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 Robust routes to induce chirality in centrosymmetric systems 
are not only of fundamental interest in unraveling the origin 
of single chirality as found in nature, but also have a broad 
range of practical applications including optical devices, [  1–3  ]  
sensors, [  4  ]  pharmaceuticals, [  5  ]  and advanced structural compo-
nents. [  6  ]  Since many chiral systems show distinctive proper-
ties depending on their handedness, [  4  ,  7  ,  8  ]  elucidating routes to 
induce chiral symmetry breaking and to control the handed-
ness across different length scales is crucial. In general, the 
emergence of chiral structures of single handedness relies on 
a two-step process: (i) spontaneous symmetry breaking, fol-
lowed by (ii) full amplifi cation of this chiral imbalance to yield 
a uniform confi guration. On the molecular scale, experimental 
demonstrations of such processes have been reported only for 
few crystallizing systems and chemical reactions, [  9–12  ]  in which 
the amplifi cation relies on activating and inhibiting interac-
tions at the molecular scale. [  13  ]  Extending these principles to 
larger length scales requires fundamentally different concepts. 
Although centrosymmetric nanopost arrays [  14–16  ]  and swellable 
confi ned nanoscale gel fi lms [  17  ,  18  ]  were recently reported to 
form chiral structures in the absence of chiral induction, no 
study has been reported on the spontaneous and reversible 
chiral symmetry breaking and subsequent full amplifi cation to 
yield large areas of ordered structures with single handedness. 

 Guided by a theoretical model, we here exploit buckling in 
rationally designed supported cellular structures at the mes-
oscale to reversibly switch between the initially achiral confi gu-
ration and subsequent uniform left- or right- handed confi gura-
tions. Moreover, we demonstrate that the underlying principles 

can be generalized using different geometries, materials, 
stimuli, and length scales. Although buckling is often regarded 
as a failure mode that needs to be avoided in structural mate-
rials, there are numerous natural [  19  ,  20  ]  and artifi cial [  21–28  ]  sys-
tems that use it to their advantage. Buckling of surface-attached 
strips [  29  ]  and free-standing structures [  30  ]  has been studied exten-
sively, but little has been known about mechanical instabili-
ties in surface-attached cellular structures. Moreover, while the 
deformation and unique mechanical properties of chiral cel-
lular structures have been the focus of many studies, [  31  ,  32  ]  here 
we demonstrate spontaneous and reversible chiral symmetry 
breaking in initially achiral structures followed by full ampli-
fi cation of the chiral imbalance across the entire structure to 
yield confi gurations of single handedness. 

 We start by recognizing that the formation of a chiral pattern, 
in which all vertices rotate in the same direction, requires that 
all the individual plates buckle in a higher mode comprising an 
integer number of complete sinusoids, as shown at the bottom 
of  Figure    1  a for a honeycomb as a model cellular structure. It 
is not suffi cient to simply buckling a free-standing honeycomb 
structure to form a chiral structure, since this induces a fi rst-
order mode in all plates, [  30  ,  33  ]  leading to an achiral confi gura-
tion where adjacent vertices alternately rotate clockwise and 
counterclockwise, as shown at the top of Figure  1 a. However, 
the attachment of the cellular structure to a rigid substrate 
allows higher order buckling modes, so that one can design 
architectures capable of deforming into either achiral or chiral 
confi gurations. Based on plate theory, we anticipate that the 
buckling mode can be controlled by carefully designing the 
dimensions of the cellular architecture. Furthermore, we expect 
that the connectivity of these cellular structures contributes to 
the uniform spreading of the chiral pattern once the symmetry 
is locally broken.  

