, (4)

and

VA,d = 8
√

2L

(
π

D2
A,d

4

)
= 2
√

2LπD2
A,d. (5)

Since the projected area ratio of the non-diagonal to diagonal elements in the sponge has been measured to be

AA,nd

AA,d
= 1.41, (6)

http://mcfernandes.com
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by substituting Eq. (2) and Eq. (4) into the equation above we find that for Design A

DA,nd = 1.41
√

2DA,d ≈ 2DA,d. (7)

Substitution of Eq. (7) into Eq. (3) and Eq. (5) yields

VA,nd

VA,d
=

2LπD2
A,nd

2
√

2LπD2
A,d

= 2
√

2 (8)

and

VA,T = VA,nd + VA,d = 2πL(D2
A,nd +

√
2D2

A,d) = 2πLD2
A,nd

(
1 +

1
2
√

2

)
, (9)

where VA,T indicates the total volume of the unit cell for Design A.

Finally, it is important to note that in this study we used Design A as our base model, and thus constrained the total

volume of all the other unit cell designs with circular cross-sections to be equal to that of Design A, namely,

Vα,d + Vα,nd = VA,T = 2πLD2
A,nd

(
1 +

1
2
√

2

)
, (10)

with α = B, C and D. For Designs B and C, which comprised diagonal elements, we also constrained the volume ratio of

the non-diagonal to diagonal elements to be the same as in Design A

Vα,nd

Vα,d
=

VA,nd

VA,d
= 2
√

2, (11)

with α ∈ B and C.

S2.1.2: Rectangular cross-section

Assuming that the cross-section of all struts is rectangular, the projected-area for the non-diagonal (AA,nd) and diagonal

(AA,d) members is given by

AA,nd = 8LTA,nd (12)

and

AA,d = 8
√

2LTA,d (13)

where TA,nd and TA,d are the non-diagonal and diagonal in-plane strut thickness for Design A, respectively. Since for the

sponge And/Ad ≈ 1.41, it follows that

TA,nd = 2TA,d. (14)

Finally, for the case of rectangular cross-section we used Design A as our base model, and thus constrained the total

http://mcfernandes.com
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volume of all the other unit cell designs with rectangular cross-section to be equal to that of Design A, namely,

VA,T = Vα,d + Vα,nd = 8LH(TA,nd +
√

2TA,d) = 8LHTA,nd

(
1 +

1√
2

)
, (15)

with α ∈ B, C and D. Moreover, for Designs B-C, which comprised diagonal elements, we also constrained the volume

ratio of the non-diagonal to diagonal elements to be the same as in Design A,

Vα,nd

Vα,d
=
√

2, (16)

with α ∈ B and C.

T

H

~L
~L

D

Supplementary Figure 3: Unit cell for Design B. Schematics of the unit cell for Design B (an alternating open and closed cell structure
resembling the sponge and employing a single set of diagonal bracings). On the left we indicate the geometric parameters of this design
considering a circular cross-section, while on the right we show the geometric parameters of this design considering a rectangular cross-
section.

S2.2: Design B

Design B was similar to the sponge design (Design A) and was likewise characterized by an alternation of open and

closed cells (Supplementary Fig. 3). However, instead of having two diagonals offset from the nodes, in this design only

one diagonal passes through the nodes crossing though every other cell.

S2.2.1: Circular cross-section

For this design with circular cross-section, the non-diagonal and diagonal volumes are given by

VB,nd = VA,nd = 2πLD2
B,nd (17)

and

VB,d = 2
√

8L

(
π

D2
B,d

4

)
, (18)
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respectively. Using the constraints provided by Eq. (10) and Eq. (11), as well as the above volumes, we obtain

DB,nd = DA,nd (19)

and
DB,d

DB,nd
=

1√
2

. (20)

S2.2.2: Rectangular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members are given by

VB,nd = 8LTB,nd H. (21)

and

VB,d = 4
√

2LTB,d H. (22)

Using the constraints provided by Eq. (15) and Eq. (16), as well as the above volumes, we obtain

TB,nd = TB,d (23)

and

TB,nd = TA,nd (24)

T

H

~L
~L

D

Supplementary Figure 4: Unit cell for Design C. Schematics of the unit cell for Design C (all cells filled with diagonal bracings, as
is typically found in infrastructure applications). On the left we indicate the geometric parameters of this design considering a circular
cross-section, while on the right we show the geometric parameters of this design considering a rectangular cross-section.

