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Rational design of reconfigurable 
prismatic architected materials
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In the search for materials with new properties, there have been great 
advances in recent years aimed at the construction of architected 
materials, whose behaviour is governed by structure, rather than 
composition1–3. Through careful design of the material’s architecture, 
new material properties have been demonstrated, including negative 
index of refraction4,5, negative Poisson’s ratio6, high stiffness-to-weight 
ratio7,8 and optical9 and mechanical10 cloaking. However, most of the 
proposed architected materials (also known as metamaterials) have a 
unique structure that cannot be reconfigured after fabrication, making 
each metamaterial suitable only for a specific task and limiting its appli-
cability to well known and controlled environments.

The ancient art of origami provides an ideal platform for the design 
of reconfigurable systems, since a myriad of shapes can be achieved 
by actively folding thin sheets along pre-defined creases. While 
most of the proposed origami-inspired metamaterials are based on 
two-dimensional folding patterns, such as the miura-ori11–17, the 
square twist18 and box-pleat tiling19, it has been shown that cellular 
structures can be designed by stacking these folded layers13, or 
assembling them in tubes20–23. Furthermore, taking inspiration from 
snapology24,25—a modular origami technique—a highly reconfigurable 
three-dimensional (3D) metamaterial assembled from extruded cubes 
has been designed26. Although these examples showcase the potential 
of origami-inspired designs to enable reconfigurable architected 
materials, they do not fully exploit the range of achievable deformations 
and cover only a small region of the available design space. As a result, 
ample opportunities for the design of architected materials with tunable 
responses remain.

Here, we introduce a robust strategy for the design of 3D recon
figurable architected materials and show that a wealth of responses 
can be achieved in periodic 3D assemblies of rigid plates connected 
by elastic hinges. To build these structures, we use periodic space-
filling tessellations of convex polyhedra as templates, and extrude 
arbitrary combinations of the polygon faces. In an effort to design 
architected materials with specific properties, we systematically 
explore the proposed designs by performing numerical simulations 
and characterize the mobility (that is, number of degrees of freedom) 

of the systems. We find that qualitatively different responses can 
be achieved, including shear, uniform expansion along one or two 
principal directions, and internal reconfigurations that do not alter 
the macroscopic shape of the materials. Therefore, this research paves 
the way for a new class of structures that can tune their shape and 
function to adapt and even influence their surroundings, bringing 
origami-inspired metamaterials closer to application.

Design strategy
To design 3D reconfigurable architected materials, we start by selecting 
a space-filling and periodic assembly of convex polyhedra (Fig. 1). 
We then perform two operations on the tessellation. (i) We separate 
adjacent polyhedra while ensuring that the normals of the overlapping 
faces remain aligned. This can be achieved by imposing that for each 
overlapping face pair

− =p p nd d L2 (1)j j j j,b ,a

where dpj denotes the displacements applied to the polyhedra to 
separate the jth pair of faces, and the subscripts a and b indicate to 
which polyhedron the two overlapping faces belong. Moreover, Lj is 
the distance between the jth pair of faces in the separated state, and nj 
is the unit normal to the faces pointing outward from the polyhedron 
indicated by the subscript a. (ii) We extrude the edges of the polyhedra 
in the direction normal to their faces to form a connected thin-walled 
structure (Fig. 1), which we refer to as a prismatic architected material 
(Supplementary Video 1).

Importantly, for the periodic space-filling tessellations considered 
here, it is sufficient to focus on a unit cell that consists of only a few 
polyhedra and covers the entire assembly when translated by the three 
lattice vectors l i

0 (i =​ 1, 2, 3). While equation (1) can be directly imposed 
on all internal face pairs in the unit cell, for overlapping faces that are 
periodically located (that is, lie on the external boundary of the unit 
cell) the constraint needs to be updated as

− + − =p p R R nd d L2 (2)j j j j j j,b ,a
0

Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. 
Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate 
internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. 
Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology 
origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create 
three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by 
numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify 
a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles 
are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and 
materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
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where α=∑ =R lj i j i i1
3

,   and α=∑ =R lj i j i i
0

1
3

,
0  denote the distance between 

the two periodically located faces in the expanded and initial 
configuration, respectively, li being the lattice vectors of the expanded 
unit cell and αj,i ∈​ {−​1, 0, 1}. As shown by equations (1) and (2), for a 
unit cell with F face pairs the expanded configuration is fully described 
by F extrusion lengths Lj (j =​ 1,…, F) (Fig. 1). However, for most unit 
cells the extrusion lengths cannot all be specified independently owing 
to the constraints introduced by equations (1) and (2). As a result, each 
unit cell is characterized by Findep ≤​ F independent extrusion lengths 
as illustrated in Supplementary Fig. 6. For the sake of convenience we 
chose the Findep independent extrusion lengths to be as close as possible 
to an average extrusion length L, by solving

∑ −
... =

L Lmin ( ) (3)
L L j

F

j
1

2

F1 indep

while ensuring that the constraints imposed by equations (1) and (2) 
are not violated.

Finally, we note that all periodic and space-filling assemblies of 
convex polyhedra tested in this study were successfully extruded 
following the proposed design strategy (that is, we always found 
Findep ≥​ 1). As an example, in Fig. 1 we show three prismatic 
architected materials based on unit cells containing two triangular 
and one hexagonal prism (Fig. 1a), an octahedron and cuboctahedron  
(Fig. 1b), and four triangular prisms (Fig. 1c).

Characterizing reconfigurability
Although the aforementioned design strategy represents a robust and 
efficient approach to construct prismatic architected materials, it does 
not provide any indication of their reconfigurability. To determine 
whether, and to what extent, the meso-structure of the designed 
architected materials can be reshaped, we started by fabricating 

centimetre-scale prototypes from cardboard and double-sided tape 
(Fig. 2a–c), using a stepwise layering and laser-cutting technique  
(see the ‘Methods’ subsection of Supplementary Information)26,27.

Focusing on the three architected materials shown in Fig. 1, we find 
that the structure based on triangular prisms and the one based on a 
combination of triangular and hexagonal prisms can be reconfigured by 
bending the edges and without deforming the faces, and are respectively 
characterized by one and two deformation modes (Fig. 2d, e and  
Supplementary Video 2). In contrast, the material based on a combination  
of octahedra and cuboctahedra is completely rigid (Fig. 2b and 
Supplementary Video 2). Furthermore, our experiments reveal that 
these architected materials have fewer degrees of freedom than their 
constituent individual extruded polyhedra (Supplementary Fig. 7),  
indicating that the additional constraints introduced by the connections 
between the polyhedra effectively reduce their reconfigurability.