 To defi ne the design criteria and predict the deformation 
of the ensemble, we conducted elastic buckling analysis of an 
individual supported thin plate. Assuming that the thin plate of 
length  l , height  h , and thickness  t  may be described as a linear 
elastic material with Young’s modulus  E , Poisson's ratio   ν  , and 
bending stiffness  D = Et3/12(1 − ν2)   , its buckling behavior is 
described by [  34  ] 

 

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
+

Etεsw

D

∂2w

∂x2
= 0,

  
(1)

   

where  w  is the defl ection in the out-of-plane direction and 
 εsw   denotes the differential swelling strain which is assumed 
to be uniform within the plate. To consider the effect of the 
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neighboring plates in the lattice structures, we assume the two 
vertical edges at  x   =  0 and  x   =   l  to be supported (i.e.,  w   =  0 
and  ∂2

w

∂x2 + ν
∂

2
w

∂y2 = 0   ), so that the solution of  Equation 1  has 
the form  w = f (y) sin mπx

l
  ,  m  being an integer (see Supporting 

Information). For a plate attached to a rigid substrate (i.e., free 
at  y   =   h  and clamped at  y   =  0), the critical swelling strain  εcr

sw
   

and the wavelength  2l / m  of the corresponding mode can then 
be solved as a function of the aspect ratio  l / h,  as shown in 
Figure  1 b. This stability diagram unambiguously reveals that in 
an initially straight plate with 0  <   l / h   <  2.32 a buckling pattern 
with half sinusoidal wavelength (i.e.,  m   =  1) will emerge upon 
reaching a critical swelling strain, resulting in an achiral pat-
tern (space group: P31m). Differently, if 2.32  <   l / h   <  4.02 the 
buckling will be a full sinusoid (i.e.,  m   =  2), yielding a chiral 
pattern (space group: P6). To fully defi ne the geometry of the 
supported cellular structure for experiments, we investigated 
the effect of the thickness of the plates using non-linear fi nite 
element analyses (see Supporting Information, Figure S1,S2). 
These numerical calculations show that the thickness only 

marginally affects the buckling modes (Supporting Informa-
tion, Figure S2), confi rming that the buckling-induced pattern 
of supported cellular structures is dictated by the aspect ratio 
 l / h  of the individual plates. 

 Having ascertained the critical design parameters, we vali-
dated our analytical model by fabricating surface-attached cel-
lular structures with aspect ratios  l / h  that correspond to dif-
ferent regimes in the stability diagram, as indicated by the 
circular markers in Figure  1 b. We started with macroscale 
honeycomb structures ( l   =  5 mm) comprising a few unit cells 
and made from silicone rubber (see Experimental Section). 
When swelled, the structures yielded either chiral, achiral 
or mixed patterns ( Figure    2  a and Supporting Information, 
Figure S3), exactly as predicted by our analysis (Figure  1 b). We 
then fabricated samples comprising a larger number of unit 
cells with geometries corresponding to both the achiral ( l / h   =  2, 
 t / h   =  0.37 and  l   =  5 mm) and chiral ( l / h   =  3.17,  t / h   =  0.40 and 
 l   =  5 mm) regime in the stability diagram. Furthermore, since 
the analytical model is not limited to a specifi c cellular geom-
etry, we also fabricated macroscale ( l   =  5 mm) square lattices 
comprising plates with the same aspect ratio (Figure  2 b). Again 
all the samples buckled as predicted by the analytical model 
(Figure  2 c,d – left/center), showing that the design principles 
can be applied to different geometries.  

 Because the pattern formation exploits a mechanical insta-
bility that is scale-independent (where the continuum assump-
tion holds) ,  we extended the principle to microscale honey-
combs ( l   =  20  µ m) made from epoxy resin (see Supplemen-
tary Methods). The structures buckled upon immersion in 
 N -methyl-2-pyrrolidone, and the stability diagram again cor-
rectly predicted the emergence of either chiral or achiral pat-
terns (Figure  2 c,d – right). Subsequently evaporating the sol-
vent led to reconversion of the buckled structures back into the 
original confi gurations, demonstrating that the controlled pat-
tern formation is fully reversible. 