S2.3: Design C

Design C was inspired by the Town lattice truss design introduced by architect Ithiel Town in 1820 [S6] and consisted of

every cell being reinforced by diagonal trusses passing through the nodes (Supplementary Fig. 4).
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S2.3.1: Circular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members of the unit cell are

given by

VC,nd = VA,nd = 2LπD2
A,nd (25)

and

VC,d = VA,d = 2
√

2LπD2
A,d, (26)

respectively. Using the constraints provided by Eq. (10) and Eq. (11) we obtain

DC,nd = DA,nd (27)

and
DC,d

DC,nd
=

1
2

. (28)

S2.3.2: Rectangular cross-section

For this design with circular cross-section, the volume of the non-diagonal and diagonal members of the unit cell are

given by

VC,nd = 8LTC,nd H (29)

and

VC,d = 8
√

2LTC,dH (30)

Using the constraints provided by Eq. (15) and Eq. (16), as well as the above volumes, we obtain

TC,nd = 2TC,d, (31)

and

TC,nd = TA,nd. (32)

http://mcfernandes.com
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Supplementary Figure 5: Unit cell for Design D. Schematics of the unit cell for Design D (square lattice with no diagonal reinforcement).
On the left we indicate the geometric parameters of this design considering a circular cross-section, while on the right we show the geometric
parameters of this design considering a rectangular cross-section.

S2.4: Design D

Design D comprised only the square grid without diagonal reinforcement (Supplementary Fig. 5). As such, for this

design we allocated the total material volume to the non-diagonal elements. Note that this design is well known to be

unstable and very limited in resisting shear forces [S7,S8].

S2.4.1: Circular cross-section

Since

VD,T = VD,nd = VA,nd = 2πLD2
D,nd, (33)

using the constraint provided by Eq. (10) we obtain

DD,nd = DA,nd

√
1 +

√
2

4
. (34)

S2.4.2: Rectangular cross-section

Since

VD,T = VD,nd = 8LTD,nd H, (35)

using the constraint provided by Eq. (15) we obtain

TD,nd =

(
1 +

1√
2

)
TA,nd (36)

http://mcfernandes.com
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S3: EXPERIMENTAL SETUP

S3.1: Fabrication

We fabricated each of the lattice specimens with a Stratasys Connex500 multi-material 3D printer using the digital

material FLX9795-DM. During the fabrication process, a photosensitive liquid precursor (the 3D printer "ink") is deposited

in a voxel-by-voxel fashion. Several precursors are used to print multiple materials with different properties and the

resulting modulus can be tuned by varying the concentration of photo-initiator. A UV light cross-links the liquid

precursors in a layer-by-layer fashion and this process is repeated until the full 3D model is built. Each of the specimens

were printed in parallel along with the print-head direction as to minimize material anisotropy between specimens.

Depending on the liquid precursor composition and the degree of cross-linking, a broad range of mechanical properties

can be achieved from stiff thermoplastic-like to soft rubber-like materials. For the samples fabricated for this study, we

tuned the process to realize a material with an initial shear modulus µ = 14.5 MPa. The dimensions of the fabricated

samples (as measured with a caliper) are shown in Supplementary Tab. 1, and all fabricated lattices had depth (through

thickness) H = 40 mm.

S3.2: Testing

All samples were tested using an Instron 5969 with a compression speed of 0.2 mm/min in order to allow material

viscoelastic relaxation, thus achieving the material’s fully elastic behavior. Note that the specific compression speed was

determined by testing similar structures at different loading rates until the stress-strain curve achieved a rate independent

solution.