Numerical algorithm
While the examples of Fig. 2a–e illustrate the potential of our strategy 
to design reconfigurable architected materials, they also show that the 
design of systems with specific behaviour is not straightforward. To 
improve our understanding of the reconfigurability of the proposed 
architected materials, we implemented a numerical algorithm that 
predicts their mobility and corresponding deformation modes. In our 
numerical analysis, each extruded unit cell is modelled as a set of rigid 
faces connected by linear torsional springs, with periodic boundary 
conditions applied to the vertices located on the boundaries. To 
characterize the mobility of the structure we solved the following eigen-
problem ω=−~ ~a aM K1 m

2
m  , in which ~M and ~K  are respectively the mass 

and stiffness matrices, which account for both the rigidity of the faces 
and the periodic boundary conditions through master–slave 
elimination. Moreover, ω is an eigenfrequency of the system and am is 
the amplitude of the corresponding mode (see the ‘Mode analysis for 
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Figure 1 | Design strategy to construct 3D prismatic architected 
materials. Space-filling and periodic assemblies of convex polyhedra  
are used as templates to construct prismatic architected materials  
(Supplementary Video 1). After selecting a space-filling tessellation,  
we focus on a unit cell spanned by the three lattice vectors li

0 (i =​ 1, 2, 3) 
and identify all pairs of overlapping faces. We then separate the polyhedra 
while ensuring that the normals of all face pairs remain aligned. Finally,  

we extrude the edges of the polyhedra in the direction normal to their 
faces to construct the extruded unit cell. Note that the architected material 
can be constructed by tessellating the extruded unit cell along the three 
new lattice vectors li. Using this approach, we designed three architected 
materials that are based on space-filling tessellations comprising triangular 
prisms and hexagonal prisms (a), octahedra and cuboctahedra (b) and 
triangular prisms (c).
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3D prismatic architected materials with rigid faces’ subsection of 
Supplementary Information).

Figure 2f, g shows the simulated eigenmodes for the two reconfig-
urable architected materials considered in Fig. 1a, c. Although the  
simulations predict only the deformation for small rotations, the modes 
are strikingly similar to the deformation observed in the experiments 
(Fig. 2d, e). Solving the aforementioned eigenproblem therefore 
provides a convenient approach to determine the mobility of the 
structures and gives insight into their deformation without the need 
for specific boundary conditions.

Designs based on uniform tessellations
To further explore the potential of prismatic architected materials, and 
to establish relations between their reconfigurability and the initial 
space-filling polyhedral assembly, we next focus on extruded materials 
based on the 28 uniform tessellations of the 3D space, which comprise 
regular polyhedra, semiregular polyhedra and semiregular prisms28–30. 
Owing to their relative simplicity, these uniform templates provide a 
convenient starting point to explore the design space.

Using the numerical algorithm, we first determined the number of 
degrees of freedom, ndof, of the resulting 28 architected materials 
(Supplementary Fig. 9). We find that the mobility of the unit cells is 
affected by two parameters: the average connectivity of the unit cell, 
= ∑ =z z

P p
P

p
1

1 , and the average number of modes of the individual 
polyhedra, = ∑ =n n

P p
P

p
1

1 , where P is the number of polyhedra in the 
unit cell and zp and np are the number of extruded faces and modes of 
the pth polyhedron, respectively (Supplementary Fig. 8). The results 
for the 28 architected materials reported in Fig. 3 show three key 
features. First, higher values for z  lead to rigid materials (that is, ndof =​ 0 
for z  >​ 8). Second, if all the constituent extruded polyhedra are rigid 
(that is, =n 0), the resulting architected material is rigid as well. Third, 
only 13 of the 28 designs are reconfigurable (that is, ndof >​ 0).

Interestingly, we find that all of the 13 reconfigurable structures are 
based on unit cells comprising only prisms, such that they recover the 
relation previously demonstrated for extruded individual prisms, 
= −n z 3 (ref. 31). Moreover, our results indicate that most of the 

reconfigurable structures are characterized by fewer degrees of freedom 
than the constituent individual polyhedra (that is, <n ndof ), with the 
exception of the architected materials based on the cube (number 22) 
and the triangular prism (number 11) for which =n ndof .

Having determined the number of modes for the 28 architected 
materials, we next characterize the macroscopic deformation associated 
to each of them. More specifically, we determine the macroscopic 
volumetric strain δ=∑ = εj j1

3  for each mode, where εj are the macro-
scopic principal strains (see the ‘Mode analysis for 3D prismatic archi-
tected materials with rigid faces’ subsection of Supplementary 
Information). Interestingly, we find that for the 13 reconfigurable 
architectures all modes are characterized by δ =​ 0, which indicates pure 
macroscopic shearing deformation, as also confirmed by visual 
inspection of the modes (Supplementary Fig. 9).

To characterize the reconfigurability of prismatic architected 
materials, so far we had assumed the faces to be completely rigid and 
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Figure 2 | Deformation modes of 3D prismatic architected materials. 
a–c, Prototypes of the 3D prismatic architected materials shown in  
Fig. 1 were constructed using cardboard (rigid faces) and double-sided 
tape (flexible hinges). d, The structure based on a combination of 
triangular and hexagonal prisms can be reconfigured in two different  
ways (that is, has two degrees of freedom). e, The structure based 

on triangular prisms has a single deformation mode. Note that the 
architected material based on the octahedra and cuboctahedra cannot 
be reconfigured. f, g, Simulated modes of the reconfigurable architected 
materials. The obtained deformation modes were linearly scaled to match 
the experiments (scale bar in a, 10 cm).
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Figure 3 | Number of degrees of freedom for architected materials based 
on the 28 uniform tessellations of the 3D space. The mobility of the 
structures is affected by the average connectivity, z , and the average 
mobility, n. Overlapping data were separated for clarity; the small black 
lines indicate the original position of the data in each cluster. The 
prismatic architected materials and their deformation modes are shown in 
Supplementary Fig. 9.
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the hinges to act as linear torsional springs. However, fabrication will 
always result in deformable faces, raising the question of whether 
prismatic architected materials can be reconfigured when their faces 
are deformable. To explore this direction, we updated our numerical 
algorithm by introducing a set of springs to account for the deformabil-
ity of the faces12,13,21 (see the ‘Stiffness of 3D prismatic architected mate-
rials with deformable faces’ subsection of Supplementary Information). 
We then deformed the extruded unit cells uniaxially and investigated 
their macroscopic stiffness for different loading directions (identified 
by the two angles γ and θ as shown in Fig. 4).

In Fig. 4 we report the normalized stiffness K/E as a function of  
γ and θ for four prismatic architected materials characterized by 
t/L =​ 0.01, where E is the Young’s modulus of the material and t is the 
thickness of the faces. We find that the response of the architected 
material based on template number 28, which was previously qualified 
as rigid (that is, ndof =​ 0), is fairly isotropic because its stiffness does not 
vary much as a function of the loading direction (that is, 
3.1 ×​ 10−3 ≤​ K/E ≤​ 4.0 ×​ 10−3). In contrast, the stiffness of architected 
materials for which ndof >​ 0 drops noticeably for specific directions 
(that is, Kmin/Kmax =​ O(10−3)). Interestingly, these are the loading 
directions for which the reconfiguring modes are activated, as indi-
cated by the deformed structures shown in Fig. 4. Therefore, these 
results indicate that the deformation modes we found in the limit of 
rigid faces still persist even when the faces are deformable. We used 
the same stiffness for bending of the faces and bending of the hinges, 
and from the results we can therefore conclude that the architecture 
of these systems makes bending of the faces energetically costly 
(because it is typically accompanied by stretching and shearing of the 
faces). Finally, materials characterized by higher ndof are characterized 
by more ‘soft’ deformation modes. As such, materials with ndof =​ 1 
seem most promising for the design of reconfigurable architected 
materials, since they can be reconfigured along a specific direction, 
while still being able to carry loads in all other directions (Fig. 4 and 
Supplementary Fig. 10).