 Although all the experimental results show an excellent 
agreement with the analytical predictions, we observed a 
racemic mixture of chiral domains displaying both right- and 
left- handedness evolved from several nucleation events. At 
the boundaries of these domains (shown as yellow lines in 
Figure  2 ), the plates buckled either in the 1st or 3rd mode. 
Avoiding such racemic mixtures and making defect-free pat-
terns with a single-handedness thus requires the prevention 
of multiple nucleation sites. We therefore gradually wetted 
the samples from a single location. This approach induced a 
unique nucleation event that propagated over the entire sample 
to yield uniform buckling patterns ( Figure    3  a). Remarkably, we 
observed that during the spreading of the pattern some plates 
initially buckled either in the wrong direction or with an unpre-
dicted mode (Figure  3 b). These defects were, however, repaired 
upon propagation of the swelling front through the defect site 
when the majority of the plates connected to the defect buckled 
correctly. The interconnected cellular architecture is thus cru-
cial for conserving the propagation of a single handedness over 
the entire substrate (Figure  3 d) by allowing a self-repair mecha-
nism through connected plates.  

 While instabilities can be induced by a number of stimuli, 
including thermal, electrical, and mechanical loadings (Sup-
porting Information, Figure S4), the convenience, versatility 

     Figure  1 .     Design of structures. a) Schematic approach to the design of 
supported cellular architectures with buckling-induced chiral or achiral 
reconfi gurations. First, the cellular structure is deconstructed into indi-
vidual supported plates and the wavelength   λ   of their buckling pattern 
is calculated. Then, the buckled pattern of the structure is reconstructed 
by connecting individual buckled plates. The color-coded arrows indicate 
the handedness of the vertices. b) Results of the buckling analysis for 
a single supported thin, elastic plate are plotted in a stability diagram. 
Upon reaching a critical swelling strain  εcr

sw   , buckling modes of both half 
and full sinusoids can be achieved by adjusting  l / h  (the aspect ratio of 
the plate), resulting in respectively achiral and chiral patterns upon recon-
struction of the cellular architecture. The circular black markers and cor-
responding Roman numbers indicate the aspect ratio  l / h  of macroscale 
honeycomb lattices ( l   =  5 mm and  t / l   =  0.18, see Figure  2 a) that were 
fabricated and tested to verify the validity of the analytical model.  
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indeed overwritten. This chiral memory is also durable: even 
after four months the memory is still preserved. Information 
on the handedness can thus be stored, read out, and over-
written, providing a versatile programmable mechanism.  

 Guided by an analytical model and numerical calculations, 
here we show a proof of principle of buckling-induced local 
symmetry breaking and subsequent spreading of a chiral pat-
tern to yield globally uniform confi gurations of single handed-
ness in supported cellular structures. We experimentally dem-
onstrate that this strategy offers a unique range of advantages: 
i) it can be applied to structures with various length scales 
(where the continuum hypothesis holds); ii) the reconfi guration 
occurs upon application of different stimuli and using different 
materials, so that it can be used to dynamically alter surface 
properties and morphology; iii) the transformation can be made 
fully reversible; and iv) most importantly, it can be controlled to 
yield either uniform achiral or chiral confi gurations with user-
defi ned handedness. 

 In contrast to molecular symmetry-breaking reactions and 
crystallization systems, both the nucleation and propagation 
of chirality can be visualized directly to unravel the underlying 
mechanisms and fully control the pattern formation. This pro-
cess not only provides a remarkable example of spontaneous 
symmetry breaking, but also outlines a general strategy in 
which a judicious choice of dimensions, materials, stimuli and 

and, most importantly, the reversibility and directionality of 
the reconfi guration process that arises from swelling-induced 
buckling enables a unique mechanism where chirality can be 
chosen, reversibly written and amplifi ed as described below. 