To test the response of the specimens under uniaxial compression, we used standard compression plates with a 50kN

load cell. The response under bending was also characterized using a 3-point bend test mount and a 500N load cell.

While similar results were obtained regardless of whether the models were loaded parallel or perpendicular to the print

direction, for experimental consistency all tests were performed with models oriented parallel to the print direction.

http://mcfernandes.com
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Design A Design B Design C Design D Optimal Design

Total Length (Test Dir.) [mm] 93.29 [93] 93.45 [93] 93.47 [93] 93.25 [93] 93.27 [93]

Total Length (Non-Test Dir.) [mm] 93.52 [93] 93.31[93] 93.55 [93] 93.19 [93] 93.54 [93]

Depth H [mm] 39.98 [40] 40.06 [40] 40.19 [40] 40.10 [40] 40.25 [40]

Top L [mm] 14.7 [15] 14.95 [15] 14.93 [15] 14.96 [15] 15.02 [15]

Top Tα,nd [mm] 1.48 [1.5] 1.56 [1.5] 1.51 [1.5] 2.68 [2.56] 1.11 [1.03]

Top Tα,d [mm] 0.86 [0.75] 1.53 [1.5] 0.78 [0.75] N/A 1.07 [1.08]

Bottom L [mm] 15.04 [15] 15.01 [15] 15.01 [15] 14.96 [15] 15.05 [15]

Bottom Tα,nd [mm] 1.55 [1.5] 1.57 [1.5] 1.57 [1.5] 2.69 [2.56] 1.11 [1.03]

Bottom Tα,d [mm] 0.85 [0.75] 1.61 [1.5] 0.86 [0.75] N/A 1.08 [1.08]

Weight [g] 145.2 148.4 150.8 143.36 146.36

Supplementary Table 1: 3D Printed Model Caliper Sample Measurements. This table provides the caliper measurements averaged over
n = 3 separate specimens for each design (values in black) as well as the expected values (bracketed values in red). All measurements
reported were conducted prior to testing the samples.
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S4: FINITE ELEMENT (FE) ANALYSIS

The finite element analyses presented in this article were conducted using ABAQUS/Standard. All models were

constructed using 1D Timoshenko beam elements (ABAQUS element type B22) and all beam crossings were assumed

to be welded joints. For each instance, seeding of the mesh was chosen to be at least 1/10 of the minimum beam

length. The response of the material was captured using an incompressible Neo-Hookean material model with shear

modulus µ = 14.5 MPa. Due to small inconsistencies in the 3D printing process (Supplementary Tab. 1), we adjusted

the dimensions of the FE models accordingly by applying a mass correction based on data derived from the 3D-printed

models in Main Text Figs. 2(f) and 4(b).

To reduce the computational cost, in most of our analyses, we took advantage of the periodicity of the structures and

investigated their response using the unit cells shown in Supplementary Fig. 6. To subject the unit cells to a macroscopic

deformation gradient F periodic boundary conditions were imposed on all cell boundaries by enforcing [S9,S10]

uAi
α − uBi

α = (Fαβ − δαβ)(X
Ai
β − XBi

β ), i = 1, 2, ...., K (37)

where δαβ is the Kronecker delta, uAi
α and uBi

α (α = 1, 2) are displacements of points periodically located on the boundary

of the unit cell. Moreover, XAi
α and XBi

α (α = 1, 2) are the initial coordinates of points periodically located on the boundary

of the unit cell and K denotes the number of pairs of nodes periodically located on the boundary of the unit cell. Note

that the components of F can be conveniently prescribed within the finite element framework using a set of virtual nodes.