Enhancing the reconfigurability
Although we have shown that by extruding the edges of expanded 
assemblies of polyhedra we can construct reconfigurable architected 
materials, our results indicate that the mobility of the resulting 
structures is strongly reduced by their connectivity. Furthermore, 
the modes of all reconfigurable designs show a qualitatively similar 
shearing deformation. To overcome these limitations, we next introduce 
an additional step in the design strategy and reduce the connectivity 

of the materials by extruding some of the faces of the unit cell, while 
making the remaining faces rigid.

As an example, in Fig. 5 we consider the architected material based 
on a tessellation of truncated octahedra (number 28). When all faces 
are extruded, =z 14, leaving the structure rigid (that is, ndof =​ 0). 
However, by making 8 of the 14 faces rigid instead of extruding them 
(Fig. 5a and Supplementary Video 3) we can reduce the connectivity 
to =z 6 and the resulting architected material is no longer rigid, because 
ndof =​ 1. As shown in Fig. 5b and Supplementary Video 3, this response 
was also confirmed experimentally. Finally, we note that by varying the 
face pairs in the unit cell that are made rigid instead of extruded, a total 
of 2F =​ 128 different architected materials can be designed using the 
truncated octahedra as a template. However, only 82 combinations are 
possible (as all the other cases will result in structures with discon-
nected parts) and of those designs only four are reconfigurable. Owing 
to symmetries in the truncated octahedron, these four configurations 
are identical to the one shown in Fig. 5.

Next, to determine the range of deformations that can be achieved 
in the proposed structures, we apply the same brute force strategy  
to the other 27 uniform space-filling tessellations depicted in 
Fig. 3. For this study we considered a maximum of 216 designs per 
tessellation, randomly selected from the 2F possibilities, so that for 11 
of the tessellations (numbers 4, 5, 9, 10, 16, 17, 20, 21, 23, 25 and 27)  
the results are not complete, but rather indicate a trend. We expanded 
the number of possible designs by removing the polyhedra for which all 
faces have been made rigid from the extruded unit cell, because those 
would have resulted in rigid parts completely disconnected from the 
architected materials.

Of the approximately 0.6 ×​ 106 connected designs investigated here 
(Supplementary Table 1), 90% are rigid (that is, ndof =​ 0) while the other 
10% are reconfigurable (that is, ndof >​ 0). Supplementary Fig. 11a, b 
shows that to achieve reconfigurability we still need ≤z 8, with the 
exception of six designs based on number 5 for which =z 9  
(see Supplementary Fig. 12). Moreover, fully extruded architected 
materials characterized by =n 0 always remain rigid, independent of 
the reduced number of connections. Finally, and perhaps more 
importantly, we also find that using this design approach the mobility 
of the architected materials can be greatly enhanced, as 0 ≤​ ndof ≤​ 16 
and for many of the structures >n ndof  (Supplementary Table 1).

Inspection of the modes also reveals that a variety of qualitatively 
different types of deformation can be achieved. To characterize them 
better, in Fig. 6 and Supplementary Fig. 11c–f we report the magnitude 
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Figure 4 | Normalized stiffness K/E of prismatic architected materials. 
a–d, The results for architected materials based on template numbers 
22 (a), 26 (b), 12 (c) and 28 (d). To determine the stiffness in all loading 
directions, the architected materials are rotated by angles γ and θ before 
loading. In each contour plot we indicate the minimum and maximum 

stiffness with white and black squares, respectively. We also show 
the deformed architected materials for the minimum and maximum 
stiffness direction. Note that the deformation is magnified to facilitate 
visualization.
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of the principal strains, = ∑ =� �ε εi i1
3 2 , versus the volumetric strain, 

δ, for each deformation mode observed in the reconfigurable archi-
tected materials investigated here. Interestingly, we find that for many 
modes δ= =ε 0. These modes do not alter the global shape of the 

structure, but result only in internal rearrangements. The design 
labelled a, shown in Fig. 6, is an example of a structure undergoing such 
a local deformation. Here, most of the structure is rigid except for 
one-dimensional tubes that can deform independently. In contrast, the 
design labelled b is an example in which the whole internal structure 
is deforming, while maintaining the same macroscopic shape 
(Supplementary Video 4).

Besides these local modes, Fig. 6 also indicates that there are designs 
capable of achieving types of macroscopic deformation that differ from 
pure shear (for which δ =​ 0 and >ε 0). For example, we find that 
some of the structures are characterized by an effective vanishing strain 
in two directions (labelled c in Fig. 6). The deformation of such 
architected materials is characterized by ε1 ≠​ 0 and ε2 =​ ε3 ≈​ 0, resulting 
in δ= ε  . Moreover, the results also reveal that there are a variety of 
structures capable of uniform biaxial expansion (or contraction), for 
which ε2 =​ ε3 ≠​ 0 and ε1 =​ 0 and δ= /ε 2 . This deformation mode 
is exemplified by the design labelled d shown in Fig. 6 (Supplementary 
Video 4). Finally, we note that δ= ε3  corresponds to uniform 
expansion (or contraction) characterized by ε1 =​ ε2 =​ ε3, and defines a 
boundary for possible combinations of δ and ε . In fact, none of the 
designs considered here exhibits this type of deformation.

Discussion and conclusion
In this work we introduced a convenient and robust strategy for the 
design of reconfigurable architected materials, and explored the design 
space by considering structures based on the 28 uniform space-filling 
tessellations of polyhedra. Our study uncovered architected materials 
with a wide range of qualitatively different responses and degrees of 
freedom, but many more designs are made possible by using different 
assemblies of convex polyhedra as templates (including assemblies 
based on Johnson solids and irregular polyhedra, and assemblies that 
do not fill space), by considering different extrusion lengths, or by 
removing faces (instead of making them rigid before the extrusion 
step). Given these additional possibilities in the design of recon
figurable architected materials, we have made our numerical algorithm, 
implemented in Matlab, available for download as Supplementary 
Information, to be used and expanded upon by the community. Finally, 
we believe that, building on the results presented in this work, prismatic 
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Figure 5 | Enhancing the reconfigurability of 3D prismatic architected 
materials. a, To enhance the reconfigurability of the architected material 
based on the space-filling assembly of truncated octahedra (number 28 in 
Fig. 3), we extrude only six of its faces and make the remaining eight faces 
rigid. Using this approach, the average connectivity is reduced from =z 14 
to =z 6 and the resulting structure is no longer rigid, because ndof =​ 1.  
b, Experimental validation of the numerical predictions (scale bar, 10 cm).
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Figure 6 | Deformation modes of 3D prismatic architected materials 
with enhanced reconfigurability. Relation between the volumetric strain, 
δ, and the magnitude of the principal strains, ε , for all the architected 
materials characterized by ndof =​ 1. The colour of the markers refers to the 
uniform tessellation that has been used as a template, as shown in Fig. 3. 
Structures a–d and the one in Fig. 5 are indicated by grey circles on the 
main panel. The solid and dashed lines and associated schematics and 
conditions on ε1, ε2 and ε3 highlight how different choices of strains lead to 
different types of deformation (see text). Structures labelled a and b  

(based on tessellations 24 and 9, respectively) are characterized by 
δ= =ε 0 and experience internal rearrangements that do not alter their 
macroscopic shape. The structure labelled c (based on tessellation 16) 
deforms only in one direction (that is, δ =​ 4.21, = .ε 4 76), while the 
structure labelled d (based on tessellation 14) experiences uniform biaxial 
extension (or contraction) (that is, δ =​ 2.45, = .ε 1 73). The grey shaded 
region corresponds to combinations of strains that do not permit 
deformation.
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architected materials with specific properties may be efficiently 
identified by combining our numerical algorithm with stochastic 
optimization algorithms such as genetic algorithms. Such optimization 
algorithms could prove essential in the design of reconfigurable  
architected materials capable of handling changing environments or 
multiple tasks (that will probably lead to pareto optimal solutions).