 Repeated swelling-unswelling revealed that the same buck-
ling pattern reoccurred every time. The structure thus pos-
sesses memory of deformation, likely embedded in a previous 
reorganization of the polymeric network, which can steer the 
chiral outcome in a subsequent symmetry breaking event. This 
memory effect can be used to select the handedness of the 
chiral patterns at will. Since statistical analyses showed equal 
probability of left-handed and right-handed patterns in rapidly 
swollen structures ( Figure    4  a,b), one can map the domains of 
different handedness and choose a region of desired handed-
ness as a seed. After unswelling the structure back into the 
initial pattern, we can initiate the slow, directional swelling 
of the structure starting from one of the mapped domains 
(Figure  4 c). Remarkably, when the progressing pattern reached 
the previously identifi ed domain boundaries, the handedness of 
the spreading pattern was still preserved, thereby overwriting 
the memory of these domains to yield patterns of uniform 
handedness by the repair mechanism discussed above. When 
the structure subsequently was unbuckled by drying and rap-
idly swollen again, we recovered the single-chirality pattern, 
confi rming that the memory of initially racemic domains was 

     Figure  2 .     Verifi cation of the stability diagram. a) Buckling patterns of macroscale honeycombs with different aspect ratio  l / h  ( t / l   =  0.18 and  l   =  5 mm for 
all samples). The Roman numbers indicate the corresponding marker in the stability diagram (Figure  1 b). The observed buckling mode ( m ) is shown 
below each image. Note that a mixture of modes is found for geometries lying on the boundary of adjacent regimes. b–d) Buckling-induced reversible 
pattern formation in a supported macroscale honeycomb lattice (left), macroscale square lattice (center) and microscale honeycomb lattice (right) 
upon rapid swelling: b) Optical images of original, undeformed structures; c) For  l / h   =  2,  t / h   =  0.37, buckling induces an achiral pattern; d) For  l / h   =  
3.17,  t / h   =  0.40, a chiral pattern is observed. These buckling patterns are in agreement with the analytical predictions, but multiple domains with dif-
ferent chirality are observed, whose boundaries are highlighted by the yellow dashed lines. The insets show magnifi ed images of the buckled patterns 
within the domains (top) and at the domain boundaries (bottom). The color-coded arrows indicate the handedness of the vertices.  
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Objet, Ltd.) and were subsequently used to make positive structures 
from a silicone rubber (Elite Double 32 available from Zhermack). 
The structures were attached to rigid back plates. Two microscale 
surface-attached hexagonal structures ( l   =  20  µ m) were fabricated for 
this study. The aspect ratios of the macroscale and microscale plates 
are ( l / h   =  2,  t / h   =  0.37) and  (l / h   =  3.17,  t / h   =  0.40) for achiral and 
chiral structures, respectively. The microscale structures were fi rst 
fabricated in  < 100 >  Si wafers. Replicas of the silicon masters were 
fabricated using soft lithography-based methods [  35  ]  with commercially 
available UV-curable epoxy (UVO-114 from Epoxy Technology, 
Billerica, MA).  

 Buckling-Induced Pattern Formation : Buckling was induced by swelling, 
using hexane and N-methyl-2-pyrrolidone (NMP) for silicon rubber and 
epoxy structures, respectively. The resulting patterns were recorded 
using a Nikon D90 digital SLR camera for the macroscale samples and a 
Leica DMRX microscope connected to a QImaging Evolution VF cooled 
color CCD camera for the microscale samples.   

architectonic designs provides a foundation for a wide range 
of multidisciplinary basic and applied studies. For example, 
our results could be used to design templates to facilitate fab-
rication of free-standing chiral structures. Moreover, in struc-
tures with sizes comparable to the wavelength of the light, our 
approach could lead to the design of novel thin fi lm polariza-
tion converters, waveguides and circular dichroism spectros-
copy substrates.  

 Experimental Section  

 Fabrication of Samples : Macroscale ( l   =  5 mm) surface-attached 
hexagonal and square cellular structures were fabricated by fi rst 
making negative molds using a 3D printer (Connex 500 available from 