The corresponding macroscopic first Piola-Kirchoff stress is then obtained through virtual work considerations [S9,S10]. To

subject the structures to uniaxial compression, we prescribed

F =


UNSET 0

0 1 + εy

 , (38)

where εy is the macroscopic applied strain. Moreover, in order to investigate the structure’s response for different loading

directions, we rotated the unit cell model by an angle θ and re-applied the above periodic boundary conditions using the

rotated geometry coordinates. To determine the linear stiffness for the infinite structures we performed a small strain

linear elastic analysis. For all buckling analyses, we performed a linear stability buckling analysis (*Buckling command

in ABAQUS input file). Since buckling may alter the periodicity of the structure, we considered super cells consisting of

M×M undeformed RVEs with M ∈ [1, 10] subjected to periodic boundary conditions and calculated the critical strain

for each of them. The critical strain of the infinite periodic structure was subsequently defined as the minimum critical

strain on all considered super cells. The results reported in Supplementary Fig. 7 show that for Design A-C the critical

strain is identical for all considered values of M, indicating that the structure undergoes a local (microscopic) instability

with wavelength corresponding to the size of the RVE. Design D, on the other hand, undergoes a global (macroscopic)

instability, as the minimum critical strain is observed for M = 10 (Supplementary Fig. 8).
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Design A Design B

Design C Design D

Supplementary Figure 6: RVE used for the different designs. Schematics of the RVEs used for Design A-D. Periodic boundary conditions
are applied on the nodes that intersect with the red dashed line.

Design A Design B

Design C Design D

Supplementary Figure 7: Global versus local instabilities. In each contour plot, we report the critical strain as a function of θ and the
size of the super cell. For each of the simulations, periodic boundary conditions are applied along the outer perimeter of the M×M structure.
This plot conveys that for Designs A-C the prominent buckling mode is the local mode, whereas for Design D, the prominent mode is a global
mode. Choosing a sufficiently large M allows Design D to converge to a finite value for each θ.
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Supplementary Figure 8: Critical strain for Design D at three selected loading angles. As the number of minimum RVEs M considered
increases, the value for the critical buckling strain asymptotically approaches a constant.

S4.1: Additional numerical results

(a)

(b)

von Misses Stress

von Misses Stress

Supplementary Figure 9: Mechanical response for different loading conditions. For all cases presented in this figure, we consider a
structure with 11×2 cells (5.5 RVEs) and hinged boundary conditions applied to cells with diagonal reinforcements. (a) In this case, a point
deflection δ is applied to the top center of the structure while the bottom outside corners have constrained deflections, but unconstrained
rotation. The normalized reaction force is plotted as a function of the δ for the four considered designs. Moreover, on the right we show
numerical snapshots of the four designs for δ/L = 0.45. The colors in these pictures provide a measure of the normalized von Mises stress.
(b) In this case a distributed load is applied across the top of the structure while the bottom outside corners have constrained displacements,
but unconstrained rotation. The normalized total reaction force is plotted as a function of the deflection for the four considered designs. On
the right we show numerical snapshots of the four designs for δ/L = 0.6, where δ is the vertical deflection of the top mid-point from the
undeformed configuration. The colors in these pictures provide a measure of the normalized von Mises stress.

http://mcfernandes.com
http://mcfernandes.com


Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S15/S28Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S15/S28

(a)

(b)

von Misses Stress

von Misses Stress

Supplementary Figure 10: Mechanical response for different loading conditions. For all cases presented in this figure, we consider a
structure with 11×2 cells (5.5 RVEs) and hinged boundary conditions applied to cells without diagonal reinforcements. (a) In this case, a
point deflection δ is applied to the top center of the structure while the bottom outside corners have constrained deflections, but unconstrained
rotation. The normalized reaction force is plotted as a function of the δ for the four considered designs. Moreover, on the right we show
numerical snapshots of the four designs for δ/L = 0.45. The colors in these pictures provide a measure of the normalized von Mises stress.
(b) In this case a distributed load is applied across the top of the structure while the bottom outside corners have constrained displacements,
but unconstrained rotation. The normalized total reaction force is plotted as a function of the deflection for the four considered designs. On
the right we show numerical snapshots of the four designs for δ/L = 0.6, where δ is the vertical deflection of the top mid-point from the
undeformed configuration. The colors in these pictures provide a measure of the normalized von Mises stress.