To realize prismatic architected materials, in this study we used 
cardboard for the rigid faces and double-sided tape for the hinges. This 
fabrication process enables the realization of centimetre-scale 
prototypes (for our models we used L =​ 35 mm) that closely match the 
conceptual origami-inspired mechanisms, but real-world applications 
depend on the ability to efficiently manufacture assemblies comprising 
a large number of unit cells at different length scales using different 
fabrication techniques. Taking advantage of recent developments in 
multi-material additive manufacturing, we also built the proposed 
architected materials using a stiff material (with Young’s modulus 
E ≈​ 1 GPa) for the faces and a soft material (E ≈​ 1 MPa) for the hinges 
(see the ‘Methods’ section of Supplementary Information). 
Supplementary Video 5 shows 3D printed models for two designs 
based on assemblies of truncated octahedra (for both models we used 
L  =​ 6 mm). Although additional local deformation arises from the 
finite size of the flexible hinges, the 3D printed structures exhibit the 
same deformation modes predicted by our numerical analysis and 
observed in the cardboard prototypes. As such, recent advances in 
fabrication, including projection micro-stereolithography7, two-photon 
lithography8,32,33 and ‘pop-up’ strategies34–40, open up exciting 
opportunities for miniaturization of the proposed architectures. Our 
strategy thus enables the design of a new class of reconfigurable systems 
across a wide range of length scales.

Data availability The Matlab model used to determine the mobility and 
deformation modes of the prismatic architected materials is provided 
in Supplementary Information. Other models and datasets generated 
during and/or analysed during the current study are available from the 
corresponding author on request.
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In the following, we first describe the fabrication approaches used to make cardboard prototypes and 3D printed
prototypes. We next describe the numerical algorithms we implemented in Matlab (i) to predict the number of
degrees of freedom and corresponding deformation modes of 3D prismatic architected materials with rigid faces; and
(ii) to characterize the elastic response of 3D prismatic architected materials with deformable faces. Moreover, this
document contains the supplemental figures and table.

METHODS

Fabrication of Cardboard Prototypes

Our cardboard prototypes were fabricated from two layers of cardboard with a thickness of 0.7 mm (13001-2506,
Blick) and one layer of double-sided tape with a thickness of 0.07 mm (23205-1009, Blick), using a stepwise layering and
laser cutting technique on a CO2 laser system (VLS 2.3, Universal Laser Systems). To fabricate each of the extruded
polygons that together form the architected material, we started by cutting one of the cardboard sheets, after which
we removed it from the laser system (steps 1-2 as shown in Supplementary Fig. 1). Using a different pattern, cutting
slits were introduced in the second cardboard sheet (steps 3-5). The double-sided tape was bonded to the second
cardboard sheet still in the laser system, to which the initially cut cardboard sheet was attached (steps 6-7). A third
cutting step was then performed to finalize the different components (step 8), which were completely separated from
the main sheet (step 9-10). The individual components were assembled to form the extruded architected material
using the tape that was exposed during the cutting process (steps 11-15).

Fabrication of 3D Printed Prototypes

We furthermore manufactured prismatic architected materials using multi-material additive manufacturing (Con-
nex500, Stratasys). We used a rigid material (VeroWhitePlus RGD835, Young’s modulus E ≈ 1 GPa) for the faces
and a softer (TangoPlus FLX930, E ≈ 1 MPa) for the hinges. The final structure was designed using a custom made
Matlab script, which was based on extruded polyhedra with an edge length of L0 = 6 mm and an average extrusion 
length of L̄ = 6 mm. Both the faces and hinges were given a thickness of t = 1 mm. Moreover, the size of the faces 
was reduced by 0.5 + 1.5|θ|/π mm on each side to account for the finite size of the rounded hinges, θ being the initial
angle of the hinges (Supplementary Fig. 2).

MODE ANALYSIS FOR 3D PRISMATIC ARCHITECTED MATERIALS WITH RIGID FACES

Here, we describe the algorithm that we implemented to predict the number of degrees of freedom and corresponding
deformation modes of 3D prismatic architected materials. Focusing on an extruded unit cell comprising 2F rigid faces
(F face pairs) connected by H hinges (i.e. torsional springs), we first determine the elastic and kinetic energy required
to deform the structure. Then, we describe the constraints that we impose to ensure that the faces remain rigid and
the unit cell deforms in a periodically repeated manner (i.e. we model the response of an infinitely large structure
without considering boundary effects), after which we describe the eigenfrequency problem that we solve to find
the characteristic deformation modes of the architected materials. Finally, we discuss the assumptions made in the
numerical model.

Energy

Elastic Energy

Assuming that each hinge acts as a linear torsional spring of stiffness Kh, that no energy is required to maintain 
the hinges in their initial configuration and that the faces are rigid, the total elastic energy of the unit cell, Eelastic,
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Supplementary Fig. 1: Fabrication of cardboard prototypes. Steps 1-10 show the cutting proces to fabricate flat three layer
composites of cardboard and double-sided tape, and steps 11-16 depict the assembly process using the fabricated fabricated
pieces.

is given by

Eelastic = Ehinge =
H∑
i=1

1

2
Kh

i dθ
2
i =

1

2
dθTKhdθ, (1)

where dθi denotes the change in angle for the i-th hinge, dθ = [dθ1, dθ2, . . . , dθH ]T , and Kh = diag(Kh
1 , K

h
2 , ...., K

h
H).