     Figure  3 .     Uniform pattern formation by controlling nucleation. a) Time-lapse series showing a single nucleation event and subsequent slow spreading 
of a buckling-induced chiral pattern by gradually wetting from a single location. b) Time-lapse series of the self-repairing process. The initial defect in 
the form of a few clockwise vertices (blue) is overwhelmed by the surrounding counterclockwise vertices (red), thus amplifying the chiral patterns of 
the nucleus. c,d) The combination of the unique nucleation event and amplifi cation mechanism results in either uniform achiral ( l / h   =  2,  t / h   =  0.37) 
(c) or chiral ( l / h   =  3.17,  t / h   =  0.40) (d) patterns. Higher-magnifi cation images of the buckled patterns are shown in the insets; the color-coded arrows 
indicate the handedness of the vertices.  
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     Figure  4 .     Memory effect allowing readout, selection and overwriting of the handedness of the chiral pattern. a) An example of a rapidly swollen 
macroscale square lattice structures, showing a racemic mixture of left- and right-handed domains. b) Statistical probabilities of the vertices rotate 
into right- and left-handed confi gurations from nine independent experiments using different samples. The error bars indicate the standard deviation 
of the respective probability. c) These chiral domains can be selected and amplifi ed. For this, we fi rst map the chiral domains upon rapid swelling. 
Subsequently the structure is reconverted into the unbuckled confi guration, where the handedness map is given in faded red and blue. Buckling is 
then initiated at a location selected from the chirality map to induce a uniform pattern of the desired handedness. If the structure is subsequently 
unbuckled and rapidly swollen, the uniform pattern is recovered, demonstrating that the chiral memory of the original racemic pattern is overwritten.  
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Supplementary Methods 

Theoretical model for buckling of a supported elastic plate.  

To gain more insight into the response of surface attached cellular structures, we start by 

investigating buckling of the individual cell edges consisting of rectangular plates of length l, 

height h and thickness t (see Figure 1(a)) subjected to isotropic swelling.  

Foppl-von Karman equations. For the sake of simplicity, we focus on thin plates, so that 

shear deformations through the thickness of the plate can be neglected, and consider a 

deformation that takes a point on the center-surface with coordinates (x,y,0) to its deformed 

state (x+ux(x,y), y+uy(x,y), w(x,y)). Assuming that the thin plate may be described as a linear 

elastic material with Young’s modulus E, Poisson’s ratio ν, and bending stiffness D= E 

t
3
/[12(1-ν2

)], then balance of forces in the plane and out of the plane directions leads to the 

Foppl-von Karman equations [1-2] 

               ���,� � 0,        D	w,���� � w,



 � 2 w,��

� � t w,���,�� � 0,       �, � � �, �            (1) 

where �,� � ��/��.  Assuming isotropic swelling, the in-plane stresses are given by 

                          ��� � �
��

� �� � 
�!

	 �� �   ""�#��$ � �
�!

 %&#��                             (2) 

where #��  is the Kronecker delta,  �� � �
' ()�,� � )�,�* � �

' +,�+,�  is the in-plane strain tensor 

and  %&  denotes the strain caused by swelling of the material.  

Boundary conditions. In a 2D cellular structure attached to a substrate that is very stiff and 

swells by a negligible amount, clamped conditions can be assumed for each individual plate at 

y=0, 

ν
ν
ν ν
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                              )�	�, 0� � )"	�, 0� � +	�, 0� � +,"	�, 0� = 0                                     (3) 

while the condition that the boundary at y=h is free of torques and forces implies that 

�""	�, ,� � ��"	�, ,� � 0, 

            +,""	�, ,� � +,��	�, ,� � +,"""	�, ,� � 	2 � �+,��"	�, ,� = 0.                (4) 

Finally, in a lattice where the junctions cannot move but are free to rotate for each plate the 

boundary conditions at x=0, l read 

           )�	�, �� � +	�, �� � 0, +,��	�, �� � +,""	�, ,� � 0,    -. � � 0, /              (5) 

Buckling. We start by noting that Eqns. (1)-(5) are identically satisfied when 

                     )�	�, �� � +	�, �� � 0, )"	�, �� �  %&	1 � ��,                               (6) 

resulting in uniform strains and stresses and zero deflection. However, this solution is not 

always stable and above a critical value of swelling strain,  %&12 , non-planar solutions appear. 