http://mcfernandes.com
http://mcfernandes.com


Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S16/S28Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S16/S28

(a)

(b)

`

von Misses Stress

von Misses Stress

Supplementary Figure 11: Mechanical response for different loading conditions. For all cases presented in this figure, we consider a
long slender realization of each design consisting of 11× 2 cells (5.5 RVEs). (a) In this case, a point deflection δ is applied to the bottom right
of the structure while the left edge of the structure is fixed. The normalized total reaction force is plotted as a function of the deflection for the
four considered designs. Moreover, on the right we show numerical snapshots of the four designs for δ/L = 1.9. The colors in these pictures
provide a measure of the normalized von Misses stress. (b) In this case a distributed load is applied across the top of the structure while the
left edge of the structure is fixed. The normalized total reaction force is plotted as a function of the deflection for the four considered designs.
On the right we show numerical snapshots of the four designs for δ/L = 2.3, where δ is the vertical deflection of the top right edge-point from
the undeformed configuration. The colors in these pictures provide a measure of the normalized von Mises stress.
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(a)

(b)

`

von Misses Stress

von Misses Stress

Supplementary Figure 12: Mechanical response for different loading conditions. For all cases presented in this figure, we consider a
long slender realization of each design consisting of 11× 2 cells (5.5 RVEs). (a) In this case a deflection δ is applied to the right edge of the
structure while the left edge of the structure is fixed. The normalized total reaction force is plotted as a function of the applied deflection for
the four considered designs. Moreover, on the right we show numerical snapshots of the four designs for δ/L = 0.4. The colors in these
pictures provide a measure of the normalized von Misses stress. (b) In this case a distributed load is applied across each level of the structure
while the left edge of the structure is fixed. The normalized total reaction force is plotted as a function of the deflection for the four considered
designs. On the right we show numerical snapshots of the four designs for δ/L = 0.22, where δ is the horizontal deflection of the right
mid-point from the undeformed configuration. The colors in these pictures provide a measure of the normalized von Mises stress.
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Supplementary Figure 13: Comparison between experimental and numerical results. This figure shows experimental snapshots of
the experimental specimens at an applied 8% compressive strain overlaid with a cutout of the representative deformation predicted by our FE
analyses. The close agreement between the experiments and simulations suggests that the FE simulations are accurately capturing the
physical deformation of the specimens.

(a) (b) (c)

2S

L

Supplementary Figure 14: Effect of diagonal spacing and mass ratio on the response of Design A with rectangular cross-section.
(a) Evolution of the critical strain as function of the spacing between diagonals. (b) Evolution of structural stiffness as a function of the mass
ratio λ = Vnd/Vd. (c) Evolution of critical strain as a function of the mass ratio λ. For each of the plots, the gray dashed vertical line indicates
the parameter of Design A. These results demonstrate that Design A, the sponge design, is very close to the optimal one, when considering
each parameter individually. All designs are characterized by the same total volume.

(a) (b) (c)

2S

L

Supplementary Figure 15: Effect of diagonal spacing and mass ratio on the response of Design A with circular cross-section. (a)
Evolution of critical strain as function of the spacing between diagonals. (b) Evolution of structural stiffness as a function of the mass ratio
λ = Vnd/Vd. (c) Evolution of critical strain as a function of the mass ratio λ. For each of the plots, the gray dashed vertical line indicates the
parameter of Design A. These results demonstrate that the shape of the cross-section does not have a significant role, as these results are
similar to those presented in Supplementary Fig. 14 for a lattice with rectangular cross-section. All designs are characterized by the same
total volume.
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(a) (b)

Design A Design B Design C Design D

(c)

Supplementary Figure 16: Response of Design A-D with circular cross-section. (a) Evolution of the structural stiffness as a function of
loading angle θ for lattices of infinite size. (b) Evolution of the effective buckling stress for the different lattice designs as a function of loading
angle θ. Results are obtained by simulating a super-cell with 10 by 10 units and periodic boundary conditions. (c) Numerically predicted
stress-strain curves for the 4 considered lattices when compressed with θ = 0. For all plots, the color of the line corresponds to the respective
design color depicted on the bottom.