Note that dθi can be expressed in terms of the displacement of the V vertices (corner points of the faces) as

dθi =
V∑

v=1

(
∂θi
∂x1,v

dx1,v +
∂θi
∂x2,v

dx2,v +
∂θi
∂x3,v

dx3,v

)
, (2)
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Supplementary Fig. 2: Fabrication of 3D printed prototypes. (a) Multi-material design based on a polyhedron template. Here,
L0 depicts the edge size, θ the angle between faces, and t the thickness of the faces. (b) 3D printed prototype using stiff
materials for the faces, and soft material for the hinges. (scale bar 6 mm)

where dx1,v, dx2,v and dx3,v denote the displacement components of the v-th vertex with initial coordinates x1,v, x2,v
and x3,v. Substitution of Eq. (2) into Eq. (1) yields

Ehinge =
1

2
uTJT

hKhJhu, (3)

in which Jh is the Jacobian matrix with entries

Jh[i, 3(v−1)+j] =
∂θi
∂xj,v

, j = 1, 2, 3 and v = 1, ..., V, (4)

and u = [dx1,1, dx2,1, dx3,1, . . . , dx1,V , dx2,V , dx3,V ]T .
Since the angle of the i-th hinge, which connects two faces with unit normals na and nb and rotates around the

axis pointing in the direction ah, is given by

θi = tan−1
(
ah · (na × nb)

na · nb

)
, (5)

it follows that

∂θi
∂xj,v

=

∂y
∂xj,v

z − y ∂z
∂xj,v

y2 + z2
, (6)

in which we have used y = ah · (na × nb) and z = na · nb. The derivatives can then be found according to

∂y

∂xj,v
=
∂ah
∂xj,v

· (na × nb) + ah ·

(
∂na

∂xj,v
× nb + na ×

∂nb

∂xj,v

)
, (7)

and

∂z

∂xj,v
=
∂na

∂xj,v
· nb + na ·

∂nb

∂xj,v
(8)

Finally, since the unit normal to any of the faces, n, can be calculated as

n =
v1 × v2√

|v1|2|v2|2− (v1 · v2)
2
, (9)

where v1 and v2 are two non-parallel vectors lying on the face (Supplementary Fig. 3), the derivatives of n in Eqs.
(7) and (8) are given by

∂n

∂xj,v
=

(
∂v1

∂xj,v
× v2 + v1 × ∂v2

∂xj,v

)
c− (v1 × v2) ∂c

∂xj,v

c2
, (10)
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Supplementary Fig. 3: Schematic of the extruded unit cell.

in which

c =

√
|v1|2|v2|2− (v1 · v2)

2
, (11)

and

∂c

∂xj,v
=

1

c

( ∂v1

∂xj,v
· v1

)
|v2|2+|v1|2

(
∂v2

∂xj,v
· v2

)
− (v1 · v2)

(
∂v1

∂xj,v
· v2 + v1 ·

∂v2

∂xj,v

) . (12)

Note that ∂n/∂xj,v = 0 for vertices not belonging to the face with normal n.

Kinetic Energy

Next, we determine the kinetic energy, Ekinetic, associated with the displacements of the vertices of the unit cell

Ekinetic =
1

2

V∑
v=1

Mv

(
∂x1,v
∂t

+
∂x2,v
∂t

+
∂x3,v
∂t

)2

=
1

2
u̇TMu̇, (13)

where u̇ = ∂u/∂t, Mv is the mass assigned to the v-th vertex and M is the 3V × 3V diagonal mass matrix
diag(M1,M1,M1, . . . ,MV ,MV ,MV ). Note that each face to which the v-th vertex belongs contributes a mass M/N
to the vertex, where M is the mass of the face (which we take equal to the area by assuming a unit thickness and
density), and N is the number of vertices of the face.
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Constraints

Rigidity of the Faces

To ensure that all the faces are rigid and do not deform, we triangulate them (Supplementary Fig. 3) and impose
that the length of each edge of the triangulation remains constant,

(xa − xb) · (xa − xb) = L2, (14)

where xa and xb are the two vertices connected by the edge, which has initial length L. We then linearize Eq. (14)
to obtain an expressions for each constraint that depends explicitly on the displacements of the two vertices

(xa − xb) · (ua − ub) = 0, (15)

in which ua = [dx1,a, dx2,a, dx3,a] and ub = [dx1,b, dx2,b, dx3,b].
Furthermore, we also ensure that all the faces remain flat (i.e. each face can undergo rigid body translation and

rotations, but cannot bend). To this end, we impose that all vertices of each face remain on the same plane spanned
by the two vectors w1 and w2 (Supplementary Fig. 3) [41],

wi · (w1 ×w2) = 0, for i = 3, ..., Vf − 1, (16)

in which Vf is the number of vertices of the face. Note that this constraint is automatically satisfied for faces that
only connect three vertices. We again linearize the constraints to obtain

u1 · (wi ×w2) + u2 · (w2 ×wi) + u3 · (wi ×w1) + ui · (w1 ×w2) = 0, for i = 3, ..., Vf − 1. (17)

Finally, we note that the constraints of Eqs. (15) and (17) are only valid for small displacements, since the constraints
are linearized around the initial coordinates of the vertices.

Periodic Boundary Conditions

For the infinitely large periodic prismatic architected materials considered here, it is sufficient to focus on a unit
cell that consists of a few extruded polyhedra and covers the entire assembly when translated by the three lattice
vectors li (i = 1, 2, 3). To ensure that the extruded unit cell deforms in a periodically repeated manner we constrain
the deformation of each periodically located vertex pair on its boundary as

ub − ua =

3∑
i=1

αidli, (18)

where ua and ub are the displacements of the two periodically located vertices, dli denotes the deformation of the
lattice vectors, and

xb − xa =
3∑

i=1

αili, (19)

with αi ∈ {−1, 0, 1}. In our implementation we treat dli as additional degrees of freedom, which we include in Eqs. (3)
and (13) as

Eelastic =
1

2

[
u
dl

]T [
Jh 0

]T
Kh

[
Jh 0

] [u
dl

]
, (20)

and

Ekinetic =
1

2

[
u̇

dl̇

]T [
M 0
0 0

] [
u̇

dl̇

]
, (21)

in which dl = [dlT1 , dl
T
2 , dl

T
3 ]T and dl̇ = ∂dl/dt.
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Master-slave Elimination

To enforce the constraints given by Eqs. (15), (17) and (18), we adopt the master-slave elimination method [42].
We start by rewriting all the constraints in matrix form as

A

[
u
dl

]
= 0, (22)

where each row of A represents one constraint. Next, we rewrite A in its reduced row echelon form, Arref. The
dependent constraints correspond to rows of all zeros in Arref and are therefore automatically satisfied. Moreover, all
the columns of Arref with a single entry correspond to the slave degree of freedom, ds, while the remaining degrees of
freedom are referred to as the master degree of freedom, dm. We then rewrite Eq. (22) as

[
I Brref

] [ds

dm

]
= 0, (23)

where I is the identity matrix and Brref comprise the columns of Arref that correspond to the master degrees of
freedom. It follows from Eq. (23) that

ds = −Brrefdm, (24)

so that [
ds

dm

]
=

[
−Brref

I

]
dm. (25)

Finally, since the vectors [dT
s ,d

T
m]T and [uT , dlT ]T contain exactly the same degrees of freedom arranged in a different

order, we rearrange the rows of the matrix [Brref, I]
T in Eq. (25) to obtain[
u
dl

]
= Tdm, (26)

where T is a transformation matrix.
Using Eq. (26), the elastic and kinetic energies from Eqs. (20) and (21) can be rewritten as

Eelastic = dT
mT

T
[
Jh 0

]T
Kh

[
Jh 0

]
Tdm, (27)

and

Ekinetic = ḋT
mT

T

[
M 0
0 0

]
Tḋm. (28)

Mode Analysis

The equations of motion for the extruded unit cell are derived using Lagrange’s equations