To test the stability of the solution Eq. (6), we introduce incremental deformations as follows 

           u4 �	x, y� � u�	x, y� �ε u�
	��	x, y�, w7	x, y� � w	x, y� �ε w	��	x, y�                     	7� 

where   is a small parameter that characterizes the size of the perturbation superimposed on 

the finite deformation. Introducing Eq. (7) in Eq. (1) and retaining only the first order terms in 

 , a single non-trivial incremental equilibrium equation is obtained 

                         +,����
	�� � 2+,��""

	�� � +,""""
	�� � � 9 :;<

= +,��
	�� � 0                                      (8) 

Assuming the out-of-plane deflection is of the form +	��	�, �� � >	��sin B C �
D  (m being an 

integer) on substituting it into Eq. (8) and using the boundary conditions (3)-(5), an ordinary 

ν ν

ν

ν
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differential equation for f(y) is obtained 

                                                    (9)

 

  The general solution of a fourth order differential equation like Eq. (9) is given as, 

                              >	�� � E� F!G " � E' FG " � EH cos	K �� � EL sin	K ��             (10) 

Where α and β are as following, 

                           ,               (11) 

The coefficients C1, C2, C3 and C4 in Eq. (10) are determined by imposing the boundary 

conditions (3)-(5). More specifically, the boundary conditions (3) are satisfied if 
 

                                              E� � MNO!MPG
'G ,   E' � � MPG�MNO

'G                                      (12) 

and the function f(y) can be represented in the form 

                      >	�� � EH�cos	�K� � cosh	�R�$ � EL Ssin	�K� � O
G sinh	�R�T       (13) 

Substituting the above expression in Eq. (4), we get two linear homogeneous equations in 

terms of C3 and C4. The critical value of swelling strain,  %&12 , is determined by equating to 

zero the determinant of these equations.  

We solve this boundary value problem numerically and study the normalized critical 

strain 
UV:;<WX  

9V
 
and corresponding buckling modes as a function of the plate aspect ratio l/h, as 

shown in Figure 1(b). It is interesting to observe that higher buckling modes (i.e. m>1) can be 
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achieved for increasing values of l/h. By contrast, we notice that for a plate with free edges 

both at y=0 and y=h only modes with half wavelength (i.e. m=1) are possible. 

Numerical simulations of buckling for supported cellular structures 

Since our analytical model is based on the theory for thin elastic plates, to fully account 

for the effect of thickness, we further investigated the buckling of surface-attached lattice 

structures using non-linear finite element (FE) analyses. The FE calculations were conducted 

within the nonlinear code ABAQUS/Standard, version 6.8-2. In the numerical analyses, 

buckling of cellular structures of infinite planar extent perfectly bonded to a rigid substrate 

was investigated and for that sake of computational efficiency, the analyses were conducted 

on representative volume elements (RVEs) (see Figure S1).  

The instability of the structures was investigated conducting a Bloch wave analysis [5-6], 

a staple of physics long used to examine electronic, photonic and phononic band structures in 

periodic lattices. Although instabilities may alter the initial periodicity of the solid, they can 

be still detected investigating the response of just one unit cell of the material introducing 

boundary conditions provided by Bloch theory. While a real natural frequency corresponds to 

a propagating wave, a complex natural frequency identifies a perturbation exponentially 

growing with time. Therefore, the transition between a stable and an unstable configuration is 

detected when the frequency vanishes and the new periodicity after instability is provided by 

the corresponding Bloch wave vector. Here, the finite-element method was used to perform 

the Bloch wave analysis [5].  

FE models were constructed using 20-nodes, quadratic elements (ABAQUS element type 

C3D20). The accuracy of each mesh was ascertained through a mesh refinement study. In the 

analysis the bottom surface of the structures was considered to be perfectly bonded to a rigid 

substrate, while the top surface was free. Moreover, a series of constraint equations were 
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applied to the lateral surfaces of the RVE providing Floquet quasi-periodic boundary 

conditions. The material was modeled as elastic nearly incompressible Neo-Hookean material 

and swelling was used to induce buckling. 