θ = °45

Design A Design DDesign B Design C

θ = °0

Supplementary Figure 17: Critical modes of Design A-D at θ = 0◦ and θ = 45◦. These critical buckling modes were calculated using a
10 by 10 super-cell and the snapshots shown here are the center 2x2 cells of the full 10x10 model. Designs A-B in this figure exhibit a similar
deformation pattern when loaded at 0◦ or 45◦. However, for Design C-D, different buckling patterns are triggered when loaded at 0◦ and 45◦.
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Design A Design B Design C Design D

θ = °0

θ = °45

Supplementary Figure 18: Modes of finite size structure comprised of 3x3 unit cells. This figure shows the critical buckling modes
obtained for finite geometries for Design A-D loaded in uniaxial compression. The top row corresponds to a structure angled at 0◦, as in the
experiments. The second row corresponds to the same structure however rotated by 45◦ and cut to maintain the same size as the row above.
Each column in this figure corresponds to a different design. For each of the geometries, a slightly thicker frame is constructed to localize
most of deformation away from the edges of the structure. These results convey that the diagonally reinforced geometries are not susceptible
to edge effects when using at least 3 unit cells, whereas the non-diagonally reinforced structure is more susceptible to edge effects.

Design A Design B Design C Design D

θ = °0

θ = °45

Supplementary Figure 19: Modes of finite size structure comprised of 10x10 unit cells. This figure shows the critical buckling modes
obtained for finite geometries of Design A-D loaded in uniaxial compression. The top row corresponds to a structure angled at 0◦, as
considered in the experiments. The second row corresponds to the same structure however rotated by 45◦ and cut to maintain the same
size as the row above. Each column in this figure corresponds to a different design. For each of the geometries, a slightly wider frame is
constructed to minimize edge effects.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Supplementary Figure 20: Effect of sample size on critical stress. Evolution of the effective buckling stress as a function of the loading
angle θ for finite-size lattice structures comprising M by M unit cells, where M ranges from (a) 1 to (j) 10. The shaded parts in (a) - (j)
represent the lowest six buckling modes range. All plots provide a clear indication on the superior performance of Design A when comparing
to Designs C-D, when M > 2.
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Design A Design B

Design C Design D

(a) (b)

Supplementary Figure 21: Effect of joint stiffness analysis on critical stress. To evaluate the influence of the joints on the effective
buckling stress of Designs A-D we conduct FE analysis on a period unit cell with modified stiffness on elements near the joints. In particular,
we set the material stiffness to Ebox for the elements within a box of edge length Lbox = 0.02L (see inset schematic in (a)). (a) Evolution of
the normalized effective critical stress for varying the joint stiffness ratio Ebox/E. (b) Schematic of Design A-D unit cells with the location of
the joints highlighted by red dots.

5.2x10-2 5.3x10-2 5.5x10-2 4.1x10-2

1.5x10-2 1.8x10-2 2.2x10-2 1.1x10-2

(a)

(b)

Supplementary Figure 22: Stress Analysis. Numerical snapshots extracted from non-linear FE analysis (with first mode imposed
imperfection) at an imposed strain ε = 0.001. (a) The color indicates the normalized von Mises stress σvm with the maximum value for each
structure indicated above each figure. (b) The color indicates the normalized maximum principle stress σmp with the maximum value for each
structure indicated above each figure.
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(a) (b)

Supplementary Figure 23: Effect of disorder on critical stress. To evaluate the influence of disorder on the effective buckling stress of
Design A, we conduct FE analysis on a period unit cell on which we vary the mass allocated between diagonals going in different directions.
For all analysis presented, the total volume allocated between diagonals and non-diagonals remains constant, namely λ =

√
2. Va/Vb

defines the ratio between the volume allocated to the two families of diagonals (with Va + Vb = Vnd/
√

2). (a) Evolution of the effective
buckling stress as a function of Va/Vb for θ = 0. We find that for 0.25 < Va/Vb < 0.75 disorder has a minor effect on the effective buckling
stress. (b) Schematics of selected unit cell with different diagonal volume allocations Va/Vb.