∂

∂t

(
∂Epotential

∂u̇

)
− ∂Epotential

∂u
= 0, (29)

where Epotential = Eelastic − Ekinetic. Substitution of Eqs. (27) and (28) into Eq. (29) yields

TT

[
M 0
0 0

]
Td̈m −TT

[
Jh 0

]T
Kh

[
Jh 0

]
Tdm = 0, (30)

in which we assumed that T, M, Jh and Kh do not depend on the displacement and do not change in time. Next,
we assume the solution to have the form

dm = am sin(ωt+ β), (31)
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and substitute into Eq. (29) to obtain the eigenproblem

M̃−1K̃am = ω2am, (32)

in which

M̃ =

(
TT

[
M 0
0 0

]
T

)
, (33)

K̃ = TT
[
Jh 0

]T
Kh

[
Jh 0

]
T. (34)

Moreover, ω is an eigenfrequency of the system and am is the corresponding mode. Finally, the displacements of all
the vertices associated to each mode are obtained from Eq. (26) as[

u
dl

]
= Tam sin(ωt+ β). (35)

Characterizing the deformation modes

To characterize the macroscopic deformation associated to each prismatic material, we determine the macroscopic
infinitesimal strain tensor for each of the computed modes as

ē =
1

2

(
H + H

T
)
, (36)

where H is the macroscopic displacement gradient, which can be determined from the infinitesimal deformation of
the three lattice vectors, dli, by solving the following set of equations

dli = Hli, for i = 1, 2, 3. (37)

Note that we normalized dli by the maximum change in angle between connected faces. To characterize the type of
macroscopic deformation associated to each mode we introduce the volumetric strain

δ =

3∑
j=1

εj , (38)

where εj are the principal strains, which can be determined by solving
(
ē− εjI

)
vj = 0, vj being the principal

directions.

Discussion

While our numerical analysis proved essential in the exploration of the design space for prismatic architected
materials, it is important to note that the algorithm is only valid for small rotations. However, we found that the
numerical results still provide valuable insights into the large deformations typically experienced by the structures,
as demonstrated by the excellent agreement with the experiments. Moreover, in our model we assumed that the
deformation of the architected material can be fully captured by an extruded unit cell to which periodic boundary
conditions are applied, thus neglecting boundary effects. Although in our experiments we observed additional modes
that arise from the reduced connectivity of the unit cells near the boundaries (Supplementary Fig. 4), we do not
expect them to significantly influence the behavior of the bulk material as they are confined to the outer surfaces.
These assumptions significantly reduced computation time and also removed the need for applying specific boundary
conditions, allowing us to model and compare many different systems.

STIFFNESS OF 3D PRISMATIC ARCHITECTED MATERIALS WITH DEFORMABLE FACES

While in the analysis used to characterize the reconfigurability of the structures we assumed the faces to be rigid,
we now account also for their deformability by introducing a set of springs. More specifically, for each rectangular
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Supplementary Fig. 4: Deformation modes of a finite-size prototype of the architected material based on the space-filling
assembly of hexagonal prisms (#26). Besides the two bulk modes predicted by our numerical simulations, we also observe 6
boundary modes (of which 2 are shown) that arise from the reduced connectivity of the unit cells near the boundaries (scale
bar 5 cm).

face we used four linear springs placed along the perimeter to capture its stretching, two linear springs placed along
the diagonal to capture its shearing, and a linear torsional spring placed along an arbitrary diagonal to capture its
bending [43–45] (Supplementary Fig. 5). Therefore, the elastic energy required to deform an extruded unit cell is
given by

Eelastic = Ehinge + Estretch
face + Eshear

face + Ebend
face , (39)

where Ehinge is the elastic energy as defined in in Eq. (1), and Estretch
face , Eshear

face and Ebend
face denote the contribution

to the elastic energy of the unit cell due to stretching, shearing and bending of the faces. Focusing on unit cells
comprising 2F faces, the energy required to stretch the faces can be determined from the extension of their edges as

Estretch
face =

8F∑
i=1

1

2
Kst

i (desti )2 =
1

2
deTstKstdest, (40)

where Kst
i and desti denote the stiffness and change in length of the i-th edge, dest = [dest1 , de

st
2 , . . . , de

st
8F ]T , and

Kst = diag(Kst
1 , K

st
2 , ...., K

st
8F ). Following the same approach used for Ehinge (Eqs. (2)-(4)), we rewrite Estretch

face in
terms of the displacement of the V vertices. We first note that

desti =
V∑

v=1

(
∂esti
∂x1,v

dx1,v +
∂esti
∂x2,v

dx2,v +
∂esti
∂x3,v

dx3,v

)
. (41)

Next, we substitute Eq. (41) into Eq. (40) and obtain

Estretch
face =

1

2
uTJT

stKstJstu, (42)

in which Jst is the compatibility matrix with entries

Jst [i, 3(v−1)+j] =
∂esti
∂xj,v

, j = 1, 2, 3 and i = 1, ..., 8F. (43)
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Supplementary Fig. 5: Schematic of the extruded unit cell indicating elements used to model the deformation of the faces.

Since shearing of faces is also modeled using springs (placed along the diagonals of the face), following the same
procedure used for Estretch

face (Eqs. (40)-(43)), Eshear
face can be determined as

Eshear
face =

1

2
uTJT

shKshJshu, (44)

where Ksh = diag(Ksh
1 , K

sh
2 , ...., K

sh
4F ) (Ksh

i denoting the stiffness of the i-th diagonal spring introduced to capture
shearing) and

Jsh [i, 3(v−1)+j] =
∂eshi
∂xj,v

, j = 1, 2, 3 and i = 1, ..., 4F. (45)

Finally, the energy associated to bending of the faces, Ebend
face , can be determined following the procedure used to

determine Ehinge (Eq. (1)-(12)), yielding

Ebend
face =

1

2
uTJT

bKbJbu. (46)

where Kb = diag(Kb
1 , K

b
2 , ...., K

b
2F ) (Kb

i denoting the stiffness of the i-th torsional spring placed on the diagonal to
capture shearing) and

Jb [i, 3(v−1)+j] =
∂ψi

∂xj,v
, j = 1, 2, 3 and i = 1, ..., 2F, (47)

ψ being the angle between the two triangulated faces separated by the diagonal on which the torsional spring is placed
(Supplementary Fig. 5).

Spring Stiffnesses

We assume that the faces are made from a material with Young’s modulus E and Poisson’s ratio ν = 1/3, and their
thickness t is chosen so that t/L̄ = 0.01 (L̄ being the average extrusion length). For such systems the stiffnesses of
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the springs introduced in our model can be determined as [45]

Kst =
Et

2L2

L2 − νL2
⊥

1− ν2
, (48)

Ksh =
Et

2LLHLW

ν(L2
H + L2

W)3/2

1− ν2
, (49)

Kb =Cb
Et3

12(1− ν2)

(
L

t

)1/3

(50)

in which L is the length of the edge on which the spring is placed, L⊥ is the length of the edge perpendicular to that
on which the spring is placed, LW and LH are the width and the height of the face, and Cb = 0.441. Moreover, while
in our experiments we used hinges that can bend more easily than the faces, here we consider the extreme case for
which the bendability of the hinges is similar to that of the faces and use

Kh = Cb
ELt3

24(1− ν2)

(
1

t

)1/3

. (51)

Periodic boundary conditions

Next, we apply periodic boundary conditions to the unit cell and express them in terms of the macroscopic dis-
placement gradient H. To ensure that the extruded unit cell deforms in a periodically repeated manner under applied
loading we update Eq. (18) as

ub − ua =
3∑

i=1

αiHli. (52)

Furthermore, we also introduce three fictitious nodes, (v1, v2, v3), to conveniently apply H to the unit cell [46]. The
displacement components of three fictitious nodes are assigned to be the components of H. Virtual work is then used
to determine the macroscopic stress tensor as

sij =
1

V0
rvi
j (53)

where V0 is the initial volume occupied by the extruded unit cell and rvi is the “reaction force” corresponding to the
assigned “displacement components” of the fictitious nodes vi.