   The results for the four structures in the Figure S2 showed the same buckling mode 

predicted by the analytical model based on Foppl-von Karman equations. More specifically, 

for l/h=2 and t/h=0.37 buckling induces the formation of an achiral pattern with reduced 

symmetry for both the hexagonal and square architecture. Differently, a chiral pattern is 

induced by mechanical instabilities when l/h=3.17 and t/h=0.40. Finally, we note that for a 

square lattice with l/h=2 and t/h=0.37 at the onset of instability the initial periodicity is broken, 

leading to an enlarged RVE with 2×2 original RVEs.  

Furthermore, the numerical calculations clearly show that the thickness only marginally 

affects the buckling modes. In Figure S2(b) we report the critical modes for supported square 

lattices with t/h=0.1, 0.3 and 0.5. These results demonstrate that the buckling mode is not 

affected by t/h. The numerical simulations thus confirm that by simply controlling the aspect 

ratio l/h of supported-cellular structure in initial honeycomb structure either achiral or chiral 

configurations can be formed.  

Experimental verification of the stability diagram 

   Having ascertained the critical design parameters, to verify the validity of our analytical 

model we fabricated surface-attached cellular structures with aspect ratio l/h that correspond 

to different domains in the stability diagram. More specifically, we started with macro-scale 

honeycomb structures (l=5 mm) comprising 19 hexagonal units and made from silicone 

rubber (see Fabrication section for details). We fabricated 13 samples characterized by l=5 

mm, t=0.9 mm and h such that l/h=1, 1.33, 1.66, 2, 2.33, 2.66, 3, 3.33, 3.66, 4, 4.33,4.66 and 5, 

as indicated by the markers in Figure S3(a). Immersing the sample in hexane swelled the 
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polymer, and within a few seconds the initially straight cell walls buckled to yield either 

chiral, achiral or mixed patterns (Figure S3(b)), exactly as predicted by the stability 

diagram (Figure 1(b)). This set of experimental results clearly confirms the validity of our 

analytical model.  

Fabrication 

Macro-scale structures. Macro-scale (l=5 mm) surface-attached hexagonal and square 

cellular structures were fabricated by making negative molds using a 3D printer (Connex 500 

available from Objet, Ltd.) and replicating positive structures with a silicone rubber (Elite 

Double 32 available from Zhermack). Before replication, a releasing agent (Easy Release 200 

available from Smooth-On, Inc.) was sprayed on to the molds for easy separation. The 

structures were attached to rigid back plates.  

Micro-scale structures. Two micro-scale different surface-attached hexagonal structures 

were fabricated for this study, with aspect ratios that corresponded to both achiral (l/h=2, 

t/h=0.37) and chiral (l/h=3.17, t/h=0.40) structures. The honeycomb structures yielding an 

achiral buckled pattern comprise individual plates with a thickness of 3.7 µm, a length of 20 

µm, and a height of 10 µm. The prochiral structures consist of an array of plates with 

thickness of 2.5 µm, a length of 20 µm, and a height of 6.3 µm. The different aspect ratio 

honeycomb structures used for this study were first fabricated in <100> Si wafers. The wafers 

were vapor primed with Hexamethyldisilazane (HMDS) to improve photo resist adhesion. 

SPR700 was used as a resist. Nikon 5× i-line stepper was used to expose the coated wafers 

followed by post exposure bake and resist development using Microposit MF CD26. 

Descumming was performed prior to Bosch advanced silicon etch [3] in an STS deep reactive 

ion etching (DRIE) tool. C4F8 and SF6 chemistry was used for Si etching. Veeco profilometers 

and cross sectional SEM (Zeiss) was used to characterize and optimize exposure conditions 
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etch rate and etch profile. The Si wafers were given a final overcoat of C4F8 to aid in the 

replication process. Scalloping on the plates of honeycomb structures is the result of the 

Bosch etch process [3-4] and is also visible in the polymer replicas. Replicas of the silicon 

masters were fabricated using soft lithography-based methods with commercially available 

UV-curable epoxy (UVO-114 from Epoxy Technology, Billerica, MA) as described in a 

previous paper [7].  