Sa

Sb

Sa
Sb

S
a

S
b

Sa
Sb

L/2

(a) (b) (c)

Supplementary Figure 24: Effect of disorder on critical stress. To evaluate the influence of disorder on the effective buckling stress
of Design A we conduct FE simulations on a periodic unit cell in which we vary the location and orientation of individual diagonals, while
maintaining periodicity of the structure. For all analysis presented, the total volume of the diagonals remains constant and equal to Vnd/

√
2.

(a) Schematic illustrating the spacing Sa and Sb, defining the position of each diagonal. (b) Schematics of unit cell with varying Sa and Sb
(with Sa, Sb ∈ [0, 2L]). (c) Effective buckling stress for 2,500 unit cell simulations, in which we perturb the sponge strut spacings Sa and Sb
using a Gaussian N with mean µ = 0, standard deviation σ = 0.3 and magnitude ψ, namely, Sa/L = 1− 1/(

√
2 + 2) + ψN (0, 0.3) and

Sb/L = 1 + 1/(
√

2 + 2) + ψN (0, 0.3). The red markers indicate the mean for each considered ψ containing n = 50 simulations per discrete
value of ψ. We find that the applied perturbation does not alter the mean effective critical stress and that the variation of σ̄cr is bounded
between 0.6× 10−2µ and 1.0× 10−2µ.
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S5: OPTIMIZATION ANALYSIS

In an effort to identify the diagonal reinforcement resulting in a square lattice with the highest critical load, we

used a Python implementation of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [S11]. CMA-ES is an

evolutionary algorithm that is used to solve optimization problems by iteratively solving several forward problems to

adjust a covariance matrix of the solution. Since it is a derivative free algorithm, CMA-ES is well suited for optimization

problems of high dimensionality and non-linear parameter topology. In this study we used CMA-ES to identify

• the number of diagonals, N

• the volume ratio of non-diagonal to diagonal members, λ = Vnd/Vd. Note that, since for a lattice with N diagonal

members

Vnd = 8TndLH, (39)

Vd = 4
√

2NTdLH, (40)

for a given λ Tnd and Td are given by

Tnd =
1
2

λ

1 + λ

(
0.2L + 0.1

√
2L
)

, (41)

Td =
1√
2

1
N(1 + λ)

(
0.2L + 0.1

√
2L
)

, (42)

where we have enforced Eq. (1) and Eq. (9).

• the separation between each even set of diagonals, Si for i ∈ [1, 7] (Supplementary Fig. 25)

resulting in a lattice structure with the largest critical load. For such an optimization problem, the number of optimization

variables increased with the number of diagonals incorporated in the model (i.e. the total number of parameters are

1 + 1
2 (N− (N mod 2)) for a given optimization instance with N number of diagonals). In all of the runs we assumed that

all diagonals are oriented at 45◦ with respect to the non-diagonal members and that Vd and Vnd were distributed equally

among the diagonal and non-diagonal elements, respectively. Furthermore, to ensure the symmetry, we assumed that

S2i−1 = S2i (i = 1, 2, ..., N/2) if N is an even number and S1 = 0 and S2i−1 = S2i (i = 2, 3, ..., (N − 1)/2) for odd values of

N (Supplementary Fig. 25).