The periodic boundary conditions specified by Eq. (52) are then enforced using the master-slave elimination method.
Following the procedure detailed in Eqs. (22)-(28) for Ehinge, we obtain

Estretch
face = dT

mT
T
[
Jst 0

]T
Kst

[
Jst 0

]
Tdm, (54)

Eshear
face = dT

mT
T
[
Jsh 0

]T
Ksh

[
Jsh 0

]
Tdm, (55)

Ebend
face = dT

mT
T
[
Jb 0

]T
Kb

[
Jb 0

]
Tdm, (56)

where [
u
h

]
= Tdm, (57)

and h = [H11, H12, H13, H21, . . . ,H33]T .

Deformation Under Uniaxial Loading

Finally, assuming that the deformation is applied quasi-statically, the equilibrium equations for the extruded unit
cell can be obtained as

∂Epotential

∂u
= 0, (58)
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where Epotential = Eelastic − W , W = hT r being the external work [46], for which we have defined r =[
(rv1)T , (rv2)T , (rv3)T

]T
. It follows from Eqs. (54)-(58) that

TT
([

Jh 0
]T

Kh

[
Jh 0

]
+
[
Jst 0

]T
Kst

[
Jst 0

]
+
[
Jsh 0

]T
Ksh

[
Jsh 0

]
+
[
Jb 0

]T
Kb

[
Jb 0

])
Tdm = TT

[
0
r

]
.

(59)

Having determined the equilibrium equations for an extruded unit cell, we apply a uniaxial loading to the system
by imposing H11 6= 0 and Hij = 0 for i 6= j, while leaving H22 and H33 unset (i.e. allowing the structure to freely
expand in the lateral directions, while constraining macroscopic shear deformations). Note that we also constrained
rigid body translations by fixing the displacement of a single vertex of the unit cell. To determine the response of the
architected material along all directions, we rotate the unit cell about two axis according to

x′ = RzRy′x, (60)

in which

Rz =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 , (61)

Ry′ = cos θI + sin θ

 0 −y′3 y′2
y′3 0 −y′1
−y′2 y′1 0

+ (1− cos θ)

(y′1)2 y′1y
′
2 y′1y

′
3

y′2y
′
1 (y′2)2 y′2y

′
3

y′3y
′
1 y′3y

′
2(y′3)2

 (62)

with y′ = Rzey (see schematic in Supplementary Fig. 10). For each direction, we can determine the stiffness according
to

K = s11/(H11). (63)
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SUPPLEMENTAL FIGURES

Supplementary Fig. 6: For a unit cell with F face pairs the expanded configuration is fully determined by choosing Findep ≤ F
extrusion lengths. As an example, here we consider four prismatic architected materials based on the space-filling assembly of
hexagonal prisms (for which F = 4 and Findep = 2) and show the effect of the two independent extrusions lengths L1/L

0 and
L2/L

0 on the final extruded shape, in which L0 denotes the length of the edges of the polyhedra. All four designs considered
here have the same degrees of freedom (ndof = 2).
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Supplementary Fig. 7: Reconfigurability of individual extruded polyhedra. The extruded units based on a (a) tetrahedron, (c)
octahedron, (d) truncated tetrahedron and (f) truncated cube are rigid, while those based on the (b) cube, (e) cuboctahedron,
(g) truncated octahedron, (h) rhombicuboctahedron, (i) truncated cuboctahedron, and (j-m) prisms are reconfigurable. For
reference, we also denoted the polyhedra on which the unit cells are based by their Schäfli symbols. Note that only a selected
number of deformation modes is shown, as it is not straightforward to determine all of them experimentally. For all the
prototypes the edges are 35 mm.
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Supplementary Fig. 8: Numerically determined modes of individual extruded polyhedra. The extruded geometries based on
the (a) tetrahedron, (c) octahedron, (d) truncated tetrahedron and (f) truncated cube are rigid, while those based on the
(b) cube, (e) cuboctahedron, (g) truncated octahedron, (h) rhombicuboctahedron, (i) truncated cuboctahedron, and (j-m)
prisms are reconfigurable. Importantly, using our numerical algorithm we can easily identify the degrees of freedom, n, and the
deformation modes for the extruded units. Note that modes characterized by the same eigenvalue ω2 are identical, so that we
only show one of these modes. For reference, we also denoted the polyhedra on which the unit cells are based by their Schäfli
symbols.
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Supplementary Fig. 9: Reconfigurability of architected materials based on on the 28 uniform tessellations of the 3D space,
which comprise regular polyhedra, semiregular polyhedra and semiregular prisms. The tessellations used as a template are
indicated with the notation introduced in [47]. Specifically, the individual polyhedra are indicated by their Schäfli symbol,
and the superscript shows the number of polyhedra of the given kind that meet at each vertex. Moreover, we also provide the
number of each kind of polyhedra in the unit cell. (#1-2) The architected materials based on (3.3.3)8.(3.3.3.3)6 (tetrahedra
and octahedra) are rigid. Note that #2 differs from #1 as it comprises reflected layers of tetrahedra and octahedra. (#3-4)
The assemblies based on (3.3.3)8.(3.3.3.3)3.(3.4.4)6 (tetrahedra, octahedra and triangular prisms) are rigid. Note that #4
differs from #3 as it comprises reflected layers of tetrahedra, octahedra and triangular prisms. (#5) (3.3.3)4.(3.4.4.4)3.(4.4.4)
(tetrahedra, rhombicuboctahedra and cubes) is rigid.
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Supplementary Fig. 9: (continued). (#6) (3.3.3)2.(3.6.6)6 (tetrahedra and truncated octahedra) is rigid. (#7)
(3.3.3.3)2.(3.4.3.4)4 (octahedra and cuboctahedra) is rigid. (#8) (3.3.3.3).(3.8.8)4 (octaheda and truncated octahedra) is
rigid. (#9) (3.4.3.4).(3.4.4.4)2.(4.4.4)2 (cuboctahedra, rhombicuboctahedra and cubes) is rigid. (#10) (3.4.3.4).(3.6.6)2.(4.6.6)2

(cuboctahedra, truncated tetrahedra and truncated octahedra) is rigid.
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Supplementary Fig. 9: (continued). (#11-12) (3.4.4)12 (triangular prisms) are reconfigurable with ndof = 2 and ndof = 1,
respectively. Note that #12 differs from #11 as it comprises reflected layers of triangular prisms. (#13-15) (3.4.4)6.(4.4.4)4

(triangular prisms and cubes) are reconfigurable with ndof = 2, ndof = 2 and ndof = 1, respectively. Note that #14 differs from
#13 as the polyhedra are differently arranged in-plane, and #15 differs from #13 as it comprises reflected layers of triangular
prisms and cubes.