Buckling-induced pattern formation through swelling 

   Swelling was used to trigger instability in the considered supported cellular structures. 

Buckling occurred due to compressive stresses arising from the geometric constraint that 

suppresses swelling near the rigid substrate where the structure is clamped.  

Macro-scale structures. Instability of fabricated structures was induced by swelling the 

structures with hexane. We started by rapidly immersing the samples in hexane. We observed 

the formation of buckled patterns in excellent agreement with the analytical predictions, but 

characterized by multiple domains that evolved from different nucleation sites. To make 

defect-free samples, we carefully controlled nucleation and propagation of the pattern. A 

plastic tube (Intramedic polyethylene tubing with ID=0.38 mm, OD=1.09 mm available from 

Becton, Dickinson and Company) was used to gradually wet the samples starting from a 

single location and the solvent was introduced through a syringe pump (PHD 2000 available 

from Harvard Apparatus) at a flow rate of 0.1-0.4 mL/min. The resulting patterns were 

recorded using Nikon D90 digital SLR camera. 

Micro-scale structures. Buckling was induced by swelling the structures with N-methyl-2-

pyrrolidone (NMP) (available from Sigma Aldrich). We started by rapidly immersing the 

structures in the solvent, leading to the formation of multiple domains. To make defect-free 

samples, we floated them on the solvent so that the structure swelled from one side by wetting.  
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The resulting patterns were recorded by optical microscope (Leica DMRX connected to a 

QImaging Evolution VF cooled color CCD camera). 

Buckling-induced pattern formation through compression 

   We demonstrated that the pattern formation can be extended to different stimuli, by 

inducing buckling through mechanical loading. We performed compression experiment on 

microscale honeycomb structures made of UV curable epoxy and comprising an array of 

plates with a thickness of 3.7 µm, a length of 20 µm, and a height of 10 µm (l/h=2, t/h=0.37). 

Figure S4 shows the compressed (left) vs. uncompressed (right) areas of a single sample. An 

exceptionally uniform achiral buckled pattern is observed in the compressed area. 
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 Supplementary Figures and Captions 

 

 

 

Supplementary Figure S1. Top views of hexagonal and square cellular structures. Notice 

that l is defined as the center-to-center distance between adjacent vertices. The magnified 

portions of the structure show the representative volume elements (RVE) of the corresponding 

architecture.      
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Supplementary Figure S2. (a) Critical buckling modes predicted by numerical analysis. 

Buckling modes predicted by the Bloch wave analysis for supported hexagonal and square 

lattices with (l/h=2, t/h=0.37) and (l/h=3.17, t/h=0.40). The handedness of adjacent vertices 

has been highlight with red (right-handed) or blue (left-handed) arrows. The top views of 

buckled patterns are outlined by solid curves on the top surface of the structure to facilitate 

visualization. (b) Critical buckling modes predicted by numerical analysis for supported 

square lattices with t/h=0.1, 0.3 and 0.5. The buckling mode is found not to be affected by t/h. 

This confirms that buckling-induces pattern of supported cellular structures is dictated by the 

aspect ratio l/h. 
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Supplementary Figure S3. Experimental verification of the stability diagram. (a) To verify 

the validity of our analytical model, we fabricated macroscale honeycomb structures (l=5 mm, 

t=0.9 mm, h=1-5 mm) made from silicone rubber with different aspect ratio l/h, as indicated 

by the markers in the stability diagram. (b) Buckling patterns observed in samples with 

different l/h. Modes characterized by m=1, m=2 and m=3 are observed, exactly as predicted 

by the analytical model. Moreover, mixtures of modes with m=1-2 and m=2-3 are found for 

geometries lying on the boundary of adjacent regimes (Figure S3(a)). 
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Supplementary Figure S4. Scanning electron microscope (SEM) image of buckled patterns 

formed by compression of surface-attached honeycombs. Compression was applied to the left 

half of a micro-scale honeycomb structure (l/h=2, t/h=0.37). The compressed region shows a 

uniform, 1
st
 mode buckled pattern. 

 

 

 

 