The algorithm’s initial values were chosen to be in the center of the design space, namely, λ = 1 and diagonal

separation for the even set of diagonals Si = 0.5L. The covariance matrix was initialized uniformly with a standard

deviation half of the domain space, which was normalized and constrained to remain between 0 and 1. The optimization

was evaluated in a uniaxial loading condition aligned parallel to the vertical elements with a population size of 30.

For the optimization results presented in the Main Text, we sought to maximize the critical buckling load of a finite

size structure using a single objective target function. The resultant parameter values from the optimization can be found

in Supplementary Tab. 2 and a convergence analysis for the case of N = 2 can be found in Supplementary Fig. 26. Note

http://mcfernandes.com
http://mcfernandes.com


Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S25/S28Nature Materials Supplementary Information M. C. Fernandes et al. / September 2020 S25/S28

that we also performed the same optimization analysis on an infinite periodic structure and the obtained results are

shown in Supplementary Fig. 27, and Supplementary Tab. 3.

S2

S1S1

S1S2

S1 S2S3

S1(a) (b) (c) (e)(d)

Supplementary Figure 25: Schematic. Schematics highlighting the geometric parameters considered in our optimization analysis.

λ S1 S2 S3 S4

N = 1 3.1890 0

N = 2 0.6778 0.1800

N = 3 0.8028 0 0.3044

N = 4 0.7640 0.1912 0.3720

N = 5 0.3874 0 0.3881 0.7811

N = 6 0.5036 0.1910 0.5189 0.8712

N = 7 0.3561 0 0.2899 0.5512 0.8779

Supplementary Table 2: Optimal 3×3 finite-sized structures. Geometric parameters defining the 3×3 structures with highest critical
stress identified by CMA-ES for different numbers of diagonals. In each row we report the optimal parameter identified for a given number of
diagonals N. For odd N, S1 is constrained to 0, meaning it is not allowed to move from the non-diagonal elements junction. As the number of
diagonals is increased λ decreases, indicating that the algorithm allocates more mass to the diagonal elements.
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(a)

(b)

(c)

Supplementary Figure 26: Evolution of the objective function and design parameters during CMA-ES iterations. This figure shows
the evolution of (a) the cost function, (b) the normalized mass ratio λ, and (c) the normalized diagonal separation S1 over the course of
each iteration of the optimization analysis for a lattice with N = 2. The solid line represents the mean value for the evolutionary optimization
iteration (with population size n = 30 samples per iteration) and the shaded bounds represent the standard deviation from the mean. In this
figure, it is apparent that the optimal value for λ is quickly identified by the algorithm.

1 Diagonal 2 Diagonals

3 Diagonals 4 Diagonals

(a) (b)

Supplementary Figure 27: Optimization analysis for infinite periodic structures. (a) Optimal value of critical buckling stress for varying
number of diagonals. The color of each point represents the optimal mass ratio λ. (b) Optimal deformed geometries for designs including one
to four diagonals. The color in each structure represents the magnitude of the displacement.
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λ S1 S2 S3 S4

N = 1 3.1454 0

N = 2 0.5614 0.3390

N = 3 1.4784 0 0.2440

N = 4 1.0151 0.0989 0.3358

N = 5 0.9509 0 0.1733 0.3260

N = 6 0.2009 0.2628 0.5827 0.8881

N = 7 0.2962 0 0.4197 0.6917 0.9126

Supplementary Table 3: Optimal structures of infinite extent. Geometric parameters defining the infinite structures with highest critical
stress identified by CMA-ES for different numbers of diagonals. Each column of the table corresponds to the optimal value of a parameter.
Each row corresponds a determined N number of diagonals. For odd N, S1 is constrained to 0, meaning it is not allowed to move from the
non-diagonal elements junction. λ on average decreases as a function of N, which as expected, means the algorithm is allocating more
volume to the diagonals as they are being spread too thin. The distribution of S as a function of N shows that the algorithm is attempting to
evenly distribute the diagonal spacing, such that the length of the vertical elements without diagonal bracing is kept the shortest.
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