WWW.NATURE.COM/NATURE | 17

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature20824



 

Supplementary Fig. 9: (continued). (#16) (3.4.4)2.(4.4.4)4.(4.4.6)2 (triangular prisms, cubes and hexagonal prisms) is reconfig-
urable with ndof = 2. (#17) (3.4.4)8.(4.4.6)2 (triangular prisms and hexagonal prisms) is reconfigurable with ndof = 2. (#18)
(3.4.4)4.(4.4.6)4 (triangular prisms and hexagonal prisms) is reconfigurable with ndof = 2. (#19) (3.4.4)2.(4.4.12)4 (triangular
prisms and dodecagonal prisms) is reconfigurable with ndof = 2. (#20) (3.4.4.4).(3.8.8).(4.4.4).(4.4.8)2 (rhombicuboctahedra,
truncated cubes, cubes and octagonal prisms) is rigid.
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Supplementary Fig. 9: (continued). (#21) (3.6.6).(3.8.8).(4.6.8)2 (truncated tetrahedra, truncated cubes and truncated cuboc-
tahedra) is rigid. (#22) (4.4.4)8 (cubes) is reconfigurable with ndof = 3. (#23) (4.4.4)2.(4.4.6)2.(4.4.12)2 (cubes, hexagonal
prisms and dodecagonal prisms) is reconfigurable with ndof = 2. (#24) (4.4.4)2.(4.4.8)4 (cubes and hexagonal prisms) is
reconfigurable with ndof = 2. (#25) (4.4.4).(4.6.6).(4.6.8)2 (cubes, truncated octahedra and truncated cuboctahedra) is rigid.
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Supplementary Fig. 9: (continued). (#26) (4.4.6)6 (hexagonal prisms) is reconfigurable with ndof = 2. (#27) (4.4.8)2.(4.6.8)2

(octagonal prisms and truncated cuboctahedra) is rigid. (#28) (4.6.6)4 (truncated octahedra) is rigid.
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Supplementary Fig. 10: Normalized stiffness K/E of the 28 architected materials based on the uniform space-filling polyhedra
assemblies. To determine the stiffness in all loading directions, the architected materials are rotated by angles γ and θ prior to
loading.
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Supplementary Fig. 11: (a-b) Number of degrees of freedom, ndof, for the altered architected materials based on the 28 uniform
space-filling tessellations. Each point represents a design in which some of the faces of the unit cell are made rigid, instead of
extruded. (c-f) Relation between the volumetric strain, δ, and the magnitude of the principal strains, ||ε||, for all the architected
materials characterized by ndof = 2, 3, 4 and > 5, respectively (Note that the results for ndof = 1 are shown in Fig. 6). The
color of the markers refers to the uniform tessellation that has been used as a template, as shown in Fig. 3.
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Supplementary Fig. 12: One of the six reconfigurable prismatic architected materials characterized by z̄ = 9 that we found
using the numerical algorithm. This specific architected material is based on #5, for which 18 faces of the polyhedra are
extruded and the remaining 18 faces are made rigid. Note that the faces of both tetrahedra are made fully rigid, and therefore
are not taken into account in the numerical analysis. The resulting architected material has ndof = 2.
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SUPPLEMENTAL TABLES

Supplementary Table 1: To enhance the reconfigurability of the proposed architected materials, we reduce their connectivity
by selectively extruding faces of the unit cell, while making the remaining faces rigid. In this table we summarize the results
obtained for the extruded structures based on the 28 uniform space-filling tessellations depicted in Fig. 3 and Supplementary
Fig. 9. For this study we considered a maximum of 216 designs per tessellation, randomly selected from the 2F possibilities
(where F is the number of face pairs), so that for 11 of the tessellations (#4-5, #9-10, #16-17, #20-21, #23, #25, and #27)
the results are not complete, but rather indicate a trend. When determining the degrees of freedom, ndof, we only consider
the designs that do not contain any disconnected parts. However, we expanded the number of possible designs by removing
the polyhedra for which all faces have been made rigid from the extruded unit cell, as those would have resulted in rigid parts
completely disconnected from the architected materials.

unit cell #designs connected
percentage of connected with ndof

ndof = 0 1 2 3 4 5 6 7 > 7, < 17
#1 28 24.7% 100.0% 0 0 0 0 0 0 0 0
#2 213/ 216 24.8% 100.0% 0 0 0 0 0 0 0 0
#3 213 16.7% 62.5% 34.0% 3.5% 0 0 0 0 0 0
#4 213/ 226 15.3% 62.1% 33.6% 4.3% 0 0 0 0 0 0
#5 213/ 220 91.6% 96.6% 3.2% 0.230% 0 0 0 0 0 0
#6 212 45.2% 100.0% 0 0 0 0 0 0 0 0
#7 211 66.1% 100.0% 0 0 0 0 0 0 0 0
#8 211 66.9% 100.0% 0 0 0 0 0 0 0 0
#9 213/ 229 94.4% 99.8% 0.249% 0 0 0 0 0 0 0
#10 213/ 222 96.4% 100.0% 0 0 0 0 0 0 0 0
#11 25 12.9% 0 0 100.0% 0 0 0 0 0 0
#12 210 9.9% 0 81.2% 17.8% 0.990% 0 0 0 0 0
#13 28 11.4% 0 0 75.9% 24.1% 0 0 0 0 0
#14 213/ 216 13.1% 43.7% 34.6% 19.6% 2.0% 0.070% 0 0 0 0
#15 213/ 216 3.1% 0 36.1% 43.8% 16.9% 3.0% 0.194% 0 0 0
#16 213/ 218 28.9% 36.5% 31.4% 18.7% 8.6% 3.8% 0.909% 0.048% 0 0
#17 213/ 224 11.4% 61.7% 31.1% 7.0% 0.175% 0 0 0 0 0
#18 29 26.8% 27.7% 66.4% 5.8% 0 0 0 0 0 0
#19 212 52.9% 46.3% 7.3% 9.6% 7.0% 5.5% 12.5% 0 11.9% 0
#20 213/ 244 99.0% 100.0% 0.002% 0 0 0 0 0 0 0
#21 213/ 228 99.5% 100.0% 0 0 0 0 0 0 0 0
#22 23 28.6% 0 0 0 100.0% 0 0 0 0 0
#23 213/ 224 60.1% 28.6% 20.0% 12.7% 9.8% 7.3% 5.2% 4.4% 3.3% 8.6%
#24 28 44.3% 18.6% 42.5% 9.7% 15.0% 14.2% 0 0 0 0
#25 213/ 229 93.4% 100.0% 0 0 0 0 0 0 0 0
#26 24 33.3% 0 0 40.0% 60.0% 0 0 0 0 0
#27 213/ 228 97.2% 100.0% 0 0 0 0 0 0 0 0
#28 27 62.2% 94.9% 5.1% 0 0 0 0 0 0 0
